
Modelling time and recursion

L. Clemente, S. Lasota (University of Warsaw)
F. Mazowiecki, R. Lazić (University of Warwick)

Warsaw, July 2017

Summary

1. Modelling time: clocks vs registers.
2. Modelling recursion: timed pushdown automata.
3. Solution technique: reduction to 1-BVASS(±).

Clocks vs registers

In a nutshell:
● Clocks record the difference between events’ timestamps.
● Registers record the events’ timestamps themselves.

The two approaches are essentially equivalent*.

*with uninitialised clocks (preserves emptiness)

Clocks vs registers

Consider the timed language over {a, b}* “wait 1 sec after a and 2 sec after b”
L = { (c0,t0)...(cn,tn) | (ci = a ⇒ t(i+1) - ti = 1) ∧ (ci = b ⇒ t(i+1) - ti = 2) }

b, x := 0a, x := 0

Clocks vs registers

a

CLOCKS

b

a, x = 2, x := 0

a, x = 1, x := 0

b, x = 1, x := 0

b, x = 2, x := 0

Consider the timed language over {a, b}* “wait 1 sec after a and 2 sec after b”
L = { (c0,t0)...(cn,tn) | (ci = a ⇒ t(i+1) - ti = 1) ∧ (ci = b ⇒ t(i+1) - ti = 2) }

Clocks vs registers

Consider the timed language over {a, b}* “wait 1 sec after a and 2 sec after b”
L = { (c0,t0)...(cn,tn) | (ci = a ⇒ t(i+1) - ti = 1) ∧ (ci = b ⇒ t(i+1) - ti = 2) }

a

CLOCKS REGISTERS

b

a, x = 2, x := 0

a, x = 1, x := 0

b, x = 1, x := 0

b, x = 2, x := 0

a b
b, x := 0a, x := 0

Clocks vs registers

Consider the timed language over {a, b}* “wait 1 sec after a and 2 sec after b”
L = { (c0,t0)...(cn,tn) | (ci = a ⇒ t(i+1) - ti = 1) ∧ (ci = b ⇒ t(i+1) - ti = 2) }

a

CLOCKS REGISTERS

b

a, x = 2, x := 0

a, x = 1, x := 0

b, x = 1, x := 0

b, x = 2, x := 0

a b

t: current
timestamp

x: current
x’: new

b, x := 0a, x := 0

Clocks vs registers

Consider the timed language over {a, b}* “wait 1 sec after a and 2 sec after b”
L = { (c0,t0)...(cn,tn) | (ci = a ⇒ t(i+1) - ti = 1) ∧ (ci = b ⇒ t(i+1) - ti = 2) }

a

CLOCKS REGISTERS

b

a, t - x = 2, x’ = ta, x = 2, x := 0

a, x = 1, x := 0

b, t - x = 1, x’ = tb, x = 1, x := 0

b, x = 2, x := 0

a b
a, x’ = t

a, t - x = 1, x’ = t b, t - x = 2, x’ = t

t: current
timestamp

b, x’ = t

x: current
x’: new

b, x := 0a, x := 0

Clocks vs registers

Consider the timed language over {a, b}* “wait 1 sec after a and 2 sec after b”
L = { (c0,t0)...(cn,tn) | (ci = a ⇒ t(i+1) - ti = 1) ∧ (ci = b ⇒ t(i+1) - ti = 2) }

a

CLOCKS REGISTERS

b

a, t - x = 2, x’ = t

a, x = 1, x := 0

b, t - x = 1, x’ = tb, x = 1, x := 0

b, x = 2, x := 0

a b

a, t - x = 1, x’ = t b, t - x = 2, x’ = t

t: current
timestamp

a, x = 2, x := 0
guard → constraint x: current

x’: new

b, x := 0a, x := 0 a, x’ = t b, x’ = t

Clocks vs registers

Consider the timed language over {a, b}* “wait 1 sec after a and 2 sec after b”
L = { (c0,t0)...(cn,tn) | (ci = a ⇒ t(i+1) - ti = 1) ∧ (ci = b ⇒ t(i+1) - ti = 2) }

a

CLOCKS REGISTERS

b

a, t - x = 2, x’ = t

a, x = 1, x := 0

b, t - x = 1, x’ = tb, x = 1, x := 0

b, x = 2, x := 0

a b

a, t - x = 1, x’ = t b, t - x = 2, x’ = t

t: current
timestamp

a, x = 2, x := 0
guard → constraint

reset → constraint
x: current
x’: new

b, x := 0a, x := 0 a, x’ = t b, x’ = t

Timed register automata
Not a new concept:
● L. Fribourg, “A Closed-Form Evaluation for Extended Timed Automata”, techrep’98.
● H. Comon, Y. Jurski, “Timed Automata and the Theory of Real Numbers”, CONCUR’99.

