1 Analysis Operations Encoded as QBF

Lemma 1. (Implements) Given an SPL, a set of components C, and a feature $f, implements(C, f) iff form_implements_f(v_1, \ldots, v_n), where \overline{C} = \langle v_1, \ldots, v_n \rangle,$ evaluates to TRUE.

Proof. (\Rightarrow) : Let $\mathcal{T}(f) = \{C_1, \ldots, C_k\}$ and assume implements(C, f). By definition, there is a $C_j \in \mathcal{T}(f)$ such that $C_j \subseteq C$. Let $C_j = \{p_{c_{\ell_1}}, \ldots, p_{c_{\ell_m}}\}$. Then, $v_{\ell_i} = 1$ for all $i = 1, \ldots, m$. We have to show that

$$\forall p_{c_1} \dots p_{c_n} \{ [\bigwedge_{i=1}^n (v_i \Rightarrow p_{c_i})] \Rightarrow formula_\mathcal{T}(f) \}.$$

Let $\langle w_1, \ldots, w_n \rangle$ be an assignment of boolean values (TRUE or FALSE) to the propositional variables $p_{c_1} \dots p_{c_n}$ such that $\bigwedge_{i=1}^n (v_i \Rightarrow p_{c_i}) = \bigwedge_{i=1}^n (v_i \Rightarrow w_i)$ evaluates to TRUE. Since $v_{\ell_i} = 1$ for all $i = 1, \ldots, m$, this implies $w_{\ell_j} = 1$ for all $j = 1, \ldots, m$ as well. Therefore, for $C_j \in \mathcal{T}(f)$, $(\bigwedge_{c_i \in C_j} w_i) = w_{\ell_1} \wedge \ldots \wedge w_{\ell_m}$ = TRUE.

Since $formula_{\mathcal{T}}(f) = \bigvee_{j=1..k} \bigwedge_{c_i \in C_j} p_{c_i} = \bigvee_{j=1..k} \bigwedge_{c_i \in C_j} w_i$, and one of the disjuncts C_i is TRUE, the entire expression for formula $\mathcal{T}(f)$ evaluates to TRUE.

 (\Leftarrow) : Assume that implements(C, f) does not hold. Then, for every $C_j \in \mathcal{T}(f)$, $C_j \not\subseteq C$. This implies that for all $j \in \{1 \dots k\}$, there is a $c_j \in C_j \setminus C$. Define an assignment to the propositional variables as follows: $v_i = 1$ for p_{c_i} such that $c_i \in C$ and 0 for the rest. Hence, $v_j = 0$ for the proposition p_{c_j} corresponding to component $c_j \notin C$.

This assignment evaluates the antecedent $\bigwedge_{i=1}^{n} (v_i \Rightarrow p_{c_i})$ to TRUE. But the consequent $formula_{\mathcal{T}}(f) = \bigvee_{j=1..k} \bigwedge_{c_i \in C_j} p_{c_i} = \text{FALSE}$ for the above assignment because each disjunct is falsified by the presence of an assignment $v_j = 0$ for the proposition $p_{c_j} \notin C$. Therefore, $form_implements_f(v_1, \ldots, v_n)$ evaluates to FALSE.

Lemma 2. (Realizes, Covers) Given a set of components C and a set of features F, let $\overline{C} = (c'_1, \ldots, c'_n)$ and $\overline{F} = (f'_1, \ldots, f'_m)$. Then the following statements hold:

1. C covers F iff $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ 2. C realizes F iff $f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$

Proof. Suppose $\overline{C} = (c'_1, \ldots, c'_n)$ and $\overline{F} = (f'_1, \ldots, f'_m)$. If C covers F, then $Provided_by(C) = \{f \mid Implements(C, f)\}$ will contain F. Pick $f \in F$. Since $F \subseteq Provided_by(C), \exists C_1 \in \mathcal{T}(f), C_1 \subseteq C.$ We then have $\widehat{C} \Rightarrow \widehat{C}_1$ and $\widehat{C}_1 \Rightarrow formula_{\mathcal{T}}(f)$. Therefore, $f_{-implements_f}(c'_1, \ldots, c'_n)$ holds. Hence, it will be the case that $p_{f'_i} \Rightarrow f_{-implements_{f_i}}(c'_1, \ldots, c_n)$ for every $f'_i \in \overline{F}$. Hence, $f_covers(c'_1,\ldots,c'_n,f'_1,\ldots,f'_m).$

