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Figure 1: Decidable, open and undecidable subclasses of hybrid systems (unstarred results
are contributions of this paper).

that slight extensions of the 2-dim HPCD class lead to the undecidability of
the reachability question. We present a partially correct but not necessarily
terminating algorithm for testing reachability in 1-dim PAMs, and show how
decidable subclasses can be identified in section 5. In section 6, we present
related work, and we conclude in the last section.

2. Preliminaries

In this section we define several classes of hybrid automata, two dimensional
manifolds, and our reference models: PAMs and Minsky machines.

2.1. Hybrid Automata

There are many equivalent definitions of hybrid systems [10, 4, 11]. Con-
ceptually, a hybrid automaton is a directed graph of discrete states and tran-
sitions, augmented with several real-valued continuous variables, which allows
arbitrary: (1) Invariant expressions dictating when (for which values of vari-
ables) the system can stay in each discrete state; (2) Di↵erential equations in the
flow expressions in each discrete state (continuous evolution of variables with
time); (3) Conditions controlling when a transition can be taken, in the guard
expressions; (4) Equations that change the values of the variables, in the reset
expressions during each discrete state transition (instantaneous discrete evolu-
tion). A computation of a hybrid automaton is a series of continuous evolution
steps of arbitrary time-length each, interspersed with an arbitrary number of
zero time-length discrete transition steps.

Definition 2.1. An n-dimensional hybrid automaton is a tuple H = (X , Q, f, I0,
Inv, �) where

• X ✓ Rn is the continuous state space. Elements of X are written as
x = (x1, x2, . . . , xn), we always use variables x1, x2, . . . , xn to denote com-
ponents of the state vector;
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Multi-mode Systems: Safe Schedulability
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ẏ = 3

m1
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ẋ = −1
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Multi-mode System: Zeno schedule
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Multi-mode Systems: Zeno schedule
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Formal Definition

Definition (Constant-Rate Multi-Mode Systems: MMS)

A MMS is a tuple H = (M,N,R) where

– M is a finite nonempty set of modes,

– N is the number of continuous variables,

– R :M → RN gives for each mode the rate vector,

– S ⊆ RN is a bounded convex set of safe states.

– The run of a schedule 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 from s0 is

s0, (m1, t1), s1, . . . , (mk, tk), sk

such that si = si−1 + ti ·R(mi) for all for all 1 ≤ i ≤ k.

– A schedule σ is safe at s0 if all states of the run of σ from s0 are safe
(i.e., ∈ S).
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Problems Studied and Results

Safe Schedulability Problem

Given an MMS H and a starting state s0 decide whether there exists a
non-Zeno safe schedule.

Theorem (Alur, Trivedi, W. (HSCC 2012))

Safe Schedulability can be solved in polynomial time for polytopes.

Safe Reachability Problem

Given an MMS H, a starting state s0 ∈ S, and a target state st ∈ S, decide
whether there exists a safe schedule that reaches st from s0.

Theorem (Alur, Trivedi, W. (HSCC 2012))

Safe Reachability can be solved in polynomial time if the starting and the
target states lie in the interior of the polytope S.
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Safe Schedulability Problem: Geometry
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Safe Schedulability Problem: Geometry
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Reachability Problem: Geometry
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Thumb Rules: Reachability

The following is feasible:

s0 +

|M |∑
i=1

R(i) · ti = st
s0

st

R1

R2
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Reachability: Boundary Case

s1 s2 . . .
s s′

1. Rate vectors are (1, 1) and (1,−1)
2. Angle at s′ is 30o.

3. ‖sk, s‖ = ‖s, s′‖ · (
√
3−1√
3+1

)k.
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Schedulability: Boundary Case

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ′ s.t.:

1. All modes that were ever safe during the run of σ will be safe in the final
state of σ′, and

2. The set of safe modes along the run of σ′ will always be increasing.

x0, y0

x1

x2

x3

y1
y2

y3

σ : t1 t2 t3

σ′ :
t1/2

t1/4 t2/2

t1/8 t2/4
t3/2
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Algorithm: Boundary Case

1. Compute the sequence of set of modes M1,M2, . . . ,Mk such that

– M1 is the set of safe modes at x0, and
– Mi is the set of safe modes at states reachable from x0 using only modes

from Mi−1.

