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Abstract

This paper extends a recently proposed robust computational framework for constructing the boundary representation (brep) of
the volume swept by a given smooth solid moving along a one parameter family h of rigid motions. Our extension allows the
input solid to have sharp features, and thus it is a signi�cant and useful generalization of that work.

This naturally requires a precise description of the geometry of the surface generated by the sweep of a sharp edge supported
by two intersecting smooth faces. We uncover the geometry along with the related issues like parametrization and singularities via
a novel mathematical analysis. Correct trimming of such a surface is achieved by an analysis of the interplay between the cone of
normals at a sharp point and its trajectory under h. The overall topology is explained by a key lifting theorem which allows us to
compute the adjacency relations amongst entities in the swept volume by relating them to corresponding adjacencies in the input
solid. Moreover, global issues related to body-check such as orientation and singularities are e�ciently resolved. Many examples
from a pilot implementation illustrate the e�ciency and e�ectiveness of our framework.

1 Introduction

In this paper we investigate the computation of the swept volume of a given solid moving along a smooth one parameter family of
rigid motions. We assume the solid to be of class G0, wherein, the unit outward normal may be discontinuous at the intersection
of two or more faces. An example of solid sweep appears in Figure 1. Sweeping has several applications, viz. CNC-machining
veri�cation [12, 13], collision detection, motion planning [1] and packaging [11].

Figure 1: An example of swept volume.

We adopt the industry standard parametric boundary representation (brep) format to input the solid and output the swept
volume. In the brep format, the solid M is represented by its boundary ∂M which separates the interior of M from its exterior.
The brep of M consists of the parametric de�nitions of the faces, edges and vertices as well as their orientations and adjacency
relations amongst these. Figure 2(a) schematically illustrates such a solid.

In this paper we extend the framework proposed in [4] to input solids of class G0. This is done by extending the key constructs
of the funnel and the correspondence from the smooth faces of ∂M to the sharp features of ∂M . This, along with the topology and
geometry generated by smooth faces of ∂M outlined in [4] and the trimming of self-intersections described in [3] gives a complete
framework for computing the brep of the general swept volume.

An edge or a vertex of ∂M is called sharp if it (or its part) lies in the intersection of faces meeting with G1-discontinuity. For
instance, in the solid shown in Figure 2(a), the faces F1 and F2 meet in the sharp edge E1 while faces F2 and F3 meet smoothly
in edge E2. The partner co-edges c1 and c′1 for E1 associated with faces F1 and F2 respectively and a sharp vertex Z1 are also
shown. In this work we focus on the entities in the brep of envelope E which are generated by sharp edges and vertices of ∂M .
This involves the following considerations.

1. Geometry: The local geometry of the entity EE in the brep of E generated by a sharp edge E ⊂ ∂M can be modeled by
that of the 'free' edge E moving in R3. The surface SE swept by such an edge is smooth except when the velocity at a
point is tangent to the edge at that point.

2. Trim: In order to obtain EE , SE needs to be suitably trimmed. The correct trimming follows as a result of the interplay
between the cone of normals at a sharp point and the trajectory of the point under the family of rigid motions. In the
schematic shown in Figure 2, an object with sharp features undergoes translation with compounded rotation indicated
with dotted arrows. In the positions shown in Figure 2(b) and Figure 2(d), the sharp feature does not generate any points
on the envelope while in Figure 2(c) it does.

3. Orientation: The faces EE must be oriented so that the unit normal at each point of EE points in the exterior of the swept
volume V.

We now outline the structure of this paper. In Section 2, we compare our contributions with previous related work. In
Section 3, we elaborate on the mathematics of the envelope. We establish a natural correspondence π between the boundary of
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Figure 2: Geometry generated by sharp features.

Figure 3: A solid undergoing translation along a circular arc in xy-plane and rotation about y-axis. Curves of contact at few time
instants are shown on the envelope in red.

the input solid and the boundary of the swept volume which serves as a basis for a brep structure on E. In Section 4 we give
the overall solid sweep framework and outline how it extends the framework proposed in [4] to handle sharp features of ∂M . The
faces and edges of E generated by sharp features of ∂M are parametrized in Section 5. This is followed by the analysis of the
adjacency relations amongst the entities of E via the correspondence map π and is explained in Section 6. We show that there is
local similarity between the brep structure of E and that of ∂M . In Section 7 we explain the steps of the overall computational
framework given in Section 4. We give many sweep examples demonstrating the e�ectiveness of our algorithm. In Section 8,
we discuss subtle issues of self-intersections and how they can be handled. Finally, we conclude in Section 9 with remarks on
extension of this work.

2 Related work

The computation of swept volume has been extensively studied [2, 5, 7, 8, 9, 10, 14, 17]. Abdel-Malek et al. [2], model the envelope
as solution set of the Jacobian rank de�ciency condition. This approach relies on symbolic computation and does not accept free
form surfaces as input. Blackmore et al. [5] derive a di�erential equation whose solution is the envelope. This method does not
meet the tolerance requirements of modern kernels. Erdim et al. [8] give a point membership test for a point to belong inside,
outside or on the boundary of the swept volume. This yields a parametric implicit representation of the envelope whose conversion
to brep may be computationally expensive. The solid-sweep framework of Adsul et al. [4] o�ers a mathematical analysis which
extends both the geometric as well as the topological understanding of the solid sweep. This is done by a deeper analysis of
parametrization, self-intersection and the interaction of faces, edges and vertices of a smooth solid in brep format.

