1 Analysis Operations Encoded as QBF

Lemma 1. (Implements) Given an SPL, a set of components C, and a feature f, implements (C, f) iff form_implements $f_{f}\left(v_{1}, \ldots, v_{n}\right)$, where $\bar{C}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$, evaluates to TRUE.

Proof. (\Rightarrow) : Let $\mathcal{T}(f)=\left\{C_{1}, \ldots, C_{k}\right\}$ and assume $\operatorname{implements}(C, f)$. By definition, there is a $C_{j} \in \mathcal{T}(f)$ such that $C_{j} \subseteq C$. Let $C_{j}=\left\{p_{{\ell_{1}}_{1}}, \ldots, p_{c_{\ell_{m}}}\right\}$. Then, $v_{\ell_{i}}=1$ for all $i=1, \ldots, m$. We have to show that

$$
\forall p_{c_{1}} \ldots p_{c_{n}}\left\{\left[\bigwedge_{i=1}^{n}\left(v_{i} \Rightarrow p_{c_{i}}\right)\right] \Rightarrow \text { formula_ } \mathcal{T}(f)\right\}
$$

Let $\left\langle w_{1}, \ldots, w_{n}\right\rangle$ be an assignment of boolean values (TRUE or FALSE) to the propositional variables $p_{c_{1}} \ldots p_{c_{n}}$ such that $\bigwedge_{i=1}^{n}\left(v_{i} \Rightarrow p_{c_{i}}\right)=\bigwedge_{i=1}^{n}\left(v_{i} \Rightarrow w_{i}\right)$ evaluates to TRUE. Since $v_{\ell_{i}}=1$ for all $i=1, \ldots, m$, this implies $w_{\ell_{j}}=1$ for all $j=1, \ldots, m$ as well. Therefore, for $C_{j} \in \mathcal{T}(f),\left(\bigwedge_{c_{i} \in C_{j}} w_{i}\right)=w_{\ell_{1}} \wedge \ldots \wedge w_{\ell_{m}}$ $=$ TRUE.

Since formula_T $\mathcal{T}(f)=\bigvee_{j=1 . . k} \bigwedge_{c_{i} \in C_{j}} p_{c_{i}}=\bigvee_{j=1 . . k} \bigwedge_{c_{i} \in C_{j}} w_{i}$, and one of the disjuncts C_{j} is TRUE, the entire expression for formula_T(f) evaluates to TRUE.
(\Leftarrow) : Assume that implements (C, f) does not hold. Then, for every $C_{j} \in \mathcal{T}(f)$, $C_{j} \nsubseteq C$. This implies that for all $j \in\{1 \ldots k\}$, there is a $c_{j} \in C_{j} \backslash C$. Define an assignment to the propositional variables as follows: $v_{i}=1$ for $p_{c_{i}}$ such that $c_{i} \in C$ and 0 for the rest. Hence, $v_{j}=0$ for the proposition $p_{c_{j}}$ corresponding to component $c_{j} \notin C$.

This assignment evaluates the antecedent $\bigwedge_{i=1}^{n}\left(v_{i} \Rightarrow p_{c_{i}}\right)$ to TRUE. But the consequent formula_ $\mathcal{T}(f)=\bigvee_{j=1 . . k} \bigwedge_{c_{i} \in C_{j}} p_{c_{i}}=$ FALSE for the above assignment because each disjunct is falsified by the presence of an assignment $v_{j}=0$ for the proposition $p_{c_{j}} \notin C$. Therefore, form_implements $f_{f}\left(v_{1}, \ldots, v_{n}\right)$ evaluates to FALSE.