Timed register automata
Not a new concept:
● L. Fribourg, “A Closed-Form Evaluation for Extended Timed Automata”, techrep’98.
● H. Comon, Y. Jurski, “Timed Automata and the Theory of Real Numbers”, CONCUR’99.

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):
● D. Figueira, P. Hofman, S. Lasota, “Relating timed and register automata”,

EXPRESS’10.
● M. Bojańczyk, S. Lasota, “A machine-independent characterization of timed

languages”, ICALP’12.

Timed register automata
Not a new concept:
● L. Fribourg, “A Closed-Form Evaluation for Extended Timed Automata”, techrep’98.
● H. Comon, Y. Jurski, “Timed Automata and the Theory of Real Numbers”, CONCUR’99.

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):
● D. Figueira, P. Hofman, S. Lasota, “Relating timed and register automata”,

EXPRESS’10.
● M. Bojańczyk, S. Lasota, “A machine-independent characterization of timed

languages”, ICALP’12.

FO-definable automata over
● (ℕ, =): register automata [Kaminski, Francez TCS’94].

Timed register automata
Not a new concept:
● L. Fribourg, “A Closed-Form Evaluation for Extended Timed Automata”, techrep’98.
● H. Comon, Y. Jurski, “Timed Automata and the Theory of Real Numbers”, CONCUR’99.

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):
● D. Figueira, P. Hofman, S. Lasota, “Relating timed and register automata”,

EXPRESS’10.
● M. Bojańczyk, S. Lasota, “A machine-independent characterization of timed

languages”, ICALP’12.

FO-definable automata over
● (ℕ, =): register automata [Kaminski, Francez TCS’94].
● (ℤ, ≤, +1): discrete timed automata.

Timed register automata
Not a new concept:
● L. Fribourg, “A Closed-Form Evaluation for Extended Timed Automata”, techrep’98.
● H. Comon, Y. Jurski, “Timed Automata and the Theory of Real Numbers”, CONCUR’99.

More recently by the Warsaw school of atoms (aka nominal sets, Fraenkel-Mostowski sets):
● D. Figueira, P. Hofman, S. Lasota, “Relating timed and register automata”,

EXPRESS’10.
● M. Bojańczyk, S. Lasota, “A machine-independent characterization of timed

languages”, ICALP’12.

FO-definable automata over
● (ℕ, =): register automata [Kaminski, Francez TCS’94].
● (ℤ, ≤, +1): discrete timed automata.
● (ℝ, ≤, +1), (ℚ, ≤, +1): dense timed automata.

Timed register automata

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ)〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Δ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).

Timed register automata

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ)〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Δ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).
○ Atomic statements of the form: x + 3 ≤ y + 2 with x, y ∈ X ∪ X’ ∪ {t}.

Timed register automata

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ)〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Δ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).
○ Atomic statements of the form: x + 3 ≤ y + 2 with x, y ∈ X ∪ X’ ∪ {t}.
○ Boils down to conjunctions of y - x ∈ I, with I an interval in ℚ ∪ {+∞, -∞}.

Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.
Basic operations:
● c++.
● c--.
● c == 0.

Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.
Basic operations:
● c++.
● c--.
● c == 0.

Registers

Let x, y, z be three registers over (ℕ, ≤,+1).

Transformation: c → x - z, d → y - z

Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.
Basic operations:
● c++.
● c--.
● c == 0.

Registers

Let x, y, z be three registers over (ℕ, ≤,+1).

● x’ = x + 1.
● x’ = x - 1 ∧ x’ ≥ z.
● x = z, x’ = x.

Transformation: c → x - z, d → y - z

Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.
Basic operations:
● c++.
● c--.
● c == 0.

Registers

Let x, y, z be three registers over (ℕ, ≤,+1).

● x’ = x + 1.
● x’ = x - 1 ∧ x’ ≥ z.
● x = z, x’ = x.

