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Hybrid Automata

They consist of
A finite state transition system

Differential equations in each control state
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Multi-mode Systems: Safe Schedulability

ma ms me

Safe set: x € [65,70],y € [65, 70]

z 68 (m2,1) g7 (m3,1) 166 (ma,1) 68 (m2,1) 67
y |68 67 70 " 68 67

S0 S1 52 53 S4

Keywords: modes, schedule, run, and safe schedule
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Multi-mode System: Zeno schedule

my mes me

Safe set: x € [65,70],y € [65, 70]

z 68 (m2,0) 68 (m3,0) 68 (m4,0) 68 (m2,0) 68

y 68 68 68 |68 68
So S1 S2 S3 54

Keywords: Zeno Schedule
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Multi-mode Systems: Zeno schedule

my mg me

Safe set: x € [65,70],y € [65, 70]

2| 68| (m2,1) [67!(ms,3)[66.5| (ma, 1) [67] (m2,5) [66.875

y | 68 67 1 68.5 168 1 67.875

S0 S1 S92 S3 Sa

Keyword: Zeno Schedule
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Formal Definition

Definition (Constant-Rate Multi-Mode Systems: MMS)
A MMS is a tuple H = (M, N, R) where

— M is a finite nonempty set of modes,

— N is the number of continuous variables,

- R: M — RN gives for each mode the rate vector,

— S CRY is a bounded convex set of safe states.

The run of a schedule ((m1,t1), (ma,t2),..., (mg,tg)) from sg is

50, (m13t1)7 Sly-++) (mkatk)a Sk

such that s; = s;_1 + t; - R(m;) for all for all 1 <14 < k.

— A schedule o is safe at sq if all states of the run of o from sg are safe
(ie., €9).
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Problems Studied and Results

Safe Schedulability Problem

Given an MMS H and a starting state sg decide whether there exists a
non-Zeno safe schedule.

Theorem (Alur, Trivedi, W. (HSCC 2012))
Safe Schedulability can be solved in polynomial time for polytopes.

Safe Reachability Problem

Given an MMS H, a starting state sg € S, and a target state s; € S, decide
whether there exists a safe schedule that reaches s; from sq.

Theorem (Alur, Trivedi, W. (HSCC 2012))

Safe Reachability can be solved in polynomial time if the starting and the
target states lie in the interior of the polytope S.
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Safe Schedulability Problem: Geometry

my meo

my ms me

Safe set: z € [65,70],y € [65,70]
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Safe Schedulability Problem: Geometry

me me
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Reachability Problem: Geometry

me me
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Thumb Rules: Reachability

The following is feasible:

[ M|

S0 +ZR(Z) 'ti = S¢
i=1

S0
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Reachability: Boundary Case

S1 82...

1. Rate vectors are (1,1) and (1,—1)
2. Angle at s is 30°.

3. [lskr sl = 15, s/l] - (21~
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Schedulability: Boundary Case

Lemma
For any finite safe schedule o there exists a finite safe schedule o' s.t.:

1. All modes that were ever safe during the run of o will be safe in the final
state of o/, and

2. The set of safe modes along the run of o’ will always be increasing.

o /'y N b t3

o / t1/2
/ t1/4 \t2/2

Sonf8 N\ /4 ta/2

Dominik Wojtczak — 12 of 47



Algorithm: Boundary Case

1. Compute the sequence of set of modes My, Ms, ..., M} such that

— M is the set of safe modes at xg, and
— M, is the set of safe modes at states reachable from zo using only modes
from M;_1.

My C My C--- C M.
Modes outside M}, can never be used when starting at xg.

The set M}, can be computed in polynomial time.

o~ WD

MMS is schedulable from xg if and only if:

> R(m)-fm=0and Y fn=1

me M, meMy,

6. That can, again, be checked in polynomial time.

7. If the system is safe, there exists an ultimately periodic schedule.
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Generalisations and Cost Optimal schedules

Generalisations:
— One can add some structure to the real-time system by adding

— guards on mode-switches
— mode-dependent invariants

— Both generalisations lead to undecidability of the reachability problem.