Conversely, suppose $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$. Then $\bigwedge_{i=1}^m (p_{f'_i} \Rightarrow f_implements_{f_i}(c'_1, \ldots, c'_n))$ holds. If $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$

holds, then (1) either $p_{f'_j} = 0$, or (2) $p_{f'_j} = 1$ and $f_implements_{f_j}(c'_1, \ldots, c'_n)$ holds. As seen in Lemma 1, $f_implements_{f_i}(c'_1, \ldots, c'_n)$ holds good when there exists a set $C_{j_i} \in \mathcal{T}(f_i)$ such that $C_{j_i} \subseteq C$. Since this is true for all f_i , we have $\bigcup_{j_i} C_{j_i} \subseteq C$. Therefore, $Provided_by(C) \supseteq Provided_by(\bigcup_{j_i} C_{j_i})$. By the formula $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$, whenever $p_{f'_i} = 1$, there exists $C_{j_i} \subseteq C$ which implements f_i . Therefore, C implements possibly a superset of F, hence covers F.

The proof for realizes is similar. The only difference is that the implication is both ways, which ensures that C implements F exactly.

Lemma 3. (Completeness, Soundness) Let $\Psi = (\overline{\mathcal{F}}, \overline{\mathcal{C}}, \mathcal{T})$ be an SPL, with $\mathcal{F} = \{f_1, \ldots, f_m\}$ and $\mathcal{C} = \{c_1, \ldots, c_n\}$.

- 1. Ψ is complete iff
- $\forall f'_1 \dots f'_m [CON_F(f'_1, \dots, f'_m) \Rightarrow \exists c'_1 \dots c'_n [CON_I(c'_1, \dots, c'_n) \land f_covers(c'_1, \dots, c'_n, f'_1, \dots, f'_m)]]$ 2. Ψ is sound iff

 $\forall c_1 \dots c_n [CON_I(c_1, \dots, c_k) \Rightarrow \exists f_1 \dots f_j [CON_F(f_1, \dots, f_j) \land f_covers(c_1, \dots, c_k, f_1, \dots, f_j)]]$

Proof. Let $\Psi = (\overline{\mathcal{F}}, \overline{\mathcal{C}}, \mathcal{T})$ be an SPL with *n* components and *m* features. Let $\overline{\mathcal{C}} = \{S_1, \ldots, S_k\}$. Given a tuple of component parameters c'_1, \ldots, c'_n where each c'_i is 0 or 1, the predicate $CON_I(c'_1, \ldots, c'_n)$ is defined as

$$\bigvee_{j} \bigwedge_{c_i \in S_j} c'_i$$

Then $CON_I(c'_1, \ldots, c'_n)$ is satisfied iff $\{c'_k \mid c'_k = 1\} = S_l$ for some $S_l \in \overline{C}$. $CON_F(f'_1, \ldots, f'_m)$ is defined similarly.

1. Assume that the SPL is complete. Then for every $F \in \overline{\mathcal{F}}$, there exists some $C \in \overline{\mathcal{C}}$ such that Covers(C, F). Pick any $F \in \overline{\mathcal{F}}$ and its corresponding $C \in \overline{\mathcal{C}}$. Let $\overline{F} = (f'_1, \ldots, f'_m)$ and $\overline{C} = (c'_1, \ldots, c'_n)$. Then $CON_F(f'_1, \ldots, f'_m)$ will be 1 iff there exists a set $F_j \in \overline{\mathcal{F}}$ such that $\overline{F}_j(i) = 1$ iff $f'_i = 1$. Since Covers(C, F)holds for all $F \in \overline{\mathcal{F}}$, we have by Lemma 2, $f_{-covers}(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ is true for every tuple (f'_1, \ldots, f'_m) such that $f'_i = 1$ iff $\exists F_j \in \overline{\mathcal{F}}$ such that $\bar{F}_j(i) = 1$. That is, for every tuple (f'_1, \ldots, f'_m) that satisfies the feature constraints, there exists some tuple (c'_1, \ldots, c'_n) such that $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ holds. Thus, $\forall f'_1 \dots f'_m \cdot \{[CON_F(f'_1, \dots, f'_m) \Rightarrow \exists c'_1 \dots c'_n [CON_I(c'_1, \dots, c'_n) \land f_covers(c'_1, \dots, c'_n, f'_1, \dots, f'_m)]\}$ holds. Conversely, assume $\forall f'_1 \dots f'_m \{ [CON_F(f'_1, \dots, f'_m) \Rightarrow \exists c'_1 \dots c'_n [CON_I(c'_1, \dots, c'_n) \land$ $f_{covers}(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ holds. Then for all possible ways of satisfying $CON_F(f'_1, \ldots, f'_n)$ (i.e, over all $F \in \overline{\mathcal{F}}$), there exists some tuple satisfy-ing $CON_I(c'_1, \ldots, c'_n)$ such that $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$. Each tuple satisfying $CON_F(f'_1, \ldots, f'_n)$ corresponds to a set in $\overline{\mathcal{F}}$. Corresponding to each such set, there is a tuple (c'_1, \ldots, c'_n) satisfying $[CON_I(c'_1, \ldots, c'_n) \land$ $f_{-covers}(c'_1,\ldots,c'_n,f'_1,\ldots,f'_m)$: that is, there is some $C \in \overline{\mathcal{C}}$ with \overline{C} (c'_1, \ldots, c'_n) such that $f_{-covers}(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$. This says that for every $F \in \mathcal{F}$, there exists some $C \in \mathcal{C}$ such that C covers F. Hence, Ψ is complete.