Transformation: c → x - z, d → y - z

registers x, y, z can
have unbounded

distances

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ), K 〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Σ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).
● K ∈ ℕ is a boundedness threshold.

○ Valuations ⍴ : X ↦ ℚ are restricted to satisfy: max |⍴(x) - ⍴(y)| ≤ K.
○ ~ max constant in timed automata.

Timed register automata

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ), K 〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Σ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).
● K ∈ ℕ is a boundedness threshold.

○ Valuations ⍴ : X ↦ ℚ are restricted to satisfy: max |⍴(x) - ⍴(y)| ≤ K.
○ ~ max constant in timed automata.

Timed register automata

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ), K 〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Σ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).
● K ∈ ℕ is a boundedness threshold.

○ Valuations ⍴ : X ↦ ℚ are restricted to satisfy: max |⍴(x) - ⍴(y)| ≤ K.
○ ~ max constant in timed automata.

Timed register automata

φ(δ) is still
unbounded

A timed register automaton recognises a language of timed words

L(A) ⊆ (Σ x ℚ)*.

There is no built-in notion of monotonicity of time.

Monotonicity of time

A timed register automaton recognises a language of timed words

L(A) ⊆ (Σ x ℚ)*.

There is no built-in notion of monotonicity of time.

Monotonic time can be enforced within the model:
● Add an extra register z.
● Add to every transition the constraint

z ≤ t ∧ z’ = t

Monotonicity of time

check that the
next timestamp is

non-decreasing

Monotonicity of time

A timed register automaton recognises a language of timed words

L(A) ⊆ (Σ x ℚ)*.

There is no built-in notion of monotonicity of time.

Monotonic time can be enforced within the model:
● Add an extra register z.
● Add to every transition the constraint

z ≤ t ∧ z’ = t

check that the
next timestamp is

non-decreasing

save the
timestamp

A timed register automaton recognises a language of timed words

L(A) ⊆ (Σ x ℚ)*.

There is no built-in notion of monotonicity of time.

Monotonic time can be enforced within the model:
● Add an extra register z.
● Add to every transition the constraint

z ≤ t ∧ z’ = t

Monotonicity of time

TA + (untimed) stack

Pushdown automata + time

Pushdown timed automata
[Bouajjani, Echahed, Robbana HS’94]

TA + (untimed) stack

Pushdown automata + time

Pushdown timed automata
[Bouajjani, Echahed, Robbana HS’94]

Recursive timed automata
[Benerecetti, Minopoli, Peron TIME’10;

Trivedi, Wojtczak ATVA’10]

clocks on the stack are “frozen”

TA + (untimed) stack

Pushdown automata + time

Pushdown timed automata
[Bouajjani, Echahed, Robbana HS’94]

Recursive timed automata
[Benerecetti, Minopoli, Peron TIME’10;

Trivedi, Wojtczak ATVA’10]

clocks on the stack are “frozen”

Dense-timed pushdown automata
[Abdulla, Atig, Stenman LICS’12]

TA + timed stack

TA + (untimed) stack

Pushdown automata + time

Pushdown timed automata
[Bouajjani, Echahed, Robbana HS’94]

Recursive timed automata
[Benerecetti, Minopoli, Peron TIME’10;

Trivedi, Wojtczak ATVA’10]

clocks on the stack are “frozen”

Dense-timed pushdown automata
[Abdulla, Atig, Stenman LICS’12]

TA + timed stack

=

expressively equivalent

TA + (untimed) stack

Pushdown automata + time

Pushdown timed automata
[Bouajjani, Echahed, Robbana HS’94]

Recursive timed automata
[Benerecetti, Minopoli, Peron TIME’10;

Trivedi, Wojtczak ATVA’10]

clocks on the stack are “frozen”

Dense-timed pushdown automata
[Abdulla, Atig, Stenman LICS’12]

Timed register pushdown automata
[C, Lasota LICS’15;

C, Lasota, Lazić, Mazowiecki LICS’17]

TA + timed stack

=

expressively equivalent

registers on the stack

Dense-timed pushdown automata

In dtPDA [Abdulla, Atig, Stenman LICS’12]:

● Guards are of the form x ∈ I.
● Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
● Clocks on the stack evolve at the same rate as control clocks.
● Clock x can be popped from the stack if it satisfies the pop guard x ∈ I.

