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The context of timed automata theory

Introduced by Alur and Dill in 1990 to model and verify real-time

properties of embedded systems (cars, phones, pacemakers...). Build by
adding real time clocks to finite state automaton.

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

Since then many people worked on

⊲ adding real-time to classical automata and verification theory.

⊲ implementing model checking tools (e.g. UPPAAL).
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Model checking timed regular properties.

⊲ Model encoded as a timed automaton A.

⊲ Specification encoded as a timed automaton B .

⊲ Problem : is L(A) ⊆ L(B) ?
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Model checking timed regular properties. Undecidable!

⊲ Model encoded as a timed automaton A.

⊲ Specification encoded as a timed automaton B .

⊲ Problem : is L(A) ⊆ L(B) ?

Our statistical model checking method

⊲ Estimate statistically the proportion of runs of L(A) that are in L(B).

⊲ If the estimation is 1 then answer Yes with high confidence;

⊲ else answer No and exhibit a counter-example.

Our method is based on

⊲ volumetry of timed languages described in
[Asarin, B., Degorre, Information & Computation 2015];

⊲ uniform sampling of timed words (wrt. volumes);
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Simulation of a hybrid system H whose inputs are given by a TA A

⊲ Draw inputs w ∈ A at random and check properties on the
corresponding outputs.

Example

⊲ H models a boiler with two modes Heating and Non-Heating

⊲ A models the following input behaviours:

⊲ the boiler is no more than 20 minutes in Heating mode before being
switch to Non-Heating mode

⊲ it is switched to Heating mode at least twice per hour.

⊲ Possible question one may ask:

⊲ will the boiler have a problem?

⊲ will a problem appears in less than 0.01% of possible inputs?

⊲ what is the average energy consumption of the boiler?
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Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1
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p q
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Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q
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d; y ≤ 1; y := 0

O

y

x
1
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Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0.3, 0.7)

0.3 s elapsed

7 / 24



Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1
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Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1
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Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0, 0.6)

x := 0
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Some (restrictive) hypotheses we make

Restrictive hypotheses

⊲ The clocks and the delays are bounded by a constant M.

⊲ The timed automaton is deterministic (DTA)
(we address non-deterministic timed automata (NTA) later).

p

q

r

a; x < 1

b; x < 2
p

q

r

a; x < 1

a; 1 ≤ x < 2
p

q

r

a; x < 1

a; x < 2

Deterministic Deterministic Non-deterministic
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Measuring timed languages wrt. volumes

Constraints of timings along a path w = polytope PL
w

p q

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a
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Measuring timed languages wrt. volumes
Constraints of timings along a path w = polytope PL

w

p q
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Computing the volumes

A recipe

⊲ Define for n ≥ 0 and reachable state (q, ~x) the volume vn(q, ~x) of timed
words of length n starting from (q, ~x) ;

⊲ write recursive equations on volume functions ;

⊲ compute vn(q0,~0) the volume of the language from the initial state.

Problem : recursive equations are difficult to write and use a priori
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⊲ write recursive equations on volume functions ;

⊲ compute vn(q0,~0) the volume of the language from the initial state.

Problem : recursive equations are difficult to write and use a priori

Previous solution : decompose the state space into regions.
[Asarin, B., Degorre, Information & Computation 2015]

⊲ the equations are easy to write ;

⊲ the volume functions have nice form (polynomial functions) ;

⊲ vn can be computed in polynomial time wrt. n.
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Computing the volumes

A recipe

⊲ Define for n ≥ 0 and reachable state (q, ~x) the volume vn(q, ~x) of timed
words of length n starting from (q, ~x) ;

⊲ write recursive equations on volume functions ;

⊲ compute vn(q0,~0) the volume of the language from the initial state.

Problem : recursive equations are difficult to write and use a priori

Previous solution : decompose the state space into regions.
[Asarin, B., Degorre, Information & Computation 2015]

⊲ the equations are easy to write ;

⊲ the volume functions have nice form (polynomial functions) ;

⊲ vn can be computed in polynomial time wrt. n.

