
1 Analysis Operations Encoded as QBF

Lemma 1. (Implements) Given an SPL, a set of components C, and a feature
f , implements(C, f) iff form implementsf (v1, . . . , vn), where C̄ = 〈v1, . . . , vn〉,
evaluates to TRUE.

Proof. (⇒) : Let T (f) = {C1, . . . , Ck} and assume implements(C, f). By defi-
nition, there is a Cj ∈ T (f) such that Cj ⊆ C. Let Cj = {pc`1

, . . . , pc`m
}. Then,

v`i
= 1 for all i = 1, . . . ,m. We have to show that

∀pc1 . . . pcn{[
n∧

i=1

(vi ⇒ pci)]⇒ formula T (f)}.

Let 〈w1, . . . , wn〉 be an assignment of boolean values (TRUE or FALSE) to
the propositional variables pc1 . . . pcn

such that
∧n

i=1(vi ⇒ pci
) =

∧n
i=1(vi ⇒ wi)

evaluates to TRUE. Since v`i
= 1 for all i = 1, . . . ,m, this implies w`j

= 1 for
all j = 1, . . . ,m as well. Therefore, for Cj ∈ T (f), (

∧
ci∈Cj

wi) = w`1 ∧ . . .∧w`m

= TRUE.
Since formula T (f) =

∨
j=1..k

∧
ci∈Cj

pci =
∨

j=1..k

∧
ci∈Cj

wi, and one of
the disjuncts Cj is TRUE, the entire expression for formula T (f) evaluates to
TRUE.
(⇐) : Assume that implements(C, f) does not hold. Then, for every Cj ∈ T (f),
Cj 6⊆ C. This implies that for all j ∈ {1 . . . k}, there is a cj ∈ Cj \ C. Define
an assignment to the propositional variables as follows: vi = 1 for pci

such that
ci ∈ C and 0 for the rest. Hence, vj = 0 for the proposition pcj

corresponding
to component cj 6∈ C.

This assignment evaluates the antecedent
∧n

i=1(vi ⇒ pci) to TRUE. But the
consequent formula T (f) =

∨
j=1..k

∧
ci∈Cj

pci
= FALSE for the above assign-

ment because each disjunct is falsified by the presence of an assignment vj = 0
for the proposition pcj

6∈ C. Therefore, form implementsf (v1, . . . , vn) evaluates
to FALSE.

Lemma 2. (Realizes, Covers) Given a set of components C and a set of features
F , let C̄ = (c′1, . . . , c

′
n) and F̄ = (f ′1, . . . , f

′
m). Then the following statements

hold:

1. C covers F iff f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)

2. C realizes F iff f realizes(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)

Proof. Suppose C̄ = (c′1, . . . , c
′
n) and F̄ = (f ′1, . . . , f

′
m). If C covers F , then

Provided by(C) = {f | Implements(C, f)} will contain F . Pick f ∈ F . Since
F ⊆ Provided by(C), ∃C1 ∈ T (f), C1 ⊆ C. We then have Ĉ ⇒ Ĉ1 and
Ĉ1 ⇒ formula T (f). Therefore, f implementsf (c′1, . . . , c

′
n) holds. Hence, it

will be the case that pf ′
i
⇒ f implementsfi

(c′1, . . . , cn) for every f ′i ∈ F̄ . Hence,
f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m).

Conversely, suppose f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m). Then∧m

i=1(pf ′
i
⇒ f implementsfi(c

′
1, . . . , c

′
n)) holds. If f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m)



holds, then (1) either pf ′
j

= 0, or (2) pf ′
j

= 1 and f implementsfj
(c′1, . . . , c

′
n)

holds. As seen in Lemma 1, f implementsfi(c
′
1, . . . , c

′
n) holds good when there

exists a set Cji
∈ T (fi) such that Cji

⊆ C. Since this is true for all fi, we
have

⋃
ji
Cji
⊆ C. Therefore, Provided by(C) ⊇ Provided by(

⋃
ji
Cji

). By the
formula f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m), whenever pf ′

i
= 1, there exists Cji

⊆ C
which implements fi. Therefore, C implements possibly a superset of F , hence
covers F .

