
Uniform Sampling for Timed Automata with

Application to Language Inclusion Measurement

Nicolas Basset (Université libre de Bruxelles)

joint work with
Benôıt Barbot, Marc Beunardeau and Marta Kwiatkowska

AVERTS, 14 July 2017

1 / 24

The context of timed automata theory

Introduced by Alur and Dill in 1990 to model and verify real-time

properties of embedded systems (cars, phones, pacemakers...). Build by
adding real time clocks to finite state automaton.

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

Since then many people worked on

⊲ adding real-time to classical automata and verification theory.

⊲ implementing model checking tools (e.g. UPPAAL).

2 / 24

Model checking timed regular properties.

⊲ Model encoded as a timed automaton A.

⊲ Specification encoded as a timed automaton B .

⊲ Problem : is L(A) ⊆ L(B) ?

3 / 24

Model checking timed regular properties. Undecidable!

⊲ Model encoded as a timed automaton A.

⊲ Specification encoded as a timed automaton B .

⊲ Problem : is L(A) ⊆ L(B) ?

3 / 24

Model checking timed regular properties. Undecidable!

⊲ Model encoded as a timed automaton A.

⊲ Specification encoded as a timed automaton B .

⊲ Problem : is L(A) ⊆ L(B) ?

Our statistical model checking method

⊲ Estimate statistically the proportion of runs of L(A) that are in L(B).

⊲ If the estimation is 1 then answer Yes with high confidence;

⊲ else answer No and exhibit a counter-example.

3 / 24

Model checking timed regular properties. Undecidable!

⊲ Model encoded as a timed automaton A.

⊲ Specification encoded as a timed automaton B .

⊲ Problem : is L(A) ⊆ L(B) ?

Our statistical model checking method

⊲ Estimate statistically the proportion of runs of L(A) that are in L(B).

⊲ If the estimation is 1 then answer Yes with high confidence;

⊲ else answer No and exhibit a counter-example.

Our method is based on

⊲ volumetry of timed languages described in
[Asarin, B., Degorre, Information & Computation 2015];

⊲ uniform sampling of timed words (wrt. volumes);

3 / 24

Simulation of a hybrid system H whose inputs are given by a TA A

⊲ Draw inputs w ∈ A at random and check properties on the
corresponding outputs.

Example

⊲ H models a boiler with two modes Heating and Non-Heating

⊲ A models the following input behaviours:

⊲ the boiler is no more than 20 minutes in Heating mode before being
switch to Non-Heating mode

⊲ it is switched to Heating mode at least twice per hour.

⊲ Possible question one may ask:

⊲ will the boiler have a problem?

⊲ will a problem appears in less than 0.01% of possible inputs?

⊲ what is the average energy consumption of the boiler?

4 / 24

Outline

1 Timed languages and their measure

2 Uniform sampling for timed automata

3 Application to statistical measure of timed languages

4 Conclusion and future work

5 / 24

Outline

1 Timed languages and their measure

2 Uniform sampling for timed automata

3 Application to statistical measure of timed languages

4 Conclusion and future work

6 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

7 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0, 0)

7 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0.4, 0.4)

0.4 s elapsed

7 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0, 0.4)

x := 0

7 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0.3, 0.7)

0.3 s elapsed

7 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0.3, 0)

y := 0

7 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0.9, 0.6)

0.6 s elapsed

7 / 24

Timed automata [Alur and Dill 1990]

Timed automata = finite automata + constraints on timings on
edges using clocks.

Recognise timed words e.g. (0.4,a)(0.3,d)(0.6,a).

p q

a; x ≤ 1; x := 0

d; y ≤ 1; y := 0

O

y

x
1

1

(0, 0.6)

x := 0

7 / 24

Some (restrictive) hypotheses we make

Restrictive hypotheses

⊲ The clocks and the delays are bounded by a constant M.

⊲ The timed automaton is deterministic (DTA)
(we address non-deterministic timed automata (NTA) later).

p

q

r

a; x < 1

b; x < 2
p

q

r

a; x < 1

a; 1 ≤ x < 2
p

q

r

a; x < 1

a; x < 2

Deterministic Deterministic Non-deterministic

8 / 24

Measuring timed languages wrt. volumes

Constraints of timings along a path w = polytope PL
w

p q

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a

9 / 24

Measuring timed languages wrt. volumes

Constraints of timings along a path w = polytope PL
w

p q

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a

b

c

9 / 24

Measuring timed languages wrt. volumes
Constraints of timings along a path w = polytope PL

w

p q

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a

b

c

b

c

a

9 / 24

Measuring timed languages wrt. volumes
Constraints of timings along a path w = polytope PL

w

p q

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a

b

c

b

c

a

Vol(PL
abb) =

1
6

Vol(PL
abc) =

1
2

Vol(PL
aca) = 1

9 / 24

Computing the volumes

A recipe

⊲ Define for n ≥ 0 and reachable state (q, ~x) the volume vn(q, ~x) of timed
words of length n starting from (q, ~x) ;

⊲ write recursive equations on volume functions ;

⊲ compute vn(q0,~0) the volume of the language from the initial state.