Two works which need separate mention are [14] and [12]. Martin et al. [14] o�er a conceptual framework for the solid sweep
which is closest to ours but does not completely analyse the issues of parametrization, singularities, local self-intersection and
orientation. Lee et al. [12] consider the sweep of an axially symmetric tool and do consider a tool which has sharp edges. However,
for them, the sweep is represented by imprinting the contact curves on the tool itself. Thus, the general situation and trimming
are not considered. Our notion of the cone bundle provides for this.

3 Mathematical structure of the general sweep

This section extends to sharp solids, two key constructions, viz., (i) the de�nition of the envelope, and (ii) the natural brep
structure.

De�nition 1. A trajectory in R3 is speci�ed by a map

h : I → (SO(3),R3), h(t) = (A(t), b(t))

where I is a closed interval of R, A(t) ∈ SO(3)1, b(t) ∈ R3. The parameter t represents time.

Assumption 2. We make the following key assumption about (M,h). The tuple (M,h) is in a general position. The motion h is
of class Ck for some k ≥ 2, i.e., partial derivatives of order up to k exist and are continuous.

The above assumption about the general position of (M,h) is equivalent to requiring that slight perturbation of M or h does
not change the topology of the brep structure of the swept volume.

De�nition 3. The action of h (at time t in I) on M is given by M(t) = {A(t) · x+ b(t)|x ∈ M}. The swept volume V is the
union

⋃
t∈IM(t) and the envelope E is de�ned as the boundary of the swept volume V.

An example of a swept volume appears in Figure 3. Clearly, for each point y of E there must be an x ∈ M and a t ∈ I such
that y = A(t) · x+ b(t).

We denote the interior of a set W by W o and its boundary by ∂W . It is clear that Vo = ∪t∈IM(t)o. Therefore, if x ∈ Mo,
then for all t ∈ I, A(t) · x+ b(t) /∈ E. Thus, the points in the interior of M do not contribute any point on the envelope.

1SO(3) = {X is a 3 ×3 real matrix|Xt ·X = I, det(X) = 1} is the special orthogonal group, i.e. the group of rotational transforms.
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Figure 4: (a) Solid boundary ∂M (b) Unit normal bundle for ∂M (c) C(t) (d) C(t)

De�nition 4. For a point x ∈ M , de�ne the trajectory of xxx as the map γx : I → R3 given by γx(t) = A(t) · x + b(t) and the
velocity vx(t) as vx(t) = γ′x(t) = A′(t) · x+ b′(t).

We now recall the fundamental proposition from [4, 5] and also elsewhere which provides a necessary condition for a point
x ∈ ∂M to contribute the point γx(t) on E at time t, assuming that M is smooth. Let Nx denote the unique unit outward normal
to ∂M at x ∈ ∂M .

Proposition 5. De�ne the function G : ∂M × I → R as G(x, t) = 〈A(t) ·Nx, vx(t)〉. Let I = [t0, t1], t ∈ I and x ∈ ∂M be such
that γx(t) ∈ E. Then either (i) t = t0 and G(x, t) ≤ 0, or (ii) t = t1 and G(x, t) ≥ 0, or (iii) G(x, t) = 0.

Now we develop some notation in order to generalize the above proposition to non-smooth M represented in the brep format.
Recall that the brep of M models ∂M through a collection of faces which meet each other across edges which in turn meet at
vertices. Clearly, the sharp features of M are located along the edges and vertices.

The solid M may be (partly) convex/concave at a sharp edge. For the moment we only consider solids that do not have
concave edges. See Section 8 for a discussion on concave edges. Further, for simplicity, we assume that at most three faces meet
at a sharp vertex in ∂M . Thus, in the following de�nition, m is either 1, 2 or 3.

De�nition 6. For a point x ∈
⋂m
i=1 Fi, de�ne the cone of unit outward normals to ∂M at x as the intersection of the unit

sphere S2 with the convex cone formed by Ni, for i = 1, . . . ,m, where Ni is the unit outward normal to Fi at x. For simplicity,
we assume that Ni for i = 1, . . . ,m are linearly independent. We denote the cone of unit normals at x by Nx.

The points labeled x3 and x2 in Figure 3 lie in the intersection of three and two smooth faces respectively meeting sharply.
The point labeled x1 lies in the interior of a smooth face, hence Nx1 has a single element, namely, outward normal to ∂M at x1.
The cone of normals at a point is referred to as the extended Tool map in [12].

De�nition 7. For a subset X of ∂M , the unit normal bundle (associated to X) is de�ned as the disjoint union of the cones
of unit normals at each point in X and denoted by NX, i.e., NX =

⊔
x∈X Nx =

⋃
x∈X{(x, n)|n ∈ Nx}.

In Figure 4(a) a portion of ∂M is shown in which three faces Fi and three edges Ei meet at a sharp vertex Z. Note that for
X ⊂ ∂M , NX ⊂ R3 × S2, where S2 is the unit sphere in R3. However, for the ease of illustration we have shown the unit normal
bundles NFi

,NEi
for i = 1, 2, 3 and NZ schematically in Figure 4(b) in which an element (x, n) ∈ N∂M is represented as the

point x+ n.
We now state the following important proposition whose proof is straight-forward.

Proposition 8. The bundle N∂M is a piece-wise smooth and continuous manifold. There is a natural projection µ : N∂M → ∂M
given by µ(x, n) = x which is continuous.

For x ∈ ∂M and t ∈ I, the cone of unit normals to ∂M(t) at the point γx(t) is given by A(t) · Nx := {A(t) · n|n ∈ Nx}.
Further, the action of h at time t ∈ I on the unit normal bundle N∂M is given by N∂M(t) := {(γx(t), A(t) · n)|x ∈ ∂M,n ∈ Nx}.
The projection from N∂M(t) to ∂M(t) given by (γx(t), A(t) · n) 7→ γx(t) will be denoted again by µ.