The proof for realizes is similar. The only difference is that the implication
is both ways, which ensures that C implements F exactly.

Lemma 3. (Completeness, Soundness) Let Ψ = (F , C, T ) be an SPL, with F =
{f1, . . . , fm} and C = {c1, . . . , cn}.
1. Ψ is complete iff
∀f ′1 . . . f ′m[CONF (f ′1, . . . , f

′
m)⇒ ∃c′1 . . . c′n[CONI(c′1, . . . , c

′
n)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]]

2. Ψ is sound iff
∀c1 . . . cn[CONI(c1, . . . , ck)⇒ ∃f1 . . . fj [CONF (f1, . . . , fj)∧f covers(c1, . . . , ck, f1, . . . , fj)]]

Proof. Let Ψ = (F , C, T ) be an SPL with n components and m features. Let
C = {S1, . . . , Sk}. Given a tuple of component parameters c′1, . . . , c

′
n where each

c′i is 0 or 1, the predicate CONI(c′1, . . . , c
′
n) is defined as∨

j

∧
ci∈Sj

c′i

Then CONI(c′1, . . . , c
′
n) is satisfied iff {c′k | c′k = 1} = Sl for some Sl ∈ C.

CONF (f ′1, . . . , f
′
m) is defined similarly.

1. Assume that the SPL is complete. Then for every F ∈ F , there exists some
C ∈ C such that Covers(C,F ). Pick any F ∈ F and its corresponding C ∈ C.
Let F̄ = (f ′1, . . . , f

′
m) and C̄ = (c′1, . . . , c

′
n). Then CONF (f ′1, . . . , f

′
m) will be 1

iff there exists a set Fj ∈ F such that F̄j(i) = 1 iff f ′i = 1. Since Covers(C,F )
holds for all F ∈ F , we have by Lemma 2, f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m)

is true for every tuple (f ′1, . . . , f
′
m) such that f ′i = 1 iff ∃Fj ∈ F such that

F̄j(i) = 1. That is, for every tuple (f ′1, . . . , f
′
m) that satisfies the feature con-

straints, there exists some tuple (c′1, . . . , c
′
n) such that f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m)

holds. Thus,
∀f ′1 . . . f ′m.{[CONF (f ′1, . . . , f

′
m)⇒ ∃c′1 . . . c′n[CONI(c′1, . . . , c

′
n)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]}

holds.
Conversely, assume ∀f ′1 . . . f ′m.{[CONF (f ′1, . . . , f

′
m)⇒ ∃c′1 . . . c′n[CONI(c′1, . . . , c

′
n)∧

f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)]} holds. Then for all possible ways of satisfy-

ing CONF (f ′1, . . . , f
′
n) (i.e, over all F ∈ F), there exists some tuple satisfy-

ing CONI(c′1, . . . , c
′
n) such that f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m). Each tuple

satisfying CONF (f ′1, . . . , f
′
n) corresponds to a set in F . Corresponding to

each such set, there is a tuple (c′1, . . . , c
′
n) satisfying [CONI(c′1, . . . , c

′
n) ∧

f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)] : that is, there is some C ∈ C with C̄ =

(c′1, . . . , c
′
n) such that f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m). This says that for ev-

ery F ∈ F , there exists some C ∈ C such that C covers F . Hence, Ψ is
complete.



2. The proof of soundness is similar.

Lemma 4. (Existentially Explicit Features) Given a set of features F , let F̄ =
(f ′1, . . . , f

′
m). Then F is existentially explicit iff

∃c′1 . . . c′n[CONI(c′1, . . . , c
′
n) ∧ f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)].

Proof. Suppose F is existentially explicit. Then there exists a C ∈ C such that
C realizes F . By Lemma 2, C realizes F iff f realizes(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m).

CONI(c′1, . . . , c
′
n) is true iff there exists a C ∈ C such that C̄ = (c′1, . . . , c

′
n).