Problem : recursive equations are difficult to write and use a priori

10 / 24

Computing the volumes

A recipe

⊲ Define for n ≥ 0 and reachable state (q, ~x) the volume vn(q, ~x) of timed
words of length n starting from (q, ~x) ;

⊲ write recursive equations on volume functions ;

⊲ compute vn(q0,~0) the volume of the language from the initial state.

Problem : recursive equations are difficult to write and use a priori

Previous solution : decompose the state space into regions.
[Asarin, B., Degorre, Information & Computation 2015]

⊲ the equations are easy to write ;

⊲ the volume functions have nice form (polynomial functions) ;

⊲ vn can be computed in polynomial time wrt. n.

10 / 24

Computing the volumes

A recipe

⊲ Define for n ≥ 0 and reachable state (q, ~x) the volume vn(q, ~x) of timed
words of length n starting from (q, ~x) ;

⊲ write recursive equations on volume functions ;

⊲ compute vn(q0,~0) the volume of the language from the initial state.

Problem : recursive equations are difficult to write and use a priori

Previous solution : decompose the state space into regions.
[Asarin, B., Degorre, Information & Computation 2015]

⊲ the equations are easy to write ;

⊲ the volume functions have nice form (polynomial functions) ;

⊲ vn can be computed in polynomial time wrt. n.

Problem : too many regions!!!

10 / 24

Computing the volumes

A recipe

⊲ Define for n ≥ 0 and reachable state (q, ~x) the volume vn(q, ~x) of timed
words of length n starting from (q, ~x) ;

⊲ write recursive equations on volume functions ;

⊲ compute vn(q0,~0) the volume of the language from the initial state.

Problem : recursive equations are difficult to write and use a priori

Previous solution : decompose the state space into regions.
[Asarin, B., Degorre, Information & Computation 2015]

⊲ the equations are easy to write ;

⊲ the volume functions have nice form (polynomial functions) ;

⊲ vn can be computed in polynomial time wrt. n.

Problem : too many regions!!!
Our solution : use zones instead of regions.

10 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

1

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

1

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

1

2

a, y := 0

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

1

2

a, y := 0

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

0 1 2

1

2

3

3

4

1

2

3

a, y := 0
b, x := 0

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

0 1 2

1

2

3

3

4

1

2

3

a, y := 0
b, x := 0

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

0 1 2

1

2

3

3

4

1

2

3

a, y := 0

b, x := 0

a, y := 0
b, x := 0

b, x := 0

a, y := 0

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

0 1 2

1

2

3

3

4

1

2

3

a, y := 0

b, x := 0

a, y := 0
b, x := 0

b, x := 0

a, y := 0

One of the recursive equations to compute volumes

vn+1[2 , (x , 0)] =
∫ 2−x

0 vn(2 , (x + t, 0))dt +
∫ min(2,3−x)
0 vn(3 , (0, t))dt.

11 / 24

A first decomposition into zones

(the forward reachability timed automaton).

q

a,

0 < x < 2,
0 < y < 4,
y := 0

b,

0 < x < 3,
0 < y < 2,
x := 0

0 1 2

1

2

3

0 1 2

1

2

3

0 1 2

1

2

3

3

4

1

2

3

a, y := 0

b, x := 0

a, y := 0
b, x := 0

b, x := 0

a, y := 0

One of the recursive equations to compute volumes

vn+1[2 , (x , 0)] =
∫ 2−x

0 vn(2 , (x + t, 0))dt +
∫ min(2,3−x)
0 vn(3 , (0, t))dt.

A further split is needed to simplify min(2, 3− x).

11 / 24

The split timed automaton

0 1 2

1

2

3 0 1 2

1

2

3

0 1 2

1

2

3

3

4

0 1 2

1

2

3

l0 l1

l2

l3

y := 0

x := 0
y := 0 y := 0

y := 0
x := 0

y := 0

x := 0

12 / 24

The split timed automaton

0 1 2

1

2

3 0 1 2

1

2

3

0 1 2

1

2

3

3

4

0 1 2

1

2

3

l0 l1

l2

l3

y := 0

x := 0
y := 0 y := 0

y := 0
x := 0

y := 0

x := 0

The previous equation is now split into two simpler equations

vn+1[l1 , (x , 0)] =

∫ 1−x

0
vn(l1 , (x + t, 0))dt+

∫ 2

0
vn(l2 , (0, t))dt+

∫ 2−x

1−x

vn(l3 , (x + t, 0))dt;

vn+1[l3 , (x , 0)] =

∫ 3−x

0
vn(l2 , (0, t))dt +

∫ 2−x

0
vn(l3 , (x + t, 0))dt.