De�nition 9. For (x, n) ∈ N∂M and t ∈ I, de�ne the function g : N∂M × I → R as g(x, n, t) = 〈A(t) · n, vx(t)〉.
Thus, g(x, n, t) is the dot product of the velocity with the normal A(t) · n ∈ A(t) · Nx at the point γx(t) ∈ ∂M(t). We are now
ready to state the next Proposition which naturally generalizes Proposition 5 to non-smooth solids.

Proposition 10. Let I = [t0, t1], t ∈ I and x ∈ ∂M be such that γx(t) ∈ E. Then either (i) t = t0 and there exists n ∈ Nx
such that g(x, n, t) ≤ 0 or (ii) t = t1 and there exists n ∈ Nx such that g(x, n, t) ≥ 0 or (iii) there exists n ∈ Nx such that
g(x, n, t) = 0.

Refer to the appendix for proof.

De�nition 11. Fix a time instant t ∈ I. The set {γx(t) ∈ ∂M(t)|∃n ∈ Nx such that g(x, n, t) = 0} is referred to as the curve of

contact at t and denoted by C(t). The set {(γx(t), A(t) · n) ∈ N∂M(t)|g(x, n, t) = 0} is referred to as the normals of contact

at t and denoted by C(t). Further, the union of curves of contact is referred to as the contact set and denoted by C, i.e.,
C =

⋃
t∈I C(t). The union

⋃
t∈I C(t) is referred to as the normals of contact and denoted by C.

Proposition 10 is tantamount to saying that µ(C(t)) = C(t). Curves of contact at a few time instants are shown in the sweep
example of Figure 3 in red. Figures 4(c) and 4(d) schematically illustrate the curve of contact and the normals of contact at a
time instant t, shown as dotted curves in red. The curve of contact is referred to as the characteristic curve in [15]. The normals
of contact at t are referred to as the contact map in [12].

The left cap is de�ned as Lcap = {γx(t0) ∈ ∂M(t0)|∃n ∈ Nx such that g(x, n, t0) ≤ 0} and the right cap is de�ned as
Rcap = {γx(t1) ∈ ∂M(t1)|∃n ∈ Nx such that g(x, n, t1) ≥ 0}. The left cap and right cap are shown in the sweep example of
Figure 3. The left and right caps are easily computed from the solid at initial and �nal positions.

Note that, by Proposition 10, E ⊆ Lcap ∪C ∪Rcap. In general, a point on the contact set C may not appear on the complete
envelope E as it may get occluded by an interior point of the solid at a di�erent time instant. This complicates the correct
construction of the envelope by an appropriate trimming of the contact-set. We refer the reader to [3] for a comprehensive
mathematical analysis of the trimming and related issues arising due to local/global self-intersections of the family {C(t)}t∈I .
We will largely stick to the case of simple sweeps for clarity. Non-simple sweeps are discussed in Section 8.
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De�nition 12. A sweep (M,h) is said to be simple if the envelope is the union of the contact set, the left cap and the right cap,
i.e., E = Lcap ∪ C ∪Rcap.
Hence, in a simple sweep, every point on the contact set appears on the envelope and no trimming of the contact set is required
in order to obtain the envelope.

Lemma 13. For a simple sweep, for t 6= t′, C(t) ∩ C(t′) = ∅. In short, no two distinct curves of contact intersect.

Refer to [4] for proof.

De�nition 14. For a simple sweep, de�ne the natural correspondence π : C → ∂M as follows: for y ∈ C(t), we set π(y) = x
where x is the unique point on ∂M such that γx(t) = y.

Thanks to Lemma 13, π is well-de�ned. Thus, π(y) is the natural point on ∂M which transforms to y through the sweeping
process.

The correspondence π induces a natural brep structure on E which is derived from that of ∂M . The map π is illustrated via
color coding in the sweep examples shown in Figures 1, 3 and 12 by showing the points y and π(y) in the same color.

A face of ∂M generates a set of faces on the contact set C. An edge or a vertex where ∂M is G1-continuous generates a set
of edges or vertices respectively on C. However, a sharp edge of ∂M generates a set of faces on C and a sharp vertex generates
a set of edges on C. This is illustrated in the example of Figure 1 by the sharp edge shown in pink which generates faces on C
shown in pink. For O ⊆ ∂M , we denote the contact set generated by O by CO, i.e., CO = {y ∈ C|π(y) ∈ O}. Note that while
O is connected, the corresponding contact set CO may not be. A connected component of CO is denoted using a subscript, for
example, faces CE1 , CE2 and so on.

4 The computational framework

Algorithm 1 given below is an extension of that in [4] to the case of sharp edges. The key steps are from step 14.

Algorithm 1 Solid sweep

1: for all faces F in ∂M do

2: for all co-edges c in ∂F do

3: for all z in ∂c do
4: Compute vertices Cz generated by z
5: end for

6: Compute co-edges Cc generated by c
7: Orient co-edges Cc

8: end for

9: Compute CF (t0) and CF (t1)
10: Compute loops bounding faces CF which will be generated by F
11: Compute faces CF generated by F
12: Orient faces CF

13: end for

14: for all sharp edges E in ∂M do

15: for all Z in ∂E do

16: Compute co-edges CZ generated by Z
17: Orient co-edges CZ

18: end for

19: (F, F ′)← AdjacentFaces(E)

20: Compute co-edges CE ∩ CF and CE ∩ CF
′

21: Orient co-edges CE ∩ CF and CE ∩ CF
′

22: Compute CE(t0) and CE(t1)
23: Compute loops bounding faces CE which will be generated by E
24: Compute faces CE generated by E
25: Orient faces CE

26: end for

27: Compute adjacencies between faces of C

We outline what was achieved in [4]. At the heart of Algorithm 1 is an entity-wise implementation of the correspondence π
which is a classi�cation of the faces, edges and vertices of E by the generating entity in ∂M . This is achieved by computing CO

of the envelope for key entities O ⊆ ∂M which yield faces in E. The smooth case is topologically simple since faces generate faces,
edges generate edges and so on. The computation of CO is followed by an orientation calculation. It was noted that while the
adjacencies of entities in E were built from that on ∂M , the orientation on E was not as on ∂M and in fact could be positive,
negative or zero vis a vis that on ∂M .