Hence, if F is existentially explicit, ∃c′1, . . . , c′n[CONI(c′1, . . . , c
′
n)∧f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)]

holds.
Conversely, assume ∃c′1, . . . , c′n[CONI(c′1, . . . , c

′
n)∧f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)]

holds. Then, there exists a C ∈ C with C̄ = (c′1, . . . , c
′
n) and f realizes(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m).

Again, by Lemma 2, f realizes(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m) iff C realizes F , with

C̄ = (c′1, . . . , c
′
n), F̄ = (f ′1, . . . , f

′
m). That is, for F ∈ F , there exists a C ∈ C

such that C covers F . Hence, F is existentially explicit.

Lemma 5. (Universally Explicit Features) Given a set of features F , let F̄ =
(f ′1, . . . , f

′
m). Then F is universally explicit iff ϕF holds, where ϕF is given by

∃c′1 . . . c′n[CONI(c′1, . . . , c
′
n) ∧ f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)]∧

∀c′1 . . . c′n{[(CONI(c′1, . . . , c
′
n)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒ f realizes(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m)}.

Proof. Assume F is universally explicit. Then by definition, (i) there exists a
C ∈ C such that C realizes F and (ii) for all C ∈ C, C covers F ⇒ C realizes F .

The first point (i) can be expressed as ∃c′1 . . . c′n[CONI(c′1, . . . , c
′
n)∧f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)]

(recall that CONI(c′1, . . . , c
′
n) holds iff there exists a C ∈ C with C̄ = (c′1, . . . , c

′
n),

and f realizes(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m) holds iff C realizes F by Lemma 2).

To formalize the second point (ii), we have to consider all possible component
tuples (c′1, . . . , c

′
n) satisfying CONI(c′1, . . . , c

′
n), such that f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m)

holds. For each such tuple, we have to ensure that f realizes(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)

holds. This is true iff ∀c′1 . . . c′n{[(CONI(c′1, . . . , c
′
n)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒

f realizes(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)} holds. Clearly, if F is universally explicit, then

ϕF holds.
Conversely, assume ϕF holds. Now, ∃c′1 . . . c′n[CONI(c′1, . . . , c

′
n)∧f realizes(c′1, . . . , c′n, f ′1, . . . , f ′m)]

holds whenever there is a tuple (c′1, . . . , c
′
n) satisfying CONI(c′1, . . . , c

′
n) for

which f realizes(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m) is true. This corresponds to a set in

C ∈ C with C̄ = (c′1, . . . , c
′
n) which realizes F . ∀c′1 . . . c′n{[(CONI(c′1, . . . , c

′
n) ∧

f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)] ⇒ f realizes(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m)} considers

all possible tuples (c′1, . . . , c
′
n) satisfying CONI(c′1, . . . , c

′
n) for which, whenever

f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m) is true, so is f realizes(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m).

By definition, each tuple satisfying CONI(c′1, . . . , c
′
n) corresponds to a set C ∈ C.

The formulae holds iff for each such C ∈ C, whenever C covers F , C realizes F .
Therefore, F is universally explicit whenever ϕF holds.

Lemma 6. (Unique Implementation) Given a set of features F , let F̄ = (f ′1, . . . , f
′
m).

Then F has a unique implementation iff ϕU holds. ϕU is given by
∃c′1 . . . c′n[CONI(c′1, . . . , c

′
n) ∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]∧



∀d′1 . . . d′n{[CONI(d′1, . . . , d
′
n) ∧ f covers(d′1, . . . , d′n, f ′1, . . . , f ′m)] ⇒ (∧n

i=1(d′i ⇔
c′i)}

Proof. Let F have a unique implementation. Then there exists a C ∈ C which
covers F and for all C ′ ∈ C which covers F , C = C ′. Two implementations
C,C ′ are same when C̄ = C̄ ′. That is, C̄(i) = C̄ ′(i) for all 1 ≤ i ≤ n.
As given by the definition of CONI(c′1, . . . , c