Lemma 2. (Realizes, Covers) Given a set of components C and a set of features F, let $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ and $\bar{F}=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. Then the following statements hold:

1. C covers F iff $f_{_}$covers $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$
2. C realizes F iff f _realizes $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$

Proof. Suppose $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ and $\bar{F}=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. If C covers F, then Provided_by $(C)=\{f \mid$ Implements $(C, f)\}$ will contain F. Pick $f \in F$. Since $F \subseteq$ Provided_by $(C), \exists C_{1} \in \mathcal{T}(f), C_{1} \subseteq C$. We then have $\widehat{C} \Rightarrow \widehat{C}_{1}$ and $\widehat{C}_{1} \Rightarrow$ formula_ $^{\mathcal{T}}(f)$. Therefore, f_{-}implements $_{f}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ holds. Hence, it will be the case that $p_{f_{i}^{\prime}} \Rightarrow f_{-}$implements $_{f_{i}}\left(c_{1}^{\prime}, \ldots, c_{n}\right)$ for every $f_{i}^{\prime} \in \bar{F}$. Hence, $f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$.

Conversely, suppose $f_{\text {_covers }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. Then $\bigwedge_{i=1}^{m}\left(p_{f_{i}^{\prime}} \Rightarrow f_{\text {_implements }}^{f_{i}}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)\right)$ holds. If f_{-}covers $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$
holds, then (1) either $p_{f_{j}^{\prime}}=0$, or (2) $p_{f_{j}^{\prime}}=1$ and $f_{_}$implements $_{f_{j}}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ holds. As seen in Lemma $1, f$ _implements $f_{i}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ holds good when there exists a set $C_{j_{i}} \in \mathcal{T}\left(f_{i}\right)$ such that $C_{j_{i}} \subseteq C$. Since this is true for all f_{i}, we have $\bigcup_{j_{i}} C_{j_{i}} \subseteq C$. Therefore, Provided_by $(C) \supseteq$ Provided_by $\left(\bigcup_{j_{i}} C_{j_{i}}\right)$. By the formula $f_{_} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$, whenever $p_{f_{i}^{\prime}}=1$, there exists $C_{j_{i}} \subseteq C$ which implements f_{i}. Therefore, C implements possibly a superset of F, hence covers F.

The proof for realizes is similar. The only difference is that the implication is both ways, which ensures that C implements F exactly.
Lemma 3. (Completeness, Soundness) Let $\Psi=(\overline{\mathcal{F}}, \overline{\mathcal{C}}, \mathcal{T})$ be an SPL, with $\mathcal{F}=$ $\left\{f_{1}, \ldots, f_{m}\right\}$ and $\mathcal{C}=\left\{c_{1}, \ldots, c_{n}\right\}$.

1. Ψ is complete iff
$\forall f_{1}^{\prime} \ldots f_{m}^{\prime}\left[\operatorname{CON}_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \Rightarrow \exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right]$
2. Ψ is sound iff
$\forall c_{1} \ldots c_{n}\left[C O N_{I}\left(c_{1}, \ldots, c_{k}\right) \Rightarrow \exists f_{1} \ldots f_{j}\left[\operatorname{CON}_{F}\left(f_{1}, \ldots, f_{j}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}, \ldots, c_{k}, f_{1}, \ldots, f_{j}\right)\right]\right]$
Proof. Let $\Psi=(\overline{\mathcal{F}}, \overline{\mathcal{C}}, \mathcal{T})$ be an SPL with n components and m features. Let $\overline{\mathcal{C}}=\left\{S_{1}, \ldots, S_{k}\right\}$. Given a tuple of component parameters $c_{1}^{\prime}, \ldots, c_{n}^{\prime}$ where each c_{i}^{\prime} is 0 or 1 , the predicate $\operatorname{CON}_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ is defined as

$$
\bigvee_{j} \bigwedge_{c_{i} \in S_{j}} c_{i}^{\prime}
$$

Then $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ is satisfied iff $\left\{c_{k}^{\prime} \mid c_{k}^{\prime}=1\right\}=S_{l}$ for some $S_{l} \in \overline{\mathcal{C}}$. $C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ is defined similarly.