At the end of step 13, it is assumed that for each smooth face/edge F of ∂M , its contribution to the envelope E is available
as a brep face/edge. The issue now is to generate the entities which arise from sharp edges and vertices, orient these correctly
and stitch these together to to construct the �nal envelope E.

Firstly, note that a sharp vertex generates a set of edges. Steps 15-18 compute the structure of these edges in two steps, viz.,
computing the geometry and then its orientation. This is explained in Section 5.4. Next, note that a sharp edge E generates
a collection of faces. The boundary of these faces is computed in steps 19-23. The geometry and the detection of singularities
is done in step 24 and discussed in Section 5.2 and Section 5.3 respectively. The orientation of faces is achieved in step 25 and
discussed in Section 7.4. Finally, step 27 stitches the body from its entities. This is described in Section 6.

The key technical contributions thus are essentially (i) a complete analysis of the geometry, trim curves and orientation of the
faces and edges generated by sharp entities, and (ii) a seamless architectural integration of sharp features into the general solid
sweep framework.
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Figure 5: Prisms for faces F, F ′ and edge E shown adjacent to each other. The funnels of F, F ′ and pre-funnel of E are shaded
in yellow.

An obvious question is why it could not have been done before, i.e., in [4] itself. The answer is of course that the structure
of sweeps CF of smooth faces is the key construct and the CE , i.e., sweeps of sharp edges are essentially transition faces. The
theory of these transition faces must interface with that of the smooth faces and was built subsequently.

5 Parametrization and Geometry of faces and edges of C

In this section we describe the parametrization and geometry of the faces and edges of C. We extend the key constructs of prism
and funnel proposed in [4] for smooth faces of ∂M to the sharp features of ∂M . The funnel serves as the parameter space for
faces of CE and guides further computation of the envelope.

Recall that a (smooth and non-degenerate) face is a map S : D → R3, where D ⊆ R2 is a domain bounded by trim curves. A
smooth parametric curve in R3 is a (smooth and non-degenerate) map e : d→ R3 where d = [s0, s1] is a closed interval of R.
Thus, specifying a face (resp. edge) requires us to specify the functions S (resp. e) and the domain D (resp. d).

5.1 Parametrization of faces CF

We �rst recall from [3] the computation of faces CF generated by a smooth face F ⊆ ∂M . Suppose that F is given by the
parametrization S : D → R3, where D is a domain in R2 with parameters (u, v). Let I be the interval used to parametrize
the motion h. The envelope condition in Proposition 5 yields a function fF (u, v, t) on the prism D × I, viz., fF (u, v, t) =
〈A(t) ·N(u, v), γ′

S(u,v)
(t)〉 where N(u, v) is the outward normal to F at S(u, v). For simple sweeps fF (u, v, t) = 0 indicates that

A(t) · S(u, v) + b(t) is on the envelope. This led to the de�nition of the funnel FF as the zero-set of fF within the prism. If
FF1 , . . . ,FFk are the connected components of the funnel then (i) the face F leads to exactly k disjoint faces CF1 , . . . , C

F
k in the

envelope E, (ii) each FFi serves as the parameter space to implement CFi , (iii) the boundary of FFi arises from FF intersecting

the boundary of the prism and parametrizes the co-edges of CFi .

5.2 Parametrization of faces CE

Let E be a sharp edge of ∂M supported by two faces F and F ′. Let e be the curve underlying the sharp edge E and d be the
domain of E, i.e., e(d) = E. We extend the notion of prism proposed in [4] for smooth faces of ∂M to the edge E. At every

point e(s) ∈ E, we may parametrize the cone of unit normals Ne(s) as Ne(s)(α) =
α·N1+(1−α)·N2
‖α·N1+(1−α)·N2‖

for α ∈ I1 = [0, 1], where,

N1 and N2 are the unit outward normals to F and F ′ respectively at point e(s). We refer to the subset d× I1 × I of R3 as the
prism of E. A point (s, α, t) in the prism corresponds to the normal A(t) ·Ne(s)(α) at the point γe(s)(t) in the unit normal bundle

NE(t). De�ne the real-valued function fE on the prism of E as fE(s, α, t) = g(e(s), Ne(s)(α), t). Clearly if fE(s, α, t) = 0 then

γe(s)(t) ∈ CE . We will refer to the zero set of fE as the pre-funnel. See Figure 5 for an illustration of how funnels of smooth
faces interact with the pre-funnel of the sharp edge.

Fix a point x = e(s) ∈ E. From Proposition 10 it is easy to see that if γx(t) ∈ CE then either (i) there is a unique α ∈ I1 such
that fE(s, α, t) = 0 or (ii) for all α ∈ I1, fE(s, α, t) = 0. The later case leads to singularity in CE and is described in Section 5.3.
The former case allows us to eliminate α and de�ne the funnel as the projection of the zero-set of fE above to d× I, as follows:
De�nition 15. For a sweep interval I and a sharp edge E ⊂ ∂M , de�ne FE = {(s, t) ∈ d × I|fE(s, α, t) = 0 for some α ∈ I1}.
The set FE is referred to as the funnel for E. The set {(s, t) ∈ FE |t = t′} is referred to as the p-curve of contact at t′ and
denoted by FE(t′).