2. The proof of soundness is similar.

Lemma 4. (Existentially Explicit Features) Given a set of features F, let $\overline{F} = (f'_1, \ldots, f'_m)$. Then F is existentially explicit iff $\exists c'_1 \ldots c'_n [CON_I(c'_1, \ldots, c'_n) \land f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)].$

Proof. Suppose F is existentially explicit. Then there exists a $C \in \overline{C}$ such that C realizes F. By Lemma 2, C realizes F iff $f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$. $CON_I(c'_1, \ldots, c'_n)$ is true iff there exists a $C \in \overline{C}$ such that $\overline{C} = (c'_1, \ldots, c'_n)$. Hence, if F is existentially explicit, $\exists c'_1, \ldots, c'_n [CON_I(c'_1, \ldots, c'_n) \land f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)]$ holds.

Conversely, assume $\exists c'_1, \ldots, c'_n [CON_I(c'_1, \ldots, c'_n) \land f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)]$ holds. Then, there exists a $C \in \overline{C}$ with $\overline{C} = (c'_1, \ldots, c'_n)$ and $f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$. Again, by Lemma 2, $f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ iff C realizes F, with $\overline{C} = (c'_1, \ldots, c'_n), \overline{F} = (f'_1, \ldots, f'_m)$. That is, for $F \in \overline{\mathcal{F}}$, there exists a $C \in \overline{\mathcal{C}}$ such that C covers F. Hence, F is existentially explicit.

Lemma 5. (Universally Explicit Features) Given a set of features F, let $\overline{F} = (f'_1, \ldots, f'_m)$. Then F is universally explicit iff φ_F holds, where φ_F is given by $\exists c'_1 \ldots c'_n [CON_I(c'_1, \ldots, c'_n) \land f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \land \forall c'_1 \ldots c'_n \{ [(CON_I(c'_1, \ldots, c'_n) \land f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \Rightarrow f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m) \}.$

Proof. Assume F is universally explicit. Then by definition, (i) there exists a $C \in \overline{C}$ such that C realizes F and (ii) for all $C \in \overline{C}$, C covers $F \Rightarrow C$ realizes F.

The first point (i) can be expressed as $\exists c'_1 \ldots c'_n [CON_I(c'_1, \ldots, c'_n) \land f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)]$ (recall that $CON_I(c'_1, \ldots, c'_n)$ holds iff there exists a $C \in \overline{C}$ with $\overline{C} = (c'_1, \ldots, c'_n)$, and $f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ holds iff C realizes F by Lemma 2).

To formalize the second point (ii), we have to consider all possible component tuples (c'_1, \ldots, c'_n) satisfying $CON_I(c'_1, \ldots, c'_n)$, such that $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ holds. For each such tuple, we have to ensure that $f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ holds. This is true iff $\forall c'_1 \ldots c'_n \{ [(CON_I(c'_1, \ldots, c'_n) \land f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \Rightarrow$ $f_realizes(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m) \}$ holds. Clearly, if F is universally explicit, then φ_F holds.