Dense-timed pushdown automata

In dtPDA [Abdulla, Atig, Stenman LICS’12]:

● Guards are of the form x ∈ I.
● Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
● Clocks on the stack evolve at the same rate as control clocks.
● Clock x can be popped from the stack if it satisfies the pop guard x ∈ I.

Limitations:
● No diagonal control-control clock constraints (this is not a limitation).

Dense-timed pushdown automata

In dtPDA [Abdulla, Atig, Stenman LICS’12]:

● Guards are of the form x ∈ I.
● Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
● Clocks on the stack evolve at the same rate as control clocks.
● Clock x can be popped from the stack if it satisfies the pop guard x ∈ I.

Limitations:
● No diagonal control-control clock constraints (this is not a limitation).
● No diagonal control-stack push clock constraints (unknown).
● No diagonal control-stack pop clock constraints (this is not a limitation).

Semantic collapse of dtPDA

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of
timed languages as pushdown timed automata of [BER HS’94].

Very strong collapse result:

Semantic collapse of dtPDA

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of
timed languages as pushdown timed automata of [BER HS’94].

In other words, the stack can be untimed.

Intuition:
● Pop guards of the form x ∈ I + time is monotone + stack LIFO policy

⇒ can check on the fly that pop guards hold
⇒ pop guards can be eliminated while preserving the timed language

Very strong collapse result:

Semantic collapse of dtPDA

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of
timed languages as pushdown timed automata of [BER HS’94].

In other words, the stack can be untimed.

Intuition:
● Time is monotone + stack LIFO policy

⇒ it suffices to keep track of finitely many pop constraints in the state
⇒ pop guards can be eliminated while preserving the timed language

Very strong collapse result:

Pop guards of the form x ∈ [2, 3] + time is monotone + stack LIFO policy

Semantic collapse of dtPDA

Upper bound constraints:
old subsumes new

Pop guards of the form x ∈ [2, 3] + time is monotone + stack LIFO policy

Semantic collapse of dtPDA

push(0) pop(≤ 3)

≤ 3

Upper bound constraints:
old subsumes new

Pop guards of the form x ∈ [2, 3] + time is monotone + stack LIFO policy

Semantic collapse of dtPDA

push(0) pop(≤ 3)

≤ 3

push(0) pop(≤ 3)

≤ 3

Upper bound constraints:
old subsumes new

Pop guards of the form x ∈ [2, 3] + time is monotone + stack LIFO policy

Semantic collapse of dtPDA

push(0) pop(≤ 3)

≤ 3

push(0) pop(≤ 3)

≤ 3

Upper bound constraints:
old subsumes new

Pop guards of the form x ∈ [2, 3] + time is monotone + stack LIFO policy

Semantic collapse of dtPDA

push(0)
x := 0

pop(≤ 3)
x ≤ 3

≤ 3

push(0) pop(≤ 3)

≤ 3

Upper bound constraints:
old subsumes new

new clock

Pop guards of the form x ∈ [2, 3] + time is monotone + stack LIFO policy

Semantic collapse of dtPDA

push(0)
x := 0

pop(≤ 3)
x ≤ 3

≤ 3

push(0) pop(≤ 3)

≤ 3

Upper bound constraints:
old subsumes new

Lower bound constraints:
new subsumes old

push(0) pop(≥ 2)

≥ 2

push(0)
y := 0

pop(≥ 2)
y ≥ 2

≥ 2new clock new clock

Semantic collapse of dtPDA

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of
timed languages as pushdown timed automata of [BER HS’94].

Consequences:
● dtPDA are expressively equivalent to TA + untimed stack (PDTA).

Complexity:
● Add linearly many clocks and exponentially many control locations.
● Emptiness of PDTA is exponential in the number of clocks and polynomial

in the number of control locations ⇒ emptiness of dtPDA is in EXPTIME.

Very strong collapse result:

Semantic collapse of dtPDA

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of
timed languages as pushdown timed automata of [BER HS’94].

Consequences:
● dtPDA are expressively equivalent to TA + untimed stack (PDTA).

Complexity:
● Add linearly many clocks and exponentially many control locations.
● Emptiness of PDTA is exponential in the number of clocks and polynomial

in the number of control locations ⇒ emptiness of dtPDA is in EXPTIME.

Very strong collapse result:

Follow-ups to dtPDA

Abdulla, Atig, Stenman, “Zenoness for Timed Pushdown Automata”, INFINITY’13.
Abdulla, Atig, Stenman, “Computing Optimal Reachability Costs in Priced Dense-Timed Pushdown Automata, LATA’14.