The set FE serves as the domain of parametrization for the faces CE generated by E. The parametrization function is given
by σE : FE → R3 as σE(s, t) = A(t) · e(s) + b(t).

It now remains to compute the trim curves of FE . The zero-set of fE is bounded by the boundaries of the prism d× I1 × I.
Thus the boundaries of FE come from the equations s = s0, s1 or t = t0, t1 or �nally α = 0, 1. The �rst two conditions are easily
implemented. The condition α = 0 is equivalent to the assertion that aE1 (s, t) = 〈A(t) ·N1(e(s)), γ′

e(s)
(t)〉 = 0 , where N1(e(s)) is

the normal to the face F at the point e(s). The function aE1 (s, t) = 0 and the similarly de�ned aE2 (s, t) = 0 (for face F ′) serve as
the �nal trim curves. This collection of trim curves may yield several components, each corresponding to a unique face of CE on
E.

Figure 6(a) illustrates the funnel FE shaded in yellow and p-curves of contact FE(t′),FE(t′′) and FE(t′′′) shown in red. In
this example, FE has two connected components. The curves σE(FE(t)) are parts of the curve of contact on E at time t. In
Figure 6(b), the normals of contact, i.e., A(t) · e′(s)× γ′x(t) at times t′, t′′ and t′′′ are shown projected on the unit normal bundle
NE.
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Figure 6: (a) The funnel FE is shaded in yellow. The p-curves of contact at t′, t′′ and t′′′ are shown in red. (b) The normals of
contact at times t′, t′′ and t′′, i.e., C(t′),C(t′′) and C(t′′′) respectively, projected on NE.

Figure 7: Singularity in CE . (a) The funnel is shaded in yellow. The p-curves of contact FE(t′),FE(t′′) and FE(t′′′) are shown
in red. (b) The normals of contact at times t′, t′′ and t′′, i.e., C(t′),C(t′′) and C(t′′′) respectively, projected on NE. (c) The
contact set CE has a singularity at point y.

5.3 Singularities in CE

A parametric surface S is said to have a singularity at a point S(u0, v0) if S fails to be an immersion at (u0, v0), i.e., the rank of
the Jacobian JS falls below 2.

Lemma 16. Let p = (s′, t′) ∈ FE . A face of CE has a singularity at point σE(p) if and only if the velocity γ′
e(s′)(t

′) is tangent

to the edge E at the point σE(p), i.e., γ′
e(s′)(t

′) and A(t′) · de
ds

(s′) are linearly dependent.

Figure 7(a) illustrates schematically a funnel FE having a singularity at time t′′. The normals of contact at a few time instants
are shown projected on NE in red in Figure 7(b). A sweep example with singularity is shown in Figure 7(c).

5.4 Parametrization of edges CZ

Let Z be a sharp vertex lying in the intersection of faces F1, F2 and F3 and let N1, N2 and N3 be the unit outward normals to

F1, F2 and F3 respectively at Z. An element n ∈ NZ can be represented as
∑3

i=1 αi·Ni

‖∑3
i=1 αi·Ni‖ where αi ∈ R, αi ≥ 0 for i = 1, 2, 3.

Hence, the condition that the point γZ(t) belongs to the contact set CZ if and only if there exists n ∈ A(t) · NZ such that
g(x, n, t) = 0 can be reformulated into the equivalent condition that the point γZ(t) ∈ CZ if and only if

〈
A(t) ·Ni, γ′Z(t)

〉
≤ 0

and
〈
A(t) ·Nj , γ′Z(t)

〉
≥ 0 for some i, j ∈ {1, 2, 3}, i 6= j. De�ne functions qi : I → R as qi(t) =

〈
A(t) ·Ni, γ′Z(t)

〉
for i = 1, 2, 3.

Clearly, the contact set CZ corresponds to the set of closed sub-intervals of the sweep interval I where any two of the functions qi
di�er in sign. This is illustrated schematically in Figure 8. At the end-points of these sub-intervals, either t ∈ {t0, t1} (illustrated
by points a and f in Figure 8) or one of the functions qi is zero (illustrated by points b, c, c′, d and e in Figure 8). Thus the
collection of sub-intervals dZ of I is easily computed. The parametrization function of course is γZ : dZ → R3 given by the
trajectory of the point Z under h. This �nishes the parametrization of CZ .

6 Adjacencies and topology of C

We now focus on the matching of co-edges for each face of C. We already know that faces of C come from (i) CE when E is a
sharp edge, or (ii) CF when F is a smooth face. Similarly edges in C come from (i) edges bounding faces of CE , CF and (ii)
edges coming from CZ , where Z is a sharp vertex. The matching of co-edges is eased by the following proximity lemma. While
the global brep structure of C may be very di�erent from that of ∂M , we show that locally they are similar.

Recall the natural correspondence π : C → ∂M from Section 3. We show that the adjacency relations between geometric
entities of C are preserved by the correspondence π.

Proposition 17. The correspondence map π : C → ∂M is continuous.
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Figure 8: The functions q1, q2 and q3 are plotted against time. Figure 9: Co-edges bounding face CE .