1. Assume that the SPL is complete. Then for every $F \in \overline{\mathcal{F}}$, there exists some $C \in \overline{\mathcal{C}}$ such that $\operatorname{Covers}(C, F)$. Pick any $F \in \overline{\mathcal{F}}$ and its corresponding $C \in \overline{\mathcal{C}}$. Let $\bar{F}=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ and $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$. Then $\operatorname{CON}_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ will be 1 iff there exists a set $F_{j} \in \overline{\mathcal{F}}$ such that $\bar{F}_{j}(i)=1$ iff $f_{i}^{\prime}=1$. Since $\operatorname{Covers}(C, F)$ holds for all $F \in \overline{\mathcal{F}}$, we have by Lemma $2, f_{-} \operatorname{cover} s\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ is true for every tuple $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ such that $f_{i}^{\prime}=1$ iff $\exists F_{j} \in \overline{\mathcal{F}}$ such that $\bar{F}_{j}(i)=1$. That is, for every tuple $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ that satisfies the feature constraints, there exists some tuple $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ such that $f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds. Thus,
$\forall f_{1}^{\prime} \ldots f_{m}^{\prime} \cdot\left\{\left[\operatorname{CON}_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \Rightarrow \exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[\operatorname{CON}_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right\}\right.$ holds.
Conversely, assume $\forall f_{1}^{\prime} \ldots f_{m}^{\prime} \cdot\left\{\left[\operatorname{CON}_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \Rightarrow \exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge\right.\right.\right.$
$\left.\left.f_{-} \operatorname{cover} s\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right\}$ holds. Then for all possible ways of satisfying $\operatorname{CON}_{F}\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ (i.e, over all $F \in \overline{\mathcal{F}}$), there exists some tuple satisfying $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ such that $f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. Each tuple satisfying $C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$ corresponds to a set in $\overline{\mathcal{F}}$. Corresponding to each such set, there is a tuple $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ satisfying $\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge\right.$ f_{-}covers $\left.\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]$: that is, there is some $C \in \overline{\mathcal{C}}$ with $\bar{C}=$ $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ such that $f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. This says that for every $F \in \overline{\mathcal{F}}$, there exists some $C \in \overline{\mathcal{C}}$ such that C covers F. Hence, Ψ is complete.
2. The proof of soundness is similar.

Lemma 4. (Existentially Explicit Features) Given a set of features F, let $\bar{F}=$ $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. Then F is existentially explicit iff
$\exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-} \operatorname{realizes}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]$.
Proof. Suppose F is existentially explicit. Then there exists a $C \in \overline{\mathcal{C}}$ such that C realizes F. By Lemma 2, C realizes F iff f_{-}realizes $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ is true iff there exists a $C \in \overline{\mathcal{C}}$ such that $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$. Hence, if F is existentially explicit, $\exists c_{1}^{\prime}, \ldots, c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f _r e a l i z e s\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]$ holds.

Conversely, assume $\exists c_{1}^{\prime}, \ldots, c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f _\right.$realizes $\left.\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]$
holds. Then, there exists a $C \in \overline{\mathcal{C}}$ with $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ and $f_{\text {_realizes }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$.
Again, by Lemma 2, f_realizes $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ iff C realizes F, with $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right), \bar{F}=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. That is, for $F \in \overline{\mathcal{F}}$, there exists a $C \in \overline{\mathcal{C}}$ such that C covers F. Hence, F is existentially explicit.

Lemma 5. (Universally Explicit Features) Given a set of features F, let $\bar{F}=$ $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. Then F is universally explicit iff φ_{F} holds, where φ_{F} is given by $\exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{\text {_realizes }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \wedge$ $\forall c_{1}^{\prime} \ldots c_{n}^{\prime}\left\{\left[\left(C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow f _r e a l i z e s\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right\}\right.$.

Proof. Assume F is universally explicit. Then by definition, (i) there exists a $C \in \overline{\mathcal{C}}$ such that C realizes F and (ii) for all $C \in \overline{\mathcal{C}}, C$ covers $F \Rightarrow C$ realizes F.