Problem : too many regions!!!
Our solution : use zones instead of regions.
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A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

1
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One of the recursive equations to compute volumes

vn+1[ 2 , (x , 0)] =
∫ 2−x

0 vn( 2 , (x + t, 0))dt +
∫ min(2,3−x)
0 vn( 3 , (0, t))dt.

11 / 24



A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

0 1 2

1

2

3

3

4

1

2

3

a, y := 0

b, x := 0

a, y := 0
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b, x := 0

a, y := 0

One of the recursive equations to compute volumes

vn+1[ 2 , (x , 0)] =
∫ 2−x

0 vn( 2 , (x + t, 0))dt +
∫ min(2,3−x)
0 vn( 3 , (0, t))dt.

A further split is needed to simplify min(2, 3− x).
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The split timed automaton

0 1 2

1

2
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The split timed automaton
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The previous equation is now split into two simpler equations

vn+1[ l1 , (x , 0)] =

∫ 1−x

0
vn( l1 , (x + t, 0))dt+

∫ 2

0
vn( l2 , (0, t))dt+

∫ 2−x

1−x

vn( l3 , (x + t, 0))dt;

vn+1[ l3 , (x , 0)] =

∫ 3−x

0
vn( l2 , (0, t))dt +

∫ 2−x

0
vn( l3 , (x + t, 0))dt.
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The split timed automaton
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The previous equation is now split into two simpler equations

vn+1[ l1 , (x , 0)] =

∫ 1−x

0
vn( l1 , (x + t, 0))dt+

∫ 2

0
vn( l2 , (0, t))dt+

∫ 2−x

1−x

vn( l3 , (x + t, 0))dt;

vn+1[ l3 , (x , 0)] =

∫ 3−x

0
vn( l2 , (0, t))dt +

∫ 2−x

0
vn( l3 , (x + t, 0))dt.

Volume functions are polynomials computable in polynomial time wrt. n.
e.g. v3[ l3 , (x , 0)] = −1

6x
3 − 1

2x
2 − 25x + 133

2 .
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A first glimpse at our tool chain

Splitting
Forward
Reachability

PRISM

Volume
Computation

SageMath

Split

DTA

DTA

PRISM (probabilistic model checker)

⊲ Compute forward reachability zone graph

⊲ Split the zone graph
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Splitting
Forward
Reachability

PRISM

Volume
Computation

SageMath

Split

DTA

DTA

SageMath (open-source mathematics software)

⊲ Compute volumes
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1 Timed languages and their measure
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4 Conclusion and future work
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Exact uniform sampling
Assign the same weight to every timed word of length n.

p q

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a

b

c

b

c

a

Vol(PL
abb) =

1
6

Vol(PL
abc) =

1
2

Vol(PL
aca) = 1
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Several methods of (quasi)-uniform sampling

Recursive method

⊲ At step k , the timed transition sk
tk ,ak−−−→ sk+1 is randomly picked with

weight proportional to the volume of timed words of length n − k from
sk+1.

⊲ Drawback, necessitate to compute volume functions up to vn.
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Several methods of (quasi)-uniform sampling

Recursive method

⊲ At step k , the timed transition sk
tk ,ak−−−→ sk+1 is randomly picked with

weight proportional to the volume of timed words of length n − k from
sk+1.

⊲ Drawback, necessitate to compute volume functions up to vn.

Receding horizon method (the one we implemented)

⊲ Replace n − k by a constant m << n.

Maximal entropy (infinite receding horizon)

⊲ When n → ∞ (or m → ∞), we obtain a maximal entropy stochastic
process [B., Information and Computation 2015].
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Comparing isotropic sampling and receding horizon

sampling with m=9
Isotropic=“by default”= every discrete transition available has the same
weight, every delay available has the same weight.