12 / 24

The split timed automaton

0 1 2

1

2

3 0 1 2

1

2

3

0 1 2

1

2

3

3

4

0 1 2

1

2

3

l0 l1

l2

l3

y := 0

x := 0
y := 0 y := 0

y := 0
x := 0

y := 0

x := 0

The previous equation is now split into two simpler equations

vn+1[l1 , (x , 0)] =

∫ 1−x

0
vn(l1 , (x + t, 0))dt+

∫ 2

0
vn(l2 , (0, t))dt+

∫ 2−x

1−x

vn(l3 , (x + t, 0))dt;

vn+1[l3 , (x , 0)] =

∫ 3−x

0
vn(l2 , (0, t))dt +

∫ 2−x

0
vn(l3 , (x + t, 0))dt.

Volume functions are polynomials computable in polynomial time wrt. n.
e.g. v3[l3 , (x , 0)] = −1

6x
3 − 1

2x
2 − 25x + 133

2 .
12 / 24

A first glimpse at our tool chain

Splitting
Forward
Reachability

PRISM

Volume
Computation

SageMath

Split

DTA

DTA

PRISM (probabilistic model checker)

⊲ Compute forward reachability zone graph

⊲ Split the zone graph

13 / 24

A first glimpse at our tool chain

Splitting
Forward
Reachability

PRISM

Volume
Computation

SageMath

Split

DTA

DTA

SageMath (open-source mathematics software)

⊲ Compute volumes

13 / 24

Outline

1 Timed languages and their measure

2 Uniform sampling for timed automata

3 Application to statistical measure of timed languages

4 Conclusion and future work

14 / 24

Exact uniform sampling
Assign the same weight to every timed word of length n.

p q

a; x ≤ 1; y := 0 b; x ≤ 1; y := 0

c ; y ≤ 1; x := 0

a

b

c

b

c

a

Vol(PL
abb) =

1
6

Vol(PL
abc) =

1
2

Vol(PL
aca) = 1

15 / 24

Several methods of (quasi)-uniform sampling

Recursive method

⊲ At step k , the timed transition sk
tk ,ak−−−→ sk+1 is randomly picked with

weight proportional to the volume of timed words of length n − k from
sk+1.

⊲ Drawback, necessitate to compute volume functions up to vn.

16 / 24

Several methods of (quasi)-uniform sampling

Recursive method

⊲ At step k , the timed transition sk
tk ,ak−−−→ sk+1 is randomly picked with

weight proportional to the volume of timed words of length n − k from
sk+1.

⊲ Drawback, necessitate to compute volume functions up to vn.

Receding horizon method (the one we implemented)

⊲ Replace n − k by a constant m << n.

16 / 24

Several methods of (quasi)-uniform sampling

Recursive method

⊲ At step k , the timed transition sk
tk ,ak−−−→ sk+1 is randomly picked with

weight proportional to the volume of timed words of length n − k from
sk+1.

⊲ Drawback, necessitate to compute volume functions up to vn.

Receding horizon method (the one we implemented)

⊲ Replace n − k by a constant m << n.

Maximal entropy (infinite receding horizon)

⊲ When n → ∞ (or m → ∞), we obtain a maximal entropy stochastic
process [B., Information and Computation 2015].

16 / 24

Comparing isotropic sampling and receding horizon

sampling with m=9
Isotropic=“by default”= every discrete transition available has the same
weight, every delay available has the same weight.

Isotropic m = 9

Generate a 200,000 steps trajectory
17 / 24

Outline

1 Timed languages and their measure

2 Uniform sampling for timed automata

3 Application to statistical measure of timed languages

4 Conclusion and future work

18 / 24

Statistical measure of general timed languages (1/2)

L(A) a ”complex” timed language

⊲ A is a timed model, possibly
non-deterministic timed automaton,
possibly stop-watch automaton

⊲ We only require to be able to check the
membership of a word in the language L(A)

19 / 24

Statistical measure of general timed languages (1/2)

L(A) a ”complex” timed language

⊲ A is a timed model, possibly
non-deterministic timed automaton,
possibly stop-watch automaton

⊲ We only require to be able to check the
membership of a word in the language

L(C) a ”simple” over-approximation: of
the language L(A) ⊆ L(C)

⊲ C is a deterministic time automaton

⊲ We can compute the volume of its
language

⊲ We can sample uniformly from its
language

L(C)

L(A)

19 / 24

Statistical measure of general timed languages (2/2)

Sampling in the over-approximation

⊲ Sample uniformly timed words of length n

in the language Ln(C) (by previous
methods for DTAs).