Follow-ups to dtPDA

Abdulla, Atig, Stenman, “Zenoness for Timed Pushdown Automata”, INFINITY’13.
Abdulla, Atig, Stenman, “Computing Optimal Reachability Costs in Priced Dense-Timed Pushdown Automata, LATA’14.

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)
Cai, Ogawa, “Well-structured pushdown system: Case of Dense Timed Pushdown Automata”, FLOPS’14.

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.

Follow-ups to dtPDA

Abdulla, Atig, Stenman, “Zenoness for Timed Pushdown Automata”, INFINITY’13.
Abdulla, Atig, Stenman, “Computing Optimal Reachability Costs in Priced Dense-Timed Pushdown Automata, LATA’14.

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)
Cai, Ogawa, “Well-structured pushdown system: Case of Dense Timed Pushdown Automata”, FLOPS’14.

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.

Droste, Perevoshchikov, “A Logical Characterization of Timed Pushdown Languages”, CSR’15. (the logic collapses)

Follow-ups to dtPDA

Abdulla, Atig, Stenman, “Zenoness for Timed Pushdown Automata”, INFINITY’13.
Abdulla, Atig, Stenman, “Computing Optimal Reachability Costs in Priced Dense-Timed Pushdown Automata, LATA’14.

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)
Cai, Ogawa, “Well-structured pushdown system: Case of Dense Timed Pushdown Automata”, FLOPS’14.

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.

Droste, Perevoshchikov, “A Logical Characterization of Timed Pushdown Languages”, CSR’15. (the logic collapses)
Bhave, Dave, Krishna, Phawade, Trivedi, “A Logical Characterization for Dense-time Visibly Pushdown Automata”, LATA’16.
Bhave, Dave, Krishna, Phawade, Trivedi, “A Perfect Class of Context-Sensitive Timed Languages”, DLT’16. (multitstack)

Follow-ups to dtPDA

Abdulla, Atig, Stenman, “Zenoness for Timed Pushdown Automata”, INFINITY’13.
Abdulla, Atig, Stenman, “Computing Optimal Reachability Costs in Priced Dense-Timed Pushdown Automata, LATA’14.

Uezato, Minamide, “Synchronized Recursive Timed Automata”, LPAR’15. (diagonal + fractional constraints)

Li, Cai, Ogawa, Yuen, “Nested timed automata”, FORMATS’13. (reduction to dtPDA)
Cai, Ogawa, “Well-structured pushdown system: Case of Dense Timed Pushdown Automata”, FLOPS’14.

Krishna, Manasa, Trivedi, “Reachability Games on Recursive Hybrid Automata”, TIME’15.

Droste, Perevoshchikov, “A Logical Characterization of Timed Pushdown Languages”, CSR’15. (the logic collapses)
Bhave, Dave, Krishna, Phawade, Trivedi, “A Logical Characterization for Dense-time Visibly Pushdown Automata”, LATA’16.
Bhave, Dave, Krishna, Phawade, Trivedi, “A Perfect Class of Context-Sensitive Timed Languages”, DLT’16. (multitstack)

Akshay, Gastin, Krishna, “Analyzing Timed Systems Using Tree Automata”, CONCUR’16. (tree-width approach)

(Non)Example

Example from [BDKPT LATA’16] about logical characterisation of dtVPA.

L = words of the form aⁿ b cⁿ d with n ≥ 0 s.t.

● first c comes after 1 time unit after last a
● first a and last c are 2 time units apart
● every other matching a and c are in (1, 2)

(Non)Example

Example from [BDKPT LATA’16] about logical characterisation of dtVPA.

L = words of the form aⁿ b cⁿ d with n ≥ 0 s.t.

● first c comes after 1 time unit after last a [1 clock],
● first a and last c are 2 time units apart [1 clock],
● every other matching a and c are in (1, 2) [2 clocks].

(Non)Example

Example from [BDKPT LATA’16] about logical characterisation of dtVPA.

L = words of the form aⁿ b cⁿ d with n ≥ 0 s.t.

● first c comes after 1 time unit after last a [1 clock],
● first a and last c are 2 time units apart [1 clock],
● every other matching a and c are in (1, 2) [2 clocks].

We do not need a timed stack to recognise this language (4 clocks suffice).
In fact, they show that the stack can be untimed in the spirit of [CL LICS’15].