The first point (i) can be expressed as $\exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-}\right.$realizes $\left.\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]$ (recall that $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ holds iff there exists a $C \in \overline{\mathcal{C}}$ with $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$, and f_{-}realizes $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds iff C realizes F by Lemma 2$)$.

To formalize the second point (ii), we have to consider all possible component tuples $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ satisfying $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$, such that $f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds. For each such tuple, we have to ensure that f _realizes $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds. This is true iff $\forall c_{1}^{\prime} \ldots c_{n}^{\prime}\left\{\left[\left(\operatorname{CON}_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow\right.\right.$ $f_{_}$realizes $\left.\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right\}$ holds. Clearly, if F is universally explicit, then φ_{F} holds.

Conversely, assume φ_{F} holds. Now, $\exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-}\right.$realizes $\left.\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]$ holds whenever there is a tuple $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ satisfying $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ for which f_{-}realizes $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ is true. This corresponds to a set in $C \in \overline{\mathcal{C}}$ with $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ which realizes $F . \forall c_{1}^{\prime} \ldots c_{n}^{\prime}\left\{\left[\left(C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge\right.\right.\right.$ $\left.\left.f_{\text {_covers }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow f_{\text {_realizes }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right\}$ considers all possible tuples $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ satisfying $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ for which, whenever $f_{\text {_covers }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ is true, so is f_{-}realizes $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. By definition, each tuple satisfying $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ corresponds to a set $C \in \overline{\mathcal{C}}$. The formulae holds iff for each such $C \in \overline{\mathcal{C}}$, whenever C covers F, C realizes F. Therefore, F is universally explicit whenever φ_{F} holds.

Lemma 6. (Unique Implementation) Given a set of features F, let $\bar{F}=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$.
Then F has a unique implementation iff φ_{U} holds. φ_{U} is given by
$\exists c_{1}^{\prime} \ldots c_{n}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \wedge$

$$
\forall d_{1}^{\prime} \ldots d_{n}^{\prime}\left\{[C O N _ { I } (d _ { 1 } ^ { \prime } , \ldots , d _ { n } ^ { \prime }) \wedge f _ { - } \operatorname { c o v e r s } (d _ { 1 } ^ { \prime } , \ldots , d _ { n } ^ { \prime } , f _ { 1 } ^ { \prime } , \ldots , f _ { m } ^ { \prime })] \Rightarrow \left(\wedge _ { i = 1 } ^ { n } \left(d_{i}^{\prime} \Leftrightarrow\right.\right.\right.
$$

$$
\left.\left.c_{i}^{\prime}\right)\right\}
$$

Proof. Let F have a unique implementation. Then there exists a $C \in \overline{\mathcal{C}}$ which covers F and for all $C^{\prime} \in \overline{\mathcal{C}}$ which covers $F, C=C^{\prime}$. Two implementations C, C^{\prime} are same when $\bar{C}=\bar{C}^{\prime}$. That is, $\bar{C}(i)=\bar{C}^{\prime}(i)$ for all $1 \leq i \leq n$. As given by the definition of $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right), C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ is satisfiable iff there exists some $C \in \overline{\mathcal{C}}$ with $\bar{C}=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$. Such a C covers F iff $f_{\text {_covers }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ as given by Lemma 2 . We have to check that there is a unique $C \in \overline{\mathcal{C}}$ that can cover F - for this, we enumerate over all possible tuples $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ that satisfy $\operatorname{CON}_{I}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$, and then ensure that $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$. This check is given by $\forall d_{1}^{\prime} \ldots d_{n}^{\prime}\left\{\left[C O N_{I}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right) \wedge\right.\right.$ $\left.f_{\text {_covers }}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow\left(\wedge_{i=1}^{n}\left(d_{i}^{\prime} \Leftrightarrow c_{i}^{\prime}\right)\right\}$ Thus, if F has a unique implementation, we have φ_{U} holds.