′
n), CONI(c′1, . . . , c

′
n) is satisfi-

able iff there exists some C ∈ C with C̄ = (c′1, . . . , c
′
n). Such a C covers F

iff f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m) as given by Lemma 2. We have to check that

there is a unique C ∈ C that can cover F - for this, we enumerate over all
possible tuples (d′1, . . . , d

′
n) that satisfy CONI(d′1, . . . , d

′
n), and then ensure that

(d′1, . . . , d
′
n) = (c′1, . . . , c

′
n). This check is given by ∀d′1 . . . d′n{[CONI(d′1, . . . , d

′
n)∧

f covers(d′1, . . . , d
′
n, f

′
1, . . . , f

′
m)]⇒ (∧n

i=1(d′i ⇔ c′i)} Thus, if F has a unique im-
plementation, we have ϕU holds.

The converse is similar.

Lemma 7. (Common, live and dead elements)

1. A component c is common iff
∀c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c

′
n)∧CONF (f ′1, . . . , f

′
m)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒

pc} holds.
2. A component c is live iff
∃c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c

′
n)∧CONF (f ′1, . . . , f

′
m)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)∧

pc}
3. A component c is dead iff
∀c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c

′
n)∧CONF (f ′1, . . . , f

′
m)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒

¬pc} holds.

Proof. 1. Assume that c is a common component. Then by definition, for all
〈F,C〉 ∈ Prod(Ψ), c ∈ C. To enumerate all possible 〈F,C〉 for F ∈ F and
C ∈ C, we consider all possible tuples (c′1, . . . , c

′
n) as well as (f ′1, . . . , f

′
m) for

which CONI(c′1, . . . , c
′
n)∧CONF (f ′1, . . . , f

′
m) holds. Clearly, every pair of tu-

ples satisfying CONI(c′1, . . . , c
′
n) ∧CONF (f ′1, . . . , f

′
m) corresponds to a pair

〈F,C〉. For each such pair 〈F,C〉 of tuples to be in Prod(Ψ), we check if C
covers F . By Lemma 2, this holds iff f covers(c′1, . . . , c

′
n, f

′
1, . . . , f

′
m). Clearly,

for all pairs of tuples for which this is true, if an element is common, then it
will evaluate to 1. This is given by saying ∀c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c

′
n)∧

CONF (f ′1, . . . , f
′
m) ∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒ pc}. Note that in

f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m), we are evaluating over all possible values of

pc1 , . . . , pcn
. In particular, for c = ci, we are checking that whenever c′i = 1

in a product, then pci
= 1.

The converse is similar.
2. Assume c is live. Then there is a pair 〈F,C〉 ∈ Prod(Ψ) such that c ∈ C.

The existence of a pair 〈F,C〉 ∈ Prod(Ψ) is expressed by saying
∃c′1, . . . , c′n, f ′1, . . . , f ′m[CONI(c′1, . . . , c

′
n) ∧ CONF (f ′1, . . . , f

′
m)∧

f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)]. Clearly, if c is in one such tuple, pc = 1.

This is written by conjuncting pc and obtaining ∃c′1, . . . , c′n, f ′1, . . . , f ′m{[CONI(c′1, . . . , c
′
n)∧



CONF (f ′1, . . . , f
′
m) ∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m) ∧ pc}. The converse is

similar.
3. This is similar to 1.

Lemma 8. (Superflous) A component ci is superflous iff
∀c′1, . . . , c′n, f ′1, . . . , f ′m{[c′i∧CONI(c′1, . . . , c

′
n)∧CONF (f ′1, . . . , f

′
m)∧f covers(c′1, . . . , c′i, . . . , c′n, f ′1, . . . , f ′m)]⇒

∃d′1, . . . , d′n[¬d′i ∧ CONI(d′1, . . . , d
′
n) ∧ f covers(d′1, . . . , d′n, f ′1, . . . , f ′m)]}.