Figure 10: Adjacency relations between faces of C. (a) Solid being swept. (b) Normals of contact C(t), C(t′) and C(t′′) projected
on the unit normal bundle N∂M. (c) Curves of contact C(t), C(t′) and C(t′′) are shown in red. The edge CZ generated by the
sharp vertex Z ⊂ ∂M is shown as a dotted curve in black on C.

Refer to the appendix for proof.
We conclude the following theorem from the above proposition.

Theorem 18. For any two geometric entities O and O′ of ∂M , if CO and CO
′
are adjacent in C, then O and O′ are adjacent

in ∂M .

In other words, for a face F ⊂ ∂M and a sharp edge E ⊂ ∂M , if faces CFi and CEj are adjacent in C, then F and E are

adjacent in ∂M . For a sharp vertex Z ⊂ ∂M , if an edge CZk bounds a face CEj in C then the vertex Z bounds the edge E in ∂M .
This aids the computation of adjacency relations amongst entities of C and is illustrated by the sweep example shown in

Figures 1, 3 and 12 by color coding. The entities O and CO are shown in same color.

6.1 Co-edges bounding faces CE

Consider a sharp edge E supported by smooth faces F and F ′ in ∂M . We pick a face of CE given by the component of FE shown
in Figure 9. The co-edges c5, c3 come from the equations s = s0 and s = s1 respectively. These must correspond to edges swept
by sharp vertices bounding the edge E. The co-edge c1 comes from the condition t = t0 and thus comes from curve of contact at
the initial time instant and thus, the left cap. Finally, the curves c2, c4 correspond to aE1 (s, t) = 0 and aE2 (s, t) = 0 which come
from the normals of contact matching that of the supporting smooth faces as described in Section 5. Thus these co-edges must

match those coming from the boundaries of CF and CF
′
.

6.2 Co-edges matching edges of CZ

We next come to the co-edges matching with edges arising from CZ . As in Figure 8, the edges of CZ are parametrized by
intervals d1, . . . , dk. Each interval di has two of the three functions q1, q2 and q3 of one sign and the third of the opposite sign.
For example, if we take the interval (c, c′), we see that q1, q3 > 0 and q2 < 0. For t ∈ (c, c′), if we look at the zero locus of the
function 〈A(t) · n, γ′Z(t)〉, on NZ , then there must be an n1 ∈ cone(N1, N2) ⊂ NZ such that 〈A(t) · n1, γ′Z(t)〉 = 0 and there must
be an n2 ∈ cone(N2, N3) ⊂ NZ such that 〈A(t) · n2, γ′Z(t)〉 = 0. This leads us to the sharp edge E1 with normals N1, N2 at the

vertex Z ∈ E1, and to the sharp edge E2 with normals N3, N2 at Z ∈ E2 and the conclusion that that faces of CE1 and CE2 meet
at the edge [c, c′] of CZ . See for example, the curve of contact C(t′) in Figure 10(c). A similar conclusion for the interval (c′, d)
tells us that faces of CE1 and CE3 meet on the edge [c′, d] of CZ . The curious point is the time instant c′ where the smooth face
F3 with normal N3 also meets the edge CZ . This is illustrated by curve of contact C(t′′) in Figure 10(c) where there are four
incident faces.

7 Computation of the brep of C

We now explain Steps 14 to 27 of Algorithm 1 for generating the entities on the envelope corresponding to sharp edges and vertices
of ∂M . Algorithm 1 marches over each entity O of ∂M and computes the corresponding entity CO of C. The computation of
CO follows the computation of its boundary ∂CO. For further discussion �x a sharp edge E of ∂M (cf Step 14 of Algorithm 1).

7.1 Computing and orienting co-edges CZ

Consider a sharp vertex Z ⊂ ∂E. Recall from Section 5.4 that computing the edges CZ is equivalent to computing the collection of
closed subintervals of the sweep interval I in which the functions qi di�er in sign. We use Newton-Raphson solvers for computing
the end-points of these subintervals. Of course, these end-points give rise to vertices which bound edges of CZ . This is performed
in Step 16 of Algorithm 1.

Each co-edge CZi bounding the face CEj must be oriented so that CEj is on its left side with respect to the outward normal in

a right-handed co-ordinate system. Let y = γZ(t) ∈ CZi and w̄ ∈ R3 be tangent to CZi at y. Let n be the outward unit normal to

7



Figure 11: Orienting co-edges CZ . In this case e(s1) = Z and −e′(s)|s1 points in the interior of face CE .

CEj at y (cf Section 7.4). Assume without loss of generality that A(t) = I and b(t) = 0. Let e be the parametric curve underlying

E so that e(d) = E where d = [s0, s1]. Consider two cases as follows.

1. If Z = e(s0), then e′(s0) points in the interior of the face CEj , where, e
′ denotes the derivative of e. If 〈e′(s0), n× w̄〉 > 0

then w̄ is the orientation of CZi else −w̄ is the orientation.

2. If Z = e(s1) then −e′(s1) points in the interior of CEj . If 〈−e′(s1), n× w̄〉 > 0 then w̄ is the orientation of CZi else −w̄ is
the orientation. This is illustrated schematically in Figure 11.

The co-edges CZ are oriented in Step 17 of Algorithm 1.

7.2 Computing and orienting co-edges CE ∩ CF and CE ∩ CF
′

For the sharp edge E supported by smooth faces F and F ′ in ∂M , the co-edges CE ∩ CF and CE ∩ CF ′
bounding a face of

CE correspond to the iso-α curves for α ∈ {0, 1} of CE as discussed in Section 6.1. The orientation of these co-edges for CE is

opposite to that of the partner co-edges for CF and CF
′
. The co-edges bounding CF and CF

′
are computed and oriented in Steps

6 and 7 of Algorithm 1. Their partner co-edges bounding faces CE are computed and oriented in Step 20 and 21 of Algorithm 1.