The converse is similar.
Lemma 7. (Common, live and dead elements)

1. A component c is common iff
$\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{\left.-\operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow}\right.\right.$ $\left.p_{c}\right\}$ holds.
2. A component c is live iff
$\exists c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[\operatorname{CON}_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge\right.\right.$ $\left.p_{c}\right\}$
3. A component c is dead iff
$\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow\right.$ $\left.\neg p_{c}\right\}$ holds.

Proof. 1. Assume that c is a common component. Then by definition, for all $\langle F, C\rangle \in \operatorname{Prod}(\Psi), c \in C$. To enumerate all possible $\langle F, C\rangle$ for $F \in \overline{\mathcal{F}}$ and $C \in \overline{\mathcal{C}}$, we consider all possible tuples $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ as well as $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ for which $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds. Clearly, every pair of tuples satisfying $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ corresponds to a pair $\langle F, C\rangle$. For each such pair $\langle F, C\rangle$ of tuples to be in $\operatorname{Prod}(\Psi)$, we check if C covers F. By Lemma 2, this holds iff $f_{_} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. Clearly, for all pairs of tuples for which this is true, if an element is common, then it will evaluate to 1 . This is given by saying $\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge\right.\right.$ $\left.\left.\operatorname{CON}_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow p_{c}\right\}$. Note that in $f_{\text {_covers }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$, we are evaluating over all possible values of $p_{c_{1}}, \ldots, p_{c_{n}}$. In particular, for $c=c_{i}$, we are checking that whenever $c_{i}^{\prime}=1$ in a product, then $p_{c_{i}}=1$.
The converse is similar.
2. Assume c is live. Then there is a pair $\langle F, C\rangle \in \operatorname{Prod}(\Psi)$ such that $c \in C$. The existence of a pair $\langle F, C\rangle \in \operatorname{Prod}(\Psi)$ is expressed by saying $\exists c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge\right.$ $\left.f_{-c o v e r s}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]$. Clearly, if c is in one such tuple, $p_{c}=1$.
This is written by conjuncting p_{c} and obtaining $\exists c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge\right.\right.$
$\left.\operatorname{CON_{F}}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge p_{c}\right\}$. The converse is similar.
3. This is similar to 1 .

Lemma 8. (Superflous) A component c_{i} is superflous iff
$\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[c_{i}^{\prime} \wedge C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{i}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right.$ $\left.\exists d_{1}^{\prime}, \ldots, d_{n}^{\prime}\left[\neg d_{i}^{\prime} \wedge \operatorname{CON}_{I}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right\}$.

Proof. Assume c_{i} is superflous. Then by definition, for all $C \in \overline{\mathcal{C}}$ containing c_{i} and which covers F, there exists $C^{\prime} \in \overline{\mathcal{C}}$ which does not contain c_{i} and which covers F. First consider all $C \in \overline{\mathcal{C}}$ containing c_{i} which covers F. This is given by considering all tuples $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ and $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ which satisfy $\operatorname{CON}_{I}\left(c_{1}^{\prime}, \ldots, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right), c_{i}^{\prime}=1$, for which f_{-}covers $\left(c_{1}^{\prime}, \ldots, c_{i}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds. The pairs $\langle C, F\rangle$ are enumerated by considering all tuples satisfying $\operatorname{CON}_{I}\left(c_{1}^{\prime}, \ldots, c_{i}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$, and for those in $\operatorname{Prod}(\Psi)$, we need to check that C covers F. Now, if such a C contains c_{i}, then $c_{i}^{\prime}=1$ in the tuple $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$. To check if there exists a pair in $\operatorname{Prod}(\Psi)$ which does not contain the i th component c_{i}, among all tuples $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$, we check if there exists a tuple $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ such that $C O N_{I}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds and where $d_{i}^{\prime}=0$. This is expressed by $\neg d_{i}^{\prime}$. Thus, if c_{i} is superflous, we have $\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[c_{i}^{\prime} \wedge C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge\right.\right.$ $\left.\left.f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow \exists d_{1}^{\prime}, \ldots, d_{n}^{\prime}\left[\neg d_{i}^{\prime} \wedge C O N_{I}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right\}$ holds.