Isotropic m = 9

Generate a 200,000 steps trajectory
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Statistical measure of general timed languages (1/2)

L(A) a ”complex” timed language

⊲ A is a timed model, possibly
non-deterministic timed automaton,
possibly stop-watch automaton

⊲ We only require to be able to check the
membership of a word in the language L(A)
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Statistical measure of general timed languages (1/2)

L(A) a ”complex” timed language

⊲ A is a timed model, possibly
non-deterministic timed automaton,
possibly stop-watch automaton

⊲ We only require to be able to check the
membership of a word in the language

L(C ) a ”simple” over-approximation: of
the language L(A) ⊆ L(C )

⊲ C is a deterministic time automaton

⊲ We can compute the volume of its
language

⊲ We can sample uniformly from its
language

L(C )

L(A)
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Statistical measure of general timed languages (2/2)

Sampling in the over-approximation

⊲ Sample uniformly timed words of length n

in the language Ln(C ) (by previous
methods for DTAs).
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Statistical measure of general timed languages (2/2)

Sampling in the over-approximation

⊲ Sample uniformly timed words of length n

in the language Ln(C ) (by previous
methods for DTAs).

Filtering

⊲ For each trajectory in Ln(C ) check the
membership in Ln(A)

⊲ Estimate the volume of Voln (Ln(A)) as
#trajectory in Ln(A)
#trajectory in Ln(C) · Voln (Ln(C ))
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Statistical language inclusion measurement

Two languages

⊲ L(A) and L(B) are ”complex” languages

⊲ Use an over-approximation L(C ) with C a
DTA.

⊲ Using membership of automaton estimate
Voln (Ln(A) ∩ Ln(B)) ,
Voln (Ln(A) \ Ln(B)) ,
Voln (Ln(A) ∆ Ln(B)) . . .

Ln(C )

Ln(A)

Ln(B)
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Statistical language inclusion measurement

Two languages

⊲ L(A) and L(B) are ”complex” languages

⊲ Use an over-approximation L(C ) with C a
DTA.

⊲ Using membership of automaton estimate
Voln (Ln(A) ∩ Ln(B)) ,
Voln (Ln(A) \ Ln(B)) ,
Voln (Ln(A) ∆ Ln(B)) . . .

Ln(C )

Ln(A)

Ln(B)

Checking Ln(A) ⊂ Ln(B) (up to null volume measure)

Pn(B |A) =
Voln (Ln(A) ∩ Ln(B))

Voln(Ln(A))
= 1
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Toolchain

Splitting
Forward
Reachability

PRISM

Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

PRISM (probabilistic model checker)

⊲ Compute forward reachability zone graph.

⊲ Split the zone graph.
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Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

SageMath (open-source mathematics software)

⊲ Compute volumes and distributions.

⊲ Output a fully probabilistic COSMOS model.
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Forward
Reachability

PRISM

Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

COSMOS (statistical model checker)

⊲ Sampling of trajectories of the probabilistic model from SageMath.

⊲ Output estimation of Voln(Ln(A))
Voln(Ln(C)) or

estimation of Voln(Ln(A) ∩ Ln(B))
Voln(Ln(A))

(for language inclusion).
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Toolchain

Splitting
Forward
Reachability

PRISM

Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

COSMOS (statistical model checker)

⊲ Sampling of trajectories of the probabilistic model from SageMath.

⊲ Output estimation of Voln(Ln(A))
Voln(Ln(C)) or

estimation of Voln(Ln(A) ∩ Ln(B))
Voln(Ln(A))

(for language inclusion).

A case study of a repair failure model is available in
[Barbot B. Beunardeau Kwiatkowska, Qest’16].
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We have seen how to

⊲ measure timed languages in terms of volumes;

⊲ adopt a zone-based framework to compute efficiently such volumes;

⊲ sample (quasi-)uniformly timed words for DTA;

⊲ apply this to measure and sampling for general timed languages.
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We have seen how to

⊲ measure timed languages in terms of volumes;

⊲ adopt a zone-based framework to compute efficiently such volumes;

⊲ sample (quasi-)uniformly timed words for DTA;

⊲ apply this to measure and sampling for general timed languages.

What we plan to do:

⊲ experiment more with the same theory

– implement membership for more expressive timed languages
(stopwatch, hybrid);

– develop bigger case studies;

⊲ extend the theory

– develop random generation mehods uniform on timed words of same
duration (as opposed to uniform on timed words of same length).

– develop uniform random generation for networks of TAs.
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