2. M1 ⊂M2 ⊂ · · · ⊂Mk.

3. Modes outside Mk can never be used when starting at x0.

4. The set Mk can be computed in polynomial time.

5. MMS is schedulable from x0 if and only if:∑
m∈Mk

R(m) · fm = 0 and
∑
m∈Mk

fm = 1

6. That can, again, be checked in polynomial time.

7. If the system is safe, there exists an ultimately periodic schedule.
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Generalisations and Cost Optimal schedules

Generalisations:

– One can add some structure to the real-time system by adding

– guards on mode-switches
– mode-dependent invariants

– Both generalisations lead to undecidability of the reachability problem.

– Cost per time unit in each mode – the same complexity via similar
analysis.

– .... and what about cost per mode switch?
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Multi-mode Systems with Discrete Costs

Definition (Multi-mode system with discrete costs)

MMS with discrete costs is a tuple H = (M,N,R, πc, πd, Vmin, Vmax, V0)
where:

– M is a finite set of modes;

– N is the number of continuous variables in the system;

– R :M → QN is the rate of change vector in a given mode;

– πc :M → Q≥0 is the cost per time unit spent in a given mode;

– πd :M → Q≥0 is the cost of switching to a given mode;

– Vmin, Vmax ∈ QN : Vmin < Vmax, define the safe set, S, as follows
{x ∈ RN : Vmin ≤ x ≤ Vmax};

– V0 ∈ QN , such that V0 ∈ S, defines the initial value of all the variables.
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Costs of Schedules

The cost of a finite schedule σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 is defined

as π(σ) =
∑k
i=1 πd(mi) + πc(mi)ti and its time horizon is

∑k
i=1 ti.

Finite-time horizon problem

Minimise π(σ) among schedules σ with a given time horizon tmax (in binary).

The limit-average cost of an infinite schedule σ = 〈(m1, t1), (m2, t2), . . .〉 is
defined as

πavg(σ) = lim sup
k→∞

(
k∑
i=1

πd(mi) + πc(mi)ti

)
/

k∑
i=1

ti

Infinite-time horizon problem

Minimise πavg(σ) among all schedules with infinite time horizon.
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Finite-time horizon problem

Observation
A finite-time horizon problem may not have an optimal schedule.

m1

(−1, 1)

m2 (1,−1)

m3

(1, 1)

All costs are 0 apart from πc(m3) = 1.

Schedule σε = (m3, ε),
(
(m1, t), (m2, t)

)l
, where t′ = tmax − ε, l = dt′/εe, and

t = t′/2l, has time horizon tmax and total cost ε > 0.
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Finite-time horizon problem

Lemma
There exists an ε-optimal safe schedule of an exponential length.

Proof (sketch)

1. Remove all modes that can never be used by a safe schedule from V0
using a similar procedure as in the boundary case for the schedulability
problem.

2. Find an easy target state with time horizon tmax:

– minimum number of coefficients at the border using O(N) LP queries;
– sufficiently far away from the border using another LP.

3. Split the problem into reaching the mid-point of this schedule by
considering −H.

4. All safe modes at V0 are safe at this mid-point, which makes it easier to
reach.



Dominik Wojtczak – 19 of 47

Finite-time horizon problem

Theorem
Checking for the existence of an ε-optimal safe schedule with cost at most C
is in NExpTime.

Proof (sketch)

1. Guess the order of modes used in an ε-optimal safe schedule.
2. Write down an exponentially sized LP where the duration of each timed

action is a separate variable.
3. Check for the existence of a safe schedule and its minimal total cost.
4. Compare this cost with C.

Theorem
Checking for the existence of an ε-optimal ε-safe schedule with cost at most C
is in PSpace.

Proof (sketch)

We can guess on the fly the modes and intermediate points along the schedule
if we allow for ε deviations from the safe set, and use Savitch’s theorem.
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Infinite-time horizon problem

However, we know more about the 1-dimensional case.

Theorem
An optimal safe infinite schedule in a 1-dimensional MMS with discrete costs
can be computed in deterministic LogSpace.
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Finite-time horizon problem in 1-dimension

Let M+ = {m ∈M | R(m) > 0},M− = {m ∈M | R(m) < 0},
M0 = {m ∈M | R(m) = 0}.

A leap is a subsequence (mk, tk), (mk+1, tk+1) in a schedule such that
mk ∈M+, mk+1 ∈M−, and R(mk)tk = −R(mk+1)tk+1 = Vmax − Vmin.

A leap is of type (i, j) ∈M+ ×M− iff mk = i,mk+1 = j.
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Structure of an optimal schedule

Any schedule longer than 2 can be partitioned into its head, leaps, and tail
sections.