The converse is similar.
Lemma 9. (Redundant) A component c_{i} is redundant iff
$\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime} f_{1}^{\prime} \ldots, f_{m}^{\prime}\left\{\left[c_{i}^{\prime} \wedge C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow\right.$ $\left.f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, \neg c_{i}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right\}$
Proof. Suppose c_{i} is redundant. Then for every $C \in \overline{\mathcal{C}}$ containing c_{i}, there exists a $C^{\prime} \in \overline{\mathcal{C}}, C^{\prime} \subseteq C, c_{i} \notin C^{\prime}$, and Provided_by $(C)=\operatorname{Provided_ by}\left(C^{\prime}\right)$. First, we have to enumerate all tuples $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ for which we have $C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$ and c_{i}^{\prime} (i.e, enumerate all members of $\overline{\mathcal{C}}$ containing c_{i}). Now, we have to look at the sets of features F that these implementations cover - by definition of covers, this
 cally means to look at all tuples $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ such that $C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ (which correspond to some element of $\overline{\mathcal{F}}$) and $f_{\text {_covers }}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ (which are covered by C). This is expressed by specifying $\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left\{\left[c_{i}^{\prime} \wedge\right.\right.$ $\left.\left.C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right\}$. For each such C covering F, we want to say that there exists a $C^{\prime} \subseteq C$ which covers F and which does not contain c_{i}^{\prime}. This is expressed by saying that there exists a tuple $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ for which (i) $C O N_{I}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ holds, (ii) $f_{-} \operatorname{covers}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ holds, (iii) $\neg c_{i}^{\prime}$ holds, and $(i v)\left(\bigwedge_{i=1}^{n} c_{i}^{\prime} \Rightarrow \bigwedge_{i=1}^{n} d_{i}^{\prime}\right)$. This last condition checks that $C^{\prime} \subseteq C$. Thus, the required formula to hold is $\forall c_{1}^{\prime}, \ldots, c_{n}^{\prime} f_{1}^{\prime} \ldots, f_{m}^{\prime}\left\{\left[c_{i}^{\prime} \wedge\right.\right.$ $\left.C O N_{I}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \wedge C O N_{F}\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right) \wedge f_{_} \operatorname{covers}\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right] \Rightarrow \exists d_{1}^{\prime} \ldots d_{n}^{\prime}\left[\neg d_{i}^{\prime} \wedge\right.$ $\left.\left.\left(\bigwedge_{i=1}^{n} c_{i}^{\prime} \Rightarrow \bigwedge d_{i}^{\prime}\right) \wedge C O N_{I}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right) \wedge f_{-} \operatorname{covers}\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}, f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)\right]\right\}$.

The converse is similar.

Lemma 10. (Critical) A component c is critical for f_{j} iff $\forall p_{c_{1}}, \ldots, p_{c_{n}}\left\{\right.$ formula_T $\left.\mathcal{T}\left(f_{j}\right) \Rightarrow p_{c}\right\}$.