— Cost per time unit in each mode — the same complexity via similar
analysis.

— .... and what about cost per mode switch?

Dominik Wojtczak — 14 of 47



Multi-mode Systems with Discrete Costs

Definition (Multi-mode system with discrete costs)
MMS with discrete costs is a tuple H = (M, N, R, e, Td, Vininy Vinax, Vo)
where:

— M is a finite set of modes;

— N is the number of continuous variables in the system;

— R: M — QY is the rate of change vector in a given mode;

— 7o : M — Q> is the cost per time unit spent in a given mode;

— 7w : M — Q> is the cost of switching to a given mode;

— Vinin, Vinax € QY Viin < Vinax, define the safe set, S, as follows
{Jf & RN : Vmin S ZT S Vmax};

— Vo € QV, such that Vo € S, defines the initial value of all the variables.
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Costs of Schedules

The cost of a finite schedule o = ((my,t1), (Mo, t2), ..., (M, tx)) is defined
as (o) = Zle ma(m;) + we(m;)t; and its time horizon is Zle ti.

Finite-time horizon problem
Minimise 7(c) among schedules o with a given time horizon ¢4, (in binary). J

The limit-average cost of an infinite schedule o = ((mq,t1), (ma,t2),...) is
defined as

k
7Tavg( o) = limsup <Z7Td m;) + me(m;) z) /Zt

k—o0 =1

Infinite-time horizon problem }

Minimise m4,4(0) among all schedules with infinite time horizon.
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Finite-time horizon problem

Observation
A finite-time horizon problem may not have an optimal schedule. J
(_17 1) (17 1)
mi ms
" (17 _1)

All costs are 0 apart from 7 (m3) = 1.

Schedule o, = (mg,€), ((m, 1), (mg,t))l, where t' = ty0. — €, I = [t/ /€], and
t =t'/2l, has time horizon ¢,,,, and total cost € > 0.
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Finite-time horizon problem

Lemma
There exists an e-optimal safe schedule of an exponential length.

Proof (sketch)

1. Remove all modes that can never be used by a safe schedule from Vj
using a similar procedure as in the boundary case for the schedulability

problem.
2. Find an easy target state with time horizon #,,4.:

— minimum number of coefficients at the border using O(N) LP queries;

— sufficiently far away from the border using another LP.

3. Split the problem into reaching the mid-point of this schedule by

considering —H.

4. All safe modes at V}, are safe at this mid-point, which makes it easier to

reach.
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Finite-time horizon problem

Theorem

Checking for the existence of an e-optimal safe schedule with cost at most C'
is in NEXPTIME.

Proof (sketch)

1. Guess the order of modes used in an e-optimal safe schedule.

2. Write down an exponentially sized LP where the duration of each timed
action is a separate variable.

. Check for the existence of a safe schedule and its minimal total cost.

4. Compare this cost with C'.

w

Theorem

Checking for the existence of an e-optimal e-safe schedule with cost at most C
is in PSPACE.

’

Proof (sketch)

We can guess on the fly the modes and intermediate points along the schedule

if we allow for € deviations from the safe set, and use Savitch's theorem.
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Infinite-time horizon problem

f?

However, we know more about the 1-dimensional case.

Theorem
An optimal safe infinite schedule in a 1-dimensional MMS with discrete costs
can be computed in deterministic LOGSPACE.
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Finite-time horizon problem in 1-dimension

Let MT ={me M | R(m)>0}, M~ ={me M| R(m) <0},
M®={me M | R(m) =0}

A leap is a subsequence (my, tx), (Mg+1,tk+1) in a schedule such that
my € MT, mp4+1 € M~, and R(mk)tk = —R(mk+1)tk+1 = Vinaz — Vinin-

A leap is of type (i,7) € M+t x M~ iff my, = i,mp1 = j.
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Structure of an optimal schedule

Any schedule longer than 2 can be partitioned into its head, leaps, and tail
sections.