7.3 Computing loops bounding faces CE

A loop is a closed, connected sequence of oriented co-edges which bound a face. As noted in Section 6.1, the co-edges bounding
faces of CE are either iso-α curves for α ∈ {0, 1}, or iso-s curves for s ∈ {s0, s1} or iso-t curves for t ∈ {t0, t1}. In order to
compute the loop bounding a face CEi , we start with a co-edge bounding CEi and �nd the next co-edge in sequence. For instance,
if this co-edge is iso-α curve for α = 0 and its end-point is (α, s) = (0, s1) then the next co-edge in sequence is iso-s curve with
s = s1. This is repeated till the loop is closed. Figure 9 illustrates this schematically. This computation is performed in Step 23
of Algorithm 1.

7.4 Computing and orienting faces CE

The parametrization of faces CE was discussed in Section 5.2 via the funnel FE . This is done in Step 24 of Algorithm 1. Each
face in the brep format is oriented so that the unit normal to the face points in the exterior of the solid. Consider a point
y = γz(t) ∈ CE and assume without loss of generality that A(t) = I and b(t) = 0. Recall from Section 5 that if w̄ is tangent to E
at z, then n := A(t) · w̄ × γ′z(t) is normal to CE . Further, either n ∈ A(t) ·Nz or −n ∈ A(t) ·Nz . Since the interior of the swept
volume is Vo = ∪t∈IM(t)o, the outward normal to CE at y is n if n ∈ A(t) · Nz else it is −n. This is performed in Step 25 of
Algorithm 1.

Our framework is tested on over 100 di�erent solids with number of sharp edges and smooth faces between 4 and 25, swept
along complex trajectories. A pilot implementation using the ACIS [18] kernel took between 30 seconds to 2 minutes on a
Dual Core 1.8 GHz machine for these examples, some of which appear in Figure 12. Many more examples are included in the
supplementary �le.

8 Extension to non-simple sweeps

We now discuss the extension of the above framework to `non-simple' sweeps. Recall that, in a non-simple sweep, the correct
construction of the envelope requires an excision of the occluded or the self-intersected part from the contact set. An example
of this self-intersection appears in the bottom row of Figure 12. Self-intersections themselves may be classi�ed as local or global
(see [6, 16, 3] for de�nitions). Global self-intersections are those for which a �nite partition of the interval I actually leads to
a collection of simple sweeps. The example in Figure 12 is indeed of that type. Global self-intersections are easily resolved by
boolean operations on individual simple sweeps and thus needs no new theory. However, local self-intersections are more subtle,
where roughly speaking, a point on the contact set is occluded by an in�nitesimally close point.

De�nition 19. Given a trajectory h, the inverse trajectory h̄ is de�ned as the map h̄ : I → (SO(3),R3) given by h̄(t) =
(At(t),−At(t) · b(t)). Thus, for a �xed point x ∈ R3, the inverse trajectory of x is the map γ̄x : I → R3 given by γ̄x(t) =
At(t) · (x− b(t)). Observe that, under the trajectory h, the point γ̄x(t) transforms to x at time t.

The contact set C is said to have a local self-intersection (L.S.I.) (see [6, 16]) at a point y = γx(t′) if for all δt > 0, there
exists t′′ ∈ (t′ − δt, t′ + δt), such that γ̄y(t′′) ∈Mo, the interior of M . Thus, y is occluded by an in�nitesimally close point in the
interior of the solid M .

It so happens that all local self-intersections which arise in the general sweep must arise from smooth faces and smooth
junctions.

Proposition 20. For a sharp convex point x on the edge E of ∂M , each point y = γx(t′) lying in the interior of a face of CE is
free of L.S.I.

Refer to the appendix for proof.
The local self-intersections in the contact set generated by smooth faces of ∂M are analysed in [3], and are already integrated

into the framework of Algorithm 1 between steps 10 and 11. This is done by constructing an invariant real-valued function θ on
the contact set which e�ciently separates regions of local and global self-intersections. The function θ is intimately related to
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Figure 12: Examples of solid sweep

local curvatures and the inverse trajectory (see [6, 8]) used in earlier works. Further, the 0-level curve of θ identi�es all the trim
curves of regions with local self-intersection. This provides the 'seed' information for tracing of trim curves. This explains the
handling of local self-intersections for all faces of ∂M .

Finally, we come to concave edges (or parts of edges). As there is no outward normal at a concave sharp point, it is easily
seen that, in the generic situation, the concave features do not generate any point on the envelope at all. In fact, these will lead
to global self-intersections of the contact set and hence result in non-simple sweeps.

9 Conclusion

This paper extends the framework of [4] for the construction of free-form sweeps from smooth solids to solids with sharp features.
This was done by developing a calculus of normal cones and their interaction with a one-parameter family of motions. Furthermore,
this calculus leads to a neat extension of the key devices of the prism, funnel and results in a computationally clean and e�cient
computation of the trim curves and also of the curves arising from sharp vertices. This in turn leads us to a robust implementation
of the general sweep. Numerous models have been successfully generated using this implementation. We have also discussed an
extension of the above framework to allow for local and global self-intersections.

The normal bundle indicates a connection between the sweep and the o�-set. It is likely that these operations commute, as is
indicated by the calculus of cones presented here. Perhaps, this mathematical observation will lead to a better implementation in
the future. Finally, the above framework actually constructs the normal bundle of the sweep and that this has several interesting
features. For example, it has no sharp vertices (other than those coming from the left or right caps) even though M may have.
The sharp vertices of M however lead to degenerate vertices in E.

