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Summary

1. Modelling time: clocks vs registers.
2. Modelling recursion: timed pushdown automata.
3. Solution technique: reduction to 1-BVASS(±).



Clocks vs registers

In a nutshell:
● Clocks record the difference between events’ timestamps.
● Registers record the events’ timestamps themselves.

The two approaches are essentially equivalent*.

*with uninitialised clocks (preserves emptiness)
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FO-definable automata over
● (ℕ, =): register automata [Kaminski, Francez TCS’94].
● (ℤ, ≤, +1): discrete timed automata.
● (ℝ, ≤, +1), (ℚ, ≤, +1): dense timed automata.
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≤,+1).



Timed register automata

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ)〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Δ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).
○ Atomic statements of the form: x + 3 ≤ y + 2 with x, y ∈ X ∪ X’ ∪ {t}.



Timed register automata

Fix finitely many registers X = {x, y, ...}. A timed register automaton is a tuple

A =〈Q, I, F, Δ, φ(δ)〉

where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
● For every δ ∈ Δ, φ(δ) is a constraint using registers X ∪ X’ ∪ {t} over (ℚ,

≤,+1).
○ Atomic statements of the form: x + 3 ≤ y + 2 with x, y ∈ X ∪ X’ ∪ {t}.
○ Boils down to conjunctions of y - x ∈ I, with I an interval in ℚ ∪ {+∞, -∞}.
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Timed register automata vs Minsky

This model is too powerful. Can simulate 2-counter machines.

Minsky

Let c, d be two counters.
Basic operations:
● c++.
● c--.
● c == 0.

Registers

Let x, y, z be three registers over (ℕ, ≤,+1).

● x’ = x + 1.
● x’ = x - 1 ∧ x’ ≥ z.
● x = z, x’ = x.

Transformation: c → x - z, d → y - z

registers x, y, z can 
have unbounded 

distances
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where
● Q is a finite set of control states, with I, F ⊆ Q the initial, final ones, resp.
● Δ ⊆ Q x Σ x Q is the transition relation.
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○ ~ max constant in timed automata.

Timed register automata

φ(δ) is still 
unbounded
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A timed register automaton recognises a language of timed words

L(A) ⊆ (Σ x ℚ)*.

There is no built-in notion of monotonicity of time.

Monotonic time can be enforced within the model:
● Add an extra register z.
● Add to every transition the constraint 

z ≤ t ∧ z’ = t

Monotonicity of time
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clocks on the stack are “frozen”

Dense-timed pushdown automata
[Abdulla, Atig, Stenman LICS’12]

Timed register pushdown automata
[C, Lasota LICS’15;

C, Lasota, Lazić, Mazowiecki LICS’17]

TA + timed stack

=

expressively equivalent

registers on the stack



Dense-timed pushdown automata

In dtPDA [Abdulla, Atig, Stenman LICS’12]:

● Guards are of the form x ∈ I.
● Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
● Clocks on the stack evolve at the same rate as control clocks.
● Clock x can be popped from the stack if it satisfies the pop guard x ∈ I.
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In dtPDA [Abdulla, Atig, Stenman LICS’12]:

● Guards are of the form x ∈ I.
● Clocks can be pushed on the stack (w.l.o.g. initialised to zero).
● Clocks on the stack evolve at the same rate as control clocks.
● Clock x can be popped from the stack if it satisfies the pop guard x ∈ I.

Limitations:
● No diagonal control-control clock constraints (this is not a limitation).
● No diagonal control-stack push clock constraints (unknown).
● No diagonal control-stack pop clock constraints (this is not a limitation).
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Semantic collapse of dtPDA

Theorem [CL LICS’15]. dtPDA of [AAS LICS’12] recognise the same class of 
timed languages as pushdown timed automata of [BER HS’94].

In other words, the stack can be untimed.

Intuition:
● Time is monotone + stack LIFO policy

⇒ it suffices to keep track of finitely many pop constraints in the state
⇒ pop guards can be eliminated while preserving the timed language

Very strong collapse result:
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Pop guards of the form x ∈ [2, 3] + time is monotone + stack LIFO policy

Semantic collapse of dtPDA

push(0)
x := 0

pop(≤ 3)
x ≤ 3

≤ 3

push(0) pop(≤ 3)

≤ 3

Upper bound constraints:
old subsumes new

Lower bound constraints:
new subsumes old

push(0) pop(≥ 2)

≥ 2

push(0)
y := 0

pop(≥ 2)
y ≥ 2

≥ 2new clock new clock
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Consequences:
● dtPDA are expressively equivalent to TA + untimed stack (PDTA).

Complexity:
● Add linearly many clocks and exponentially many control locations.
● Emptiness of PDTA is exponential in the number of clocks and polynomial 

in the number of control locations ⇒ emptiness of dtPDA is in EXPTIME.

Very strong collapse result:
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(Non)Example

Example from [BDKPT LATA’16] about logical characterisation of dtVPA.

L = words of the form aⁿ b cⁿ d with n ≥ 0 s.t.
 
● first c comes after 1 time unit after last a [1 clock],
● first a and last c are 2 time units apart [1 clock],
● every other matching a and c are in (1, 2) [2 clocks].

We do not need a timed stack to recognise this language (4 clocks suffice).
In fact, they show that the stack can be untimed in the spirit of [CL LICS’15].
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Example

Consider the language of timed palindromes

L = { w w^R | w ∈ (Σ x ℚ)* }
 
● It requires a truly timed stack.
● Cannot be expressed in any of the previous models.
● It is a non-monotone language.

○ Can be made monotone by requiring palindromicity
only for the fractional values.
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Fix a finite set of registers X, Y, input alphabet Σ, and stack alphabet Γ.
A timed register pushdown automaton (trPDA) is a tuple

A =〈Q, I, F, PUSH, POP, { φ(δ) | δ ∈ PUSH ∪ POP }, K〉where
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● K ∈ ℕ is a boundedness threshold for state and stack registers.
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Timed palindromes over Σ = {a, b}: L = { w w^R | w ∈ (Σ x ℚ)* }.
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Example (1)

Timed palindromes over Σ = {a, b}: L = { w w^R | w ∈ (Σ x ℚ)* }.

p q

The untiming projection of L is a context-free language.

(a, t), push(a, y), y = t

ε, nop

(a, t), pop(a, y), y = t

(b, t), push(b, y), y = t (b, t), pop(b, y), y = t
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ε, nop, x’ = x

Example (2)

Untimed palindromes with the same number of a’s and b’s.

q r
ε, push(⊥, y), y = x

a, push(a), x’ = x + 1 a, pop(a), x’ = x

p s

b, push(b), x’ = x - 1 b, pop(b), x’ = x

ε, pop(⊥, y), y = x

not a context-free language
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Conclusions

To model time + recursion:
● Registers are seemingly more powerful than clocks.
● We get an expressive model with decidable non-emptiness (2EXPTIME).

Related models (not shown):
● Timed register context-free grammars (EXPTIME-c).

Open questions:
● We have only an EXPTIME lower bound for our trPDA model.
● 1-BVASS(ℤ, ≥0, ≤0) are in EXPTIME and PSPACE-hard.
● Truly expressive timed pushdown automata with clocks?