– The head section ends once Vmin is reached.
– The leaps section is the maximal part of the schedule after the head

section consisting only of leaps of possibly different types.
– The tail section starts where the leaps section ends. (It may consists of

further leaps.)

Vmax
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tmaxt = 0
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2

3

4

5

6

7

8

9

Theorem (Mousa, Schewe, W., 2017)

Any schedule can be transformed without increasing its cost nor compromising
its safety into one where the head and tail sections follow one of the following
patterns...



Dominik Wojtczak – 23 of 47

10 Possible Head Patterns
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10 Possible Tail Patterns
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Rearrange Operation
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Shift Operation
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Shift-down operation
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Wedge Operation
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Shrink and Stretch operations

Vmin

Vmax

Stretch by Shrink by
1

2

m1

3

m2

1′

2′

m3

3′

m4

5

4

m2

t

4′

5′

m3

t

Stretch by Shrink by

Vmin

Vmax

1

2

mi

3

mi+1

4

5

mj
6

mj+1

2′

3′

mi+1

4′

5′

mj

t t

These can also be applied to the last timed action and the ones with m ∈M0.
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Proof by Example
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Proof by Example

Vmax

Vmin

tmaxt = 0

1
6

9

10

8

11

12

7

2

3

4

5

Vmax

Vmin

tmaxt = 0

1
5

8

9

7

10

11

6

2

3

4



Dominik Wojtczak – 32 of 47

Proof by Example
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Proof by Example
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Proof by Example
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Proof by Example

Vmax

Vmin

tmaxt = 0

1

7

2

8

9

10

3

4

5

6

Vmax

Vmin

tmaxt = 0

1

2

9

10

3

4

5

6
7

8



Dominik Wojtczak – 36 of 47

Proof by Example
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Proof by Example
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Proof by Example
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Proof by Example
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Proof by Example
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Proof by Example
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Structure of an optimal schedule

There are 100 different combined patterns for the head and tail sections.

However, many of these combinations can be further reduced using one of the
just defined operations.

Intuition: there can be only one point of flexibility in a given schedule.

If there are two then one of them can be removed using the shrink - stretch
operation combination.

In the end, we obtain 44 different combined patterns that cannot be further
reduced and their combined length is at most 5.

Corollary

Optimal schedules for 1-dimensional MMS with a finite-time horizon always
exist.
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Approximation algorithms

Definition
An algorithm has a relative performance ρ if for all inputs x the cost of the
solution that it computes, f(x), satisfies OPT (x) ≤ f(x) ≤ (1+ ρ) ·OPT (x),
where OPT (x) is the optimal cost for the input x.

Definition

A fully polynomial-time approximation scheme (FPTAS) is an algorithm that
runs in polynomial-time in the size of the input and 1/ρ.
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Constant-approximation algorithm

Theorem

A 3-approximate optimal schedule can be found in O(|M |7).

Proof (sketch)

1. Consider all schedules of length less than 3 in O(|M |2).
2. Iterate over all possible combined patterns for schedules of length more

than 2.

3. Note that no pattern uses more than 5 different modes for its head and
tail section (so 44 · |M |5 possibilities in total).

4. Picking among them the cheapest schedule that only uses leaps of the
same type (|M |2 possibilities) gives us a 3-approximate optimal schedule.
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FPTAS

Theorem
There is an FPTAS for the optimal cost with finite time horizon problem for
MMS with discrete costs in 1-dimension.

Proof (sketch)

– We first call the 3-approximation algorithm and reduce the problem to a
0− 1 Knapsack problem instance.

– We iterate over all possible combined schedule patterns and their modes
(44 · |M |5 possibilities).

– In each case, the FPTAS algorithm is a bit different.
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Summary

– Multi-mode systems are an expressive subclass of hybrid automata with
decidable or even tractable analysis.

– Without discrete costs:

– Polynomial-time algorithms for optimal cost reachability and optimal
average-cost schedulability;

– Adding either local invariants or guards lead to undecidability.

– With discrete switching costs:

– an optimal schedule may not exist;
– in NExpTime (and NP-hard) for an ε-optimal finite-time horizon

problem, or in PSpace for its ε-safe ε-optimal version;
– the decidability of the (ε)-optimal infinite-time horizon problem is not

known;
– in the 1-dimensional case:

– optimal schedules always exist;
– NP-complete for a finite-time horizon problem, but has FPTAS;
– infinite-time horizon version is in LogSpace.

THANKS!
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