A Appendix

Proposition 10. Let I = [t0, t1], t ∈ I and x ∈ ∂M be such that γx(t) ∈ E. Then either (i) t = t0 and there exists n ∈ Nx
such that g(x, n, t) ≤ 0 or (ii) t = t1 and there exists n ∈ Nx such that g(x, n, t) ≥ 0 or (iii) There exists n ∈ Nx such that
g(x, n, t) = 0.

Proof. De�ne the following subsets of R4 where the fourth dimension is time. Let Z := {(A(t) · x + b(t), t)|x ∈ M and t ∈ I}
and X := {(A(t) · x + b(t), t)|x ∈ ∂M and t ∈ I}. Note that Z is a four dimensional topological manifold and X is a three
dimensional submanifold of Z. Let y = γx(t). A point (y, t) lies in Zo if t ∈ Io and x ∈ Mo(t). If I = [t0, t1], the boundary
of Z is given by ∂Z = X ∪ (M(t0), t0) ∪ (M(t1), t1). De�ne the projection µ : R3 × I → R3 as µ(y, t) = y. For z ∈ Z and a
point w ∈ µ(z), if µ−1(w) ∩ Zo 6= ∅ then w /∈ E. Hence a necessary condition for w to be in E is that the line µ−1(w) should be
tangent to ∂Z. For x ∈ ∩mi=1Fi, the cone of outward normals is Nx = {

∑m
i=1 αi ·Ni }, where

∑m
i=1 αi = 1, αi ≥ 0 and Ni is the

outward normal to face Fi ⊂ ∂M for i = 1, . . . ,m. For t ∈ Io, the cone of outward normals to ∂Z at the point (y, t) is given by
O := {

∑m
i=1 αi · (A(t) ·Ni,−g(x,Ni, t))}. Further, for t = t0, the cone of outward normals to ∂Z at the point (y, t) is given by

P := {
∑m
i=1 δi ·(A(t)·Ni,−g(x,Ni, t))−β · ê4}, where ê4 = (0, 0, 0, 1) and β, δi ∈ R, β, δi ≥ 0 for i = 1, . . . ,m and

∑m
i=1 δi+β = 1.

Similarly, for t = t1, the cone of outward normals to ∂Z at the point (y, t) is given byQ := {
∑m
i=1 δi ·(A(t)·Ni,−g(x,Ni, t))+β·ê4}.

Consider now case (i). For t = t0, if the line µ−1(y) is tangent to a point (y, t0) ∈ ∂Z, then there exists an outward normal to
∂Z in P which is orthogonal to ê4, i.e., there exist αi ∈ R, αi ≥ 0, and β ∈ R, β ≥ 0 such that

∑m
i=1−δi · g(x,Ni, t0) = β ≥ 0.

In other words, there exists n ∈ Nx such that g(x, n, t0) ≤ 0. The proofs for case (ii) and case (iii) are similar.

Proposition 17. The correspondence map π : C → ∂M is continuous.

Proof. For a face F ⊆M , we denote the restriction of the map π to CF by πF , i.e., πF : CF → F , πF (y) = π(y). The restriction
of π to CE for a sharp edge E ⊂ ∂M is de�ned similarly. Consider �rst the restriction πE of π to CE . Recall the parametrization
of CE via the funnel FE and σE from Section 5.2. Let y ∈ CE and p = (s′, t′) ∈ FE such that σE(p) = y. The map σE being
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continuous, in order to show that πE is continuous at y, it is su�cient to show that the composite map πE ◦ σE : FE → E given
by πE ◦ σE(s, t) = e(s) is continuous at p, where, e is the parametric curve underlying edge E. This follows from the continuity
of e.

The continuity of the restriction πF to CF for a face F ⊆ ∂M is similarly proved, by choosing a pair of local coordinates at
any point p ∈ FF .

The continuity of the map π follows from the fact that π is obtained by gluing the maps {πF |F ⊆M} ∪ {πE |E is a sharp edge in ∂M}
each of which is continuous.

Proposition 20. For a sharp convex point x on the edge E of ∂M , each point y = γx(t′) lying in the interior of a face of CE

is free of local self-intersection (L.S.I.).

Figure 13: The inverse trajectory is in the exterior of M .

Proof. Let Nx be the cone of unit normals at x ∈ E formed by N1 and N2, where N1 and N2 are the unique unit outward normals
at x to faces F and F ′ respectively. Let n ∈ Nx such that 〈A(t′) · n, γ′x(t′)〉 = 0. Assume without loss of generality that A(t′) = I
and b(t′) = 0. Since y is in the interior of face CE , n 6= N1 and n 6= N2. Suppose n makes angles δ1 > 0 and δ2 > 0 with N1

and N2 respectively. Since γ′x(t′)⊥n, γ′x(t′) makes angles δ1 and π− δ2 with faces F and F ′ respectively. It is easily veri�ed that
γx(t′) = γ̄x(t′) and γ′x(t′) = −γ̄′x(t′), where γ̄′x(t′) is the derivative of the inverse trajectory of x. Hence γ̄′x(t) makes angle δ2
with F ′ and π − δ1 with F . This is illustrated schematically in Figure 13. The �rst order Taylor expansion of γ̄x around t′ is
given by γ̄x(t′ + δt) = γ̄x(t′) + δt · γ̄′x(t′). Since γ̄′x(t′) points in exterior of solid M(t′), we conclude that for δt small enough, the
inverse trajectory γ̄x(t) is in the exterior of solid M(t′) for all t ∈ (t′ − δt, t′ + δt).
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Figure 14: Examples of solid sweep
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