Proof. Assume ci is superflous. Then by definition, for all C ∈ C containing
ci and which covers F , there exists C ′ ∈ C which does not contain ci and
which covers F . First consider all C ∈ C containing ci which covers F . This
is given by considering all tuples (c′1, . . . , c

′
n) and (f ′1, . . . , f

′
m) which satisfy

CONI(c′1, . . . , . . . , c
′
n)∧CONF (f ′1, . . . , f

′
m), c′i = 1, for which f covers(c′1, . . . , c

′
i, . . . , c

′
n, f

′
1, . . . , f

′
m)

holds. The pairs 〈C,F 〉 are enumerated by considering all tuples satisfying
CONI(c′1, . . . , c

′
i, . . . , c

′
n)∧CONF (f ′1, . . . , f

′
m), and for those in Prod(Ψ), we need

to check that C covers F . Now, if such a C contains ci, then c′i = 1 in the tuple
(c′1, . . . , c

′
n). To check if there exists a pair in Prod(Ψ) which does not contain

the ith component ci, among all tuples (c′1, . . . , c
′
n), we check if there exists a

tuple (d′1, . . . , d
′
n) such that CONI(d′1, . . . , d

′
n)∧f covers(d′1, . . . , d′n, f ′1, . . . , f ′m)

holds and where d′i = 0. This is expressed by ¬d′i. Thus, if ci is superflous,
we have ∀c′1, . . . , c′n, f ′1, . . . , f ′m{[c′i ∧ CONI(c′1, . . . , c

′
n) ∧ CONF (f ′1, . . . , f

′
m) ∧

f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m)]⇒ ∃d′1, . . . , d′n[¬d′i∧CONI(d′1, . . . , d

′
n)∧f covers(d′1, . . . , d′n, f ′1, . . . , f ′m)]}

holds.
The converse is similar.

Lemma 9. (Redundant) A component ci is redundant iff
∀c′1, . . . , c′nf ′1 . . . , f ′m{[c′i∧CONI(c′1, . . . , c

′
n)∧CONF (f ′1, . . . , f

′
m)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒

f covers(c′1, . . . ,¬c′i, . . . , c′n, f ′1, . . . , f ′m)}

Proof. Suppose ci is redundant. Then for every C ∈ C containing ci, there exists
a C ′ ∈ C, C ′ ⊆ C, ci /∈ C ′, and Provided by(C) = Provided by(C ′). First, we
have to enumerate all tuples (c′1, . . . , c

′
n) for which we have CONI(c′1, . . . , c

′
n) and

c′i (i.e, enumerate all members of C containing ci). Now, we have to look at the
sets of features F that these implementations cover - by definition of covers, this
means that the set Provided by(C) is in F , and F ⊆ Provided by(C). This basi-
cally means to look at all tuples (f ′1, . . . , f

′
m) such that CONF (f ′1, . . . , f

′
m) (which

correspond to some element of F) and f covers(c′1, . . . , c
′
n, f

′
1, . . . , f

′
m) (which

are covered by C). This is expressed by specifying ∀c′1, . . . , c′n, f ′1, . . . , f ′m{[c′i ∧
CONI(c′1, . . . , c

′
n) ∧ CONF (f ′1, . . . , f

′
m) ∧ f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]}. For

each such C covering F , we want to say that there exists a C ′ ⊆ C which covers F
and which does not contain c′i. This is expressed by saying that there exists a tu-
ple (d′1, . . . , d

′
n) for which (i) CONI(d′1, . . . , d

′
n) holds, (ii) f covers(d′1, . . . , d

′
n, f

′
1, . . . , f

′
m)

holds, (iii) ¬c′i holds, and (iv)(
∧n

i=1 c
′
i ⇒

∧n
i=1 d

′
i). This last condition checks

that C ′ ⊆ C. Thus, the required formula to hold is ∀c′1, . . . , c′nf ′1 . . . , f ′m{[c′i ∧
CONI(c′1, . . . , c

′
n)∧CONF (f ′1, . . . , f

′
m)∧f covers(c′1, . . . , c′n, f ′1, . . . , f ′m)]⇒ ∃d′1 . . . d′n[¬d′i∧

(
∧n

i=1 c
′
i ⇒

∧
d′i) ∧ CONI(d′1, . . . , d

′
n) ∧ f covers(d′1, . . . , d′n, f ′1, . . . , f ′m)]}.