— The head section ends once V,,,;, is reached.

— The leaps section is the maximal part of the schedule after the head
section consisting only of leaps of possibly different types.

— The tail section starts where the leaps section ends. (It may consists of
further leaps.)

Theorem (Mousa, Schewe, W., 2017)

Any schedule can be transformed without increasing its cost nor compromising
its safety into one where the head and tail sections follow one of the following
patterns...
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10 Possible Head Patterns

Vimax!

+ the empty one!
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10 Possible Tail Patterns

Vinax

Vmin

Vinax

Vmin

Viin

+ the empty one!
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Rearrange Operation

Vmax

Vmin 1
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Shift Operation

Vmax

Vmin
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Shift-down operation

Vmax 2 4

Vmin
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Wedge Operation

Vmax

Vmin
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Shrink and Stretch operations

Vmax

Vinin
Vmax

‘*SE@:EEI!*
| 3 |

Vimin
These can also be applied to the last timed action and the ones with m € M?.

Dominik Wojtczak — 29 of 47



Proof by Example

Vimax
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Proof by Example
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Proof by Example
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Proof by Example

thax
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Proof by Example

min

V,

thax

0

t
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Proof by Example
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Proof by Example

min

V,

thax

0

t

Dominik Wojtczak — 36 of 47



Proof by Example
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Proof by Example
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Proof by Example
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Proof by Example
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Proof by Example

thax

~

0
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Structure of an optimal schedule

There are 100 different combined patterns for the head and tail sections.

However, many of these combinations can be further reduced using one of the
just defined operations.

Intuition: there can be only one point of flexibility in a given schedule.

If there are two then one of them can be removed using the shrink - stretch
operation combination.

In the end, we obtain 44 different combined patterns that cannot be further
reduced and their combined length is at most 5.
Corollary

Optimal schedules for 1-dimensional MMS with a finite-time horizon always
exist.
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Approximation algorithms

Definition

An algorithm has a relative performance p if for all inputs x the cost of the
solution that it computes, f(z), satisfies OPT(z) < f(z) < (1+p) - OPT(z),
where OPT'(x) is the optimal cost for the input .

v

Definition
A fully polynomial-time approximation scheme (FPTAS) is an algorithm that
runs in polynomial-time in the size of the input and 1/p.
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Constant-approximation algorithm

Theorem
A 3-approximate optimal schedule can be found in O(|M|7).

Proof (sketch)

1. Consider all schedules of length less than 3 in O(|M]?).

2. lterate over all possible combined patterns for schedules of length more
than 2.

3. Note that no pattern uses more than 5 different modes for its head and
tail section (so 44 - [M|? possibilities in total).

4. Picking among them the cheapest schedule that only uses leaps of the
same type (|M|? possibilities) gives us a 3-approximate optimal schedule.
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FPTAS

Theorem

There is an FPTAS for the optimal cost with finite time horizon problem for
MMS with discrete costs in 1-dimension.

Proof (sketch)

— We first call the 3-approximation algorithm and reduce the problem to a
0 — 1 Knapsack problem instance.

— We iterate over all possible combined schedule patterns and their modes
(44 - | M5 possibilities).
— In each case, the FPTAS algorithm is a bit different.
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Summary

— Multi-mode systems are an expressive subclass of hybrid automata with
decidable or even tractable analysis.

— Without discrete costs:

Polynomial-time algorithms for optimal cost reachability and optimal
average-cost schedulability;
Adding either local invariants or guards lead to undecidability.

— With discrete switching costs:

an optimal schedule may not exist;

in NExpTIME (and NP-hard) for an e-optimal finite-time horizon
problem, or in PSPACE for its e-safe e-optimal version;

the decidability of the (¢)-optimal infinite-time horizon problem is not

known;
in the 1-dimensional case:

— optimal schedules always exist;
— NP-complete for a finite-time horizon problem, but has FPTAS;
— infinite-time horizon version is in LOGSPACE.

THANKS!
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