Proof. Assume c is critical for f_{j}. Then, every implementation which does not contain c cannot implement f_{j}. In other words, every implementation in $\overline{\mathcal{C}}$ which implements f_{j} must contain c. Lets look at $\mathcal{T}\left(f_{j}\right)=\left\{C_{1}, \ldots, C_{k}\right\}$. Then, c must belong to all the C_{i} 's. Clearly, if this is the case, then whenever $\bigvee_{i=1}^{k} \bigwedge_{d \in C_{i}} p_{d}$ is true, so must be p_{c} : Assume there exists $C_{l} \in \mathcal{T}\left(f_{j}\right)$ such that $c \notin C_{l}$. Then clearly, we have an assignment of $p_{c_{1}}, \ldots, p_{c_{n}}$ where $\bigwedge_{d \in C_{l}} p_{d}$ is true, but $p_{c}=0$ (as $c \notin C_{l}$). Thus, c is critical for f_{j} iff $\forall p_{c_{1}}, \ldots, p_{c_{n}}\left\{\right.$ formula $\left.\mathcal{T}\left(f_{j}\right) \Rightarrow p_{c}\right\}$.

Lemma 11. (Extends) Let F and F^{\prime} be subsets of features. Let $\bar{F}=\left(f_{1}, \ldots, f_{m}\right)$ and $\bar{F}^{\prime}=\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$. Then F^{\prime} extends F iff $\bigwedge_{i=1}^{m}\left(f_{i} \Rightarrow f_{i}^{\prime}\right)$ is true. F^{\prime} is extendable iff $\left.\exists f_{1}^{\prime}, \ldots, f_{m}^{\prime}\left[\bigwedge_{i=1}^{m} f_{i} \Rightarrow f_{i}^{\prime}\right)\right]$.

Proof. If F^{\prime} extends F, then $\bar{F}(i)=1 \Rightarrow \bar{F}^{\prime}(i)=1$. Then clearly, $\bigwedge_{i=1}^{m}\left(f_{i} \Rightarrow f_{i}^{\prime}\right)$ is true. Conversely, if $\bigwedge_{i=1}^{m}\left(f_{i} \Rightarrow f_{i}^{\prime}\right)$, then whenever $f_{i}=1, f_{i}^{\prime}=1$. That is, $\bar{F}(i)=1 \Rightarrow \bar{F}^{\prime}(i)=1$. Clearly, then F^{\prime} extends F. If F is extendable, then there exists some F^{\prime} such that F^{\prime} extends F. This is same as existentially quantifying the variables of F^{\prime} such that the implication holds.

2 QPRO Syntax

The QPRO input format is divided into two section, preamble and the formula.

1. Preamble : The Preamble contains different types of information about the file, namely,
(a) Comments : Each comment line should start with lower case character 'c'. There can be multiple comment lines in the File.
Format:
c COMMENT_STRING
Example:
c Testing QBF formulae.
c QPRO file for completeness.
(b) $Q B F$: After the comments, the string ' QBF ' is followed by positive integer. The integer indicates the number of variables occurring in the formula. First variable name is associated with integer 2 and so on.
Format:
QBF < number of variables >
Example:
QBF 10
2. formula : The formula may contain either a conjunction, a disjunction or a quantifier.
(a) quantifier block: The quantifier block always start with lower case character ' q ' and end with '/q'. The line after 'q' start with letter 'a' or 'e' indicating universal quantifier or existential quantifier respectively.

Format:

q
a var1 var2 ...
e var11 var22...
/q
Example:
q
a 23
e 45
/q
(b) conjunction block: The conjunction block always start with lower case character ' c ' and end with ' $/ c$ '. The first line after ' c ' contain all the positive literals and the second line contain negative literals.
Format:
c
positive literals
negative literals
...
/c
Example:
The propositional formula $c 2 \wedge c 3 \wedge \neg c 4$ can be written as:
c
23
4
/c
(c) disjunction block: The disjunction block always start with lower case character 'd' and end with '/d'. The first line after 'd' contain all the positive literals and the second line contain negative literals.
Format:
d
positive literals
negative literals
/d
Example:
The propositional formula $c 2 \vee c 3 \vee \neg c 4$ can be written as:
d
23
4

```
    As an example, the QPRO format for the formula }\forallX\existsY((X\vee\negY)\wedge(\negX\veeY
is as follows.
c Illustration
QBF }
q
a 2
e 3
c
d
2
3
/d
d
3
2
/d
/c
/q
```