Example

Consider the language of timed palindromes

L = { w w^R | w ∈ (Σ x ℚ)* }

● It requires a truly timed stack.
● Cannot be expressed in any of the previous models.

Example

Consider the language of timed palindromes

L = { w w^R | w ∈ (Σ x ℚ)* }

● It requires a truly timed stack.
● Cannot be expressed in any of the previous models.
● It is a non-monotone language.

○ Can be made monotone by requiring palindromicity
only for the fractional values.

Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ.
A timed register pushdown automaton (trPDA) is a tuple

A =〈Q, I, F, PUSH, POP, { φ(δ) | δ ∈ PUSH ∪ POP }, K〉where

● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● PUSH, POP ⊆ Q x Σ x Q x Γ is the transition relation.

Timed register pushdown automata

Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ.
A timed register pushdown automaton (trPDA) is a tuple

A =〈Q, I, F, PUSH, POP, { φ(δ) | δ ∈ PUSH ∪ POP }, K〉where

● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● PUSH, POP ⊆ Q x Σ x Q x Γ is the transition relation.
● For every δ ∈ PUSH ∪ POP, φ(δ) is a constraint over (ℚ,≤,+1) using registers

X ∪ X’ ∪ Y ∪ { t }.

● K ∈ ℕ is a boundedness threshold for state and stack registers.

Timed register pushdown automata

Timed register pushdown automata

stack registers

Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ.
A timed register pushdown automaton (trPDA) is a tuple

A =〈Q, I, F, PUSH, POP, { φ(δ) | δ ∈ PUSH ∪ POP }, K〉where

● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● PUSH, POP ⊆ Q x Σ x Q x Γ is the transition relation.
● For every δ ∈ PUSH ∪ POP, φ(δ) is a constraint over (ℚ,≤,+1) using registers

X ∪ X’ ∪ Y ∪ { t }.

● K ∈ ℕ is a boundedness threshold for state and stack registers.

Timed register pushdown automata

φ(δ) is
unboundedstack registers

Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ.
A timed register pushdown automaton (trPDA) is a tuple

A =〈Q, I, F, PUSH, POP, { φ(δ) | δ ∈ PUSH ∪ POP }, K〉where

● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● PUSH, POP ⊆ Q x Σ x Q x Γ is the transition relation.
● For every δ ∈ PUSH ∪ POP, φ(δ) is a constraint over (ℚ,≤,+1) using registers

X ∪ X’ ∪ Y ∪ { t }.

● K ∈ ℕ is a boundedness threshold for state and stack registers.

Example (1)

Timed palindromes over Σ = {a, b}: L = { w w^R | w ∈ (Σ x ℚ)* }.

Example (1)

Timed palindromes over Σ = {a, b}: L = { w w^R | w ∈ (Σ x ℚ)* }.

p

(a, t), push(a, y), y = t

(b, t), push(b, y), y = t

Example (1)

Timed palindromes over Σ = {a, b}: L = { w w^R | w ∈ (Σ x ℚ)* }.

p q

(a, t), push(a, y), y = t

ε, nop

(a, t), pop(a, y), y = t

(b, t), push(b, y), y = t (b, t), pop(b, y), y = t

Example (1)

Timed palindromes over Σ = {a, b}: L = { w w^R | w ∈ (Σ x ℚ)* }.

p q

The untiming projection of L is a context-free language.

(a, t), push(a, y), y = t

ε, nop

(a, t), pop(a, y), y = t

(b, t), push(b, y), y = t (b, t), pop(b, y), y = t

Example (2)

Untimed palindromes with the same number of a’s and b’s.

not a context-free language

Example (2)

Untimed palindromes with the same number of a’s and b’s.

q
ε, push(⊥, y), y = x

p

not a context-free language

Example (2)

Untimed palindromes with the same number of a’s and b’s.

q
ε, push(⊥, y), y = x

a, push(a), x’ = x + 1

p

b, push(b), x’ = x - 1

not a context-free language

Example (2)

Untimed palindromes with the same number of a’s and b’s.

q
ε, push(⊥, y), y = x

a, push(a), x’ = x + 1

p

b, push(b), x’ = x - 1

not a context-free language

ε, nop, x’ = x

Example (2)

Untimed palindromes with the same number of a’s and b’s.