The converse is similar.



Lemma 10. (Critical) A component c is critical for fj iff
∀pc1 , . . . , pcn{formula T (fj)⇒ pc}.

Proof. Assume c is critical for fj . Then, every implementation which does not
contain c cannot implement fj . In other words, every implementation in C which
implements fj must contain c. Lets look at T (fj) = {C1, . . . , Ck}. Then, c must
belong to all the Ci’s. Clearly, if this is the case, then whenever

∨k
i=1

∧
d∈Ci

pd

is true, so must be pc : Assume there exists Cl ∈ T (fj) such that c /∈ Cl. Then
clearly, we have an assignment of pc1 , . . . , pcn

where
∧

d∈Cl
pd is true, but pc = 0

(as c /∈ Cl). Thus, c is critical for fj iff ∀pc1 , . . . , pcn
{formula T (fj)⇒ pc}.

Lemma 11. (Extends) Let F and F ′ be subsets of features. Let F̄ = (f1, . . . , fm)
and F̄ ′ = (f ′1, . . . , f

′
m). Then F ′ extends F iff

∧m
i=1(fi ⇒ f ′i) is true. F ′ is

extendable iff ∃f ′1, . . . , f ′m[
∧m

i=1 fi ⇒ f ′i)].

Proof. If F ′ extends F , then F̄ (i) = 1⇒ F̄ ′(i) = 1. Then clearly,
∧m

i=1(fi ⇒ f ′i)
is true. Conversely, if

∧m
i=1(fi ⇒ f ′i), then whenever fi = 1, f ′i = 1. That is,

F̄ (i) = 1⇒ F̄ ′(i) = 1. Clearly, then F ′ extends F . If F is extendable, then there
exists some F ′ such that F ′ extends F . This is same as existentially quantifying
the variables of F ′ such that the implication holds.

2 QPRO Syntax

The QPRO input format is divided into two section, preamble and the formula.

1. Preamble : The Preamble contains different types of information about the
file, namely,
(a) Comments : Each comment line should start with lower case character

’c’. There can be multiple comment lines in the File.
Format:
c COMMENT STRING
Example:
c Testing QBF formulae.
c QPRO file for completeness.

(b) QBF : After the comments, the string ’QBF’ is followed by positive
integer. The integer indicates the number of variables occurring in the
formula. First variable name is associated with integer 2 and so on.
Format:
QBF < number of variables >
Example:
QBF 10

2. formula : The formula may contain either a conjunction, a disjunction or a
quantifier.
(a) quantifier block : The quantifier block always start with lower case char-

acter ’q’ and end with ’/q’. The line after ’q’ start with letter ’a’ or ’e’
indicating universal quantifier or existential quantifier respectively.



Format:
q
a var1 var2 ...
e var11 var22 ...
...
/q
Example:
q
a 2 3
e 4 5
...
/q

(b) conjunction block : The conjunction block always start with lower case
character ’c’ and end with ’/c’. The first line after ’c’ contain all the
positive literals and the second line contain negative literals.
Format:
c
positive literals
negative literals
...
/c

Example:
The propositional formula c2 ∧ c3 ∧ ¬c4 can be written as:
c
2 3
4
/c

(c) disjunction block : The disjunction block always start with lower case
character ’d’ and end with ’/d’. The first line after ’d’ contain all the
positive literals and the second line contain negative literals.
Format:
d
positive literals
negative literals
...
/d

Example:
The propositional formula c2∨c3∨¬c4 can be written as:
d
2 3
4



/d

As an example, the QPRO format for the formula ∀X∃Y ((X∨¬Y )∧(¬X∨Y )
is as follows.

c Illustration
QBF 3
q
a 2
e 3
c

d
2
3
/d
d
3
2
/d
/c
/q