20 / 24

Statistical measure of general timed languages (2/2)

Sampling in the over-approximation

⊲ Sample uniformly timed words of length n

in the language Ln(C) (by previous
methods for DTAs).

Filtering

⊲ For each trajectory in Ln(C) check the
membership in Ln(A)

⊲ Estimate the volume of Voln (Ln(A)) as
#trajectory in Ln(A)
#trajectory in Ln(C) · Voln (Ln(C))

20 / 24

Statistical language inclusion measurement

Two languages

⊲ L(A) and L(B) are ”complex” languages

⊲ Use an over-approximation L(C) with C a
DTA.

⊲ Using membership of automaton estimate
Voln (Ln(A) ∩ Ln(B)) ,
Voln (Ln(A) \ Ln(B)) ,
Voln (Ln(A) ∆ Ln(B)) . . .

Ln(C)

Ln(A)

Ln(B)

21 / 24

Statistical language inclusion measurement

Two languages

⊲ L(A) and L(B) are ”complex” languages

⊲ Use an over-approximation L(C) with C a
DTA.

⊲ Using membership of automaton estimate
Voln (Ln(A) ∩ Ln(B)) ,
Voln (Ln(A) \ Ln(B)) ,
Voln (Ln(A) ∆ Ln(B)) . . .

Ln(C)

Ln(A)

Ln(B)

Checking Ln(A) ⊂ Ln(B) (up to null volume measure)

Pn(B |A) =
Voln (Ln(A) ∩ Ln(B))

Voln(Ln(A))
= 1

21 / 24

Toolchain

Splitting
Forward
Reachability

PRISM

Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

PRISM (probabilistic model checker)

⊲ Compute forward reachability zone graph.

⊲ Split the zone graph.

22 / 24

Toolchain

Splitting
Forward
Reachability

PRISM

Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

SageMath (open-source mathematics software)

⊲ Compute volumes and distributions.

⊲ Output a fully probabilistic COSMOS model.

22 / 24

Toolchain

Splitting
Forward
Reachability

PRISM

Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

COSMOS (statistical model checker)

⊲ Sampling of trajectories of the probabilistic model from SageMath.

⊲ Output estimation of Voln(Ln(A))
Voln(Ln(C)) or

estimation of Voln(Ln(A) ∩ Ln(B))
Voln(Ln(A))

(for language inclusion).

22 / 24

Toolchain

Splitting
Forward
Reachability

PRISM

Volume and
Distribution
Computation

Sampling Membership

SageMath COSMOS

Split

DTA

COSMOS

model

Trajectory
DTA

NTA(s)

Pn

COSMOS (statistical model checker)

⊲ Sampling of trajectories of the probabilistic model from SageMath.

⊲ Output estimation of Voln(Ln(A))
Voln(Ln(C)) or

estimation of Voln(Ln(A) ∩ Ln(B))
Voln(Ln(A))

(for language inclusion).

A case study of a repair failure model is available in
[Barbot B. Beunardeau Kwiatkowska, Qest’16].

22 / 24

Outline

1 Timed languages and their measure

2 Uniform sampling for timed automata

3 Application to statistical measure of timed languages

4 Conclusion and future work

23 / 24

We have seen how to

⊲ measure timed languages in terms of volumes;

⊲ adopt a zone-based framework to compute efficiently such volumes;

⊲ sample (quasi-)uniformly timed words for DTA;

⊲ apply this to measure and sampling for general timed languages.

24 / 24

We have seen how to

⊲ measure timed languages in terms of volumes;

⊲ adopt a zone-based framework to compute efficiently such volumes;

⊲ sample (quasi-)uniformly timed words for DTA;

⊲ apply this to measure and sampling for general timed languages.

What we plan to do:

⊲ experiment more with the same theory

– implement membership for more expressive timed languages
(stopwatch, hybrid);

– develop bigger case studies;

⊲ extend the theory

– develop random generation mehods uniform on timed words of same
duration (as opposed to uniform on timed words of same length).

– develop uniform random generation for networks of TAs.

24 / 24

	Timed languages and their measure
	Uniform sampling for timed automata
	Application to statistical measure of timed languages
	Conclusion and future work