q r
ε, push(⊥, y), y = x

a, push(a), x’ = x + 1 a, pop(a), x’ = x

p

b, push(b), x’ = x - 1 b, pop(b), x’ = x

not a context-free language

ε, nop, x’ = x

Example (2)

Untimed palindromes with the same number of a’s and b’s.

q r
ε, push(⊥, y), y = x

a, push(a), x’ = x + 1 a, pop(a), x’ = x

p s

b, push(b), x’ = x - 1 b, pop(b), x’ = x

ε, pop(⊥, y), y = x

not a context-free language

Deciding reachability

Timed automata PSPACE

Deciding reachability

Pushdown timed automata
(untimed stack)

EXPTIME

Timed automata PSPACE

Deciding reachability

NEXPTIME
Timed register pushdown automata

+ monotone time
(timed stack)

Pushdown timed automata
(untimed stack)

EXPTIME

Timed automata PSPACE

Deciding reachability

NEXPTIME
Timed register pushdown automata

+ monotone time
(timed stack)

2EXPTIME
Timed register pushdown automata

(timed stack)

Pushdown timed automata
(untimed stack)

EXPTIME

Timed automata PSPACE

Deciding reachability

NEXPTIME
Timed register pushdown automata

+ monotone time
(timed stack)

2EXPTIME
Timed register pushdown automata

(timed stack)

Pushdown timed automata
(untimed stack)

EXPTIME

Timed automata Word automaton LOGSPACE PSPACE
[AD TCS’94]

EXPONENTIAL

Deciding reachability

NEXPTIME
Timed register pushdown automata

+ monotone time
(timed stack)

2EXPTIME
Timed register pushdown automata

(timed stack)

Pushdown timed automata
(untimed stack)

Pushdown automaton
EXPTIME

Timed automata Word automaton LOGSPACE PSPACE
[AD TCS’94]

regions

EXPONENTIAL

P

Deciding reachability

NEXPTIME
Timed register pushdown automata

+ monotone time
(timed stack)

2EXPTIME
Timed register pushdown automata

(timed stack)

Pushdown timed automata
(untimed stack)

Pushdown automaton

Tree automaton

EXPTIME

Timed automata Word automaton LOGSPACE PSPACE
[AD TCS’94]

[AGK CONCUR’16]

regions

EXPONENTIAL

P

Deciding reachability

NEXPTIME
Timed register pushdown automata

+ monotone time
(timed stack)

NP
[CL, LICS’15]

1-BVASS(ℤ, =0)
(~1 ℤ-counter tree automaton)

2EXPTIME
Timed register pushdown automata

(timed stack)

Pushdown timed automata
(untimed stack)

Pushdown automaton

Tree automaton

EXPTIME

Timed automata Word automaton LOGSPACE PSPACE
[AD TCS’94]

[CL, LICS’15]

[AGK CONCUR’16]

regions

EXPONENTIAL

P

Deciding reachability

NEXPTIME
Timed register pushdown automata

+ monotone time
(timed stack)

NP
[CL, LICS’15]

1-BVASS(ℤ, =0)
(~1 ℤ-counter tree automaton)

2EXPTIME
EXPTIME

[CLLM, LICS’17]
Timed register pushdown automata

(timed stack) 1-BVASS(ℤ, ≥0, ≤0)

Pushdown timed automata
(untimed stack)

Pushdown automaton

Tree automaton

EXPTIME

Timed automata Word automaton LOGSPACE PSPACE
[AD TCS’94]

[CL, LICS’15]

[AGK CONCUR’16]

[CLLM, LICS’17]

regions

EXPONENTIAL

P

Conclusions

To model time + recursion:
● Registers are seemingly more powerful than clocks.
● We get an expressive model with decidable non-emptiness (2EXPTIME).

Conclusions

To model time + recursion:
● Registers are seemingly more powerful than clocks.
● We get an expressive model with decidable non-emptiness (2EXPTIME).

Related models (not shown):
● Timed register context-free grammars (EXPTIME-c).

Conclusions

To model time + recursion:
● Registers are seemingly more powerful than clocks.
● We get an expressive model with decidable non-emptiness (2EXPTIME).

Related models (not shown):
● Timed register context-free grammars (EXPTIME-c).

Open questions:
● We have only an EXPTIME lower bound for our trPDA model.
● 1-BVASS(ℤ, ≥0, ≤0) are in EXPTIME and PSPACE-hard.
● Truly expressive timed pushdown automata with clocks?