Conversely, assume φ_F holds. Now, $\exists c'_1 \dots c'_n[CON_I(c'_1, \dots, c'_n) \land f_realizes(c'_1, \dots, c'_n, f'_1, \dots, f'_m)]$ holds whenever there is a tuple (c'_1, \dots, c'_n) satisfying $CON_I(c'_1, \dots, c'_n)$ for which $f_realizes(c'_1, \dots, c'_n, f'_1, \dots, f'_m)$ is true. This corresponds to a set in $C \in \overline{C}$ with $\overline{C} = (c'_1, \dots, c'_n)$ which realizes $F. \forall c'_1 \dots c'_n\{[CON_I(c'_1, \dots, c'_n) \land f_covers(c'_1, \dots, c'_n, f'_1, \dots, f'_m)] \Rightarrow f_realizes(c'_1, \dots, c'_n, f'_1, \dots, f'_m)\}$ considers all possible tuples (c'_1, \dots, c'_n) satisfying $CON_I(c'_1, \dots, c'_n)$ for which, whenever $f_covers(c'_1, \dots, c'_n, f'_1, \dots, f'_m)$ is true, so is $f_realizes(c'_1, \dots, c'_n, f'_1, \dots, f'_m)$. By definition, each tuple satisfying $CON_I(c'_1, \dots, c'_n)$ corresponds to a set $C \in \overline{C}$. The formulae holds iff for each such $C \in \overline{C}$, whenever C covers F, C realizes F. Therefore, F is universally explicit whenever φ_F holds.

Lemma 6. (Unique Implementation) Given a set of features F, let $\overline{F} = (f'_1, \ldots, f'_m)$. Then F has a unique implementation iff φ_U holds. φ_U is given by $\exists c'_1 \ldots c'_n [CON_I(c'_1, \ldots, c'_n) \land f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \land$ $\forall d'_1 \dots d'_n \{ [CON_I(d'_1, \dots, d'_n) \land f_covers(d'_1, \dots, d'_n, f'_1, \dots, f'_m)] \Rightarrow (\land_{i=1}^n (d'_i \Leftrightarrow c'_i) \}$

Proof. Let F have a unique implementation. Then there exists a $C \in \overline{C}$ which covers F and for all $C' \in \overline{C}$ which covers F, C = C'. Two implementations C, C' are same when $\overline{C} = \overline{C'}$. That is, $\overline{C}(i) = \overline{C'}(i)$ for all $1 \leq i \leq n$. As given by the definition of $CON_I(c'_1, \ldots, c'_n)$, $CON_I(c'_1, \ldots, c'_n)$ is satisfiable iff there exists some $C \in \overline{C}$ with $\overline{C} = (c'_1, \ldots, c'_n)$. Such a C covers Fiff $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ as given by Lemma 2. We have to check that there is a unique $C \in \overline{C}$ that can cover F - for this, we enumerate over all possible tuples (d'_1, \ldots, d'_n) that satisfy $CON_I(d'_1, \ldots, d'_n)$, and then ensure that $(d'_1, \ldots, d'_n) = (c'_1, \ldots, c'_n)$. This check is given by $\forall d'_1 \ldots d'_n \{ [CON_I(d'_1, \ldots, d'_n) \land f_covers(d'_1, \ldots, d'_n)] \Rightarrow (\land_{i=1}^n (d'_i \Leftrightarrow c'_i) \}$ Thus, if F has a unique implementation, we have φ_U holds.

The converse is similar.

Lemma 7. (Common, live and dead elements)

- 1. A component c is common iff $\forall c'_1, \ldots, c'_n, f'_1, \ldots, f'_m \{ [CON_I(c'_1, \ldots, c'_n) \land CON_F(f'_1, \ldots, f'_m) \land f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \Rightarrow p_c \}$ holds.
- 2. A component c is live iff $\exists c'_1, \ldots, c'_n, f'_1, \ldots, f'_m \{ [CON_I(c'_1, \ldots, c'_n) \land CON_F(f'_1, \ldots, f'_m) \land f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m) \land p_c \}$
- 3. A component c is dead iff $\forall c'_1, \ldots, c'_n, f'_1, \ldots, f'_m \{ [CON_I(c'_1, \ldots, c'_n) \land CON_F(f'_1, \ldots, f'_m) \land f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \Rightarrow \neg p_c \}$ holds.
- Proof. 1. Assume that c is a common component. Then by definition, for all $\langle F, C \rangle \in Prod(\Psi)$, $c \in C$. To enumerate all possible $\langle F, C \rangle$ for $F \in \overline{\mathcal{F}}$ and $C \in \overline{\mathcal{C}}$, we consider all possible tuples (c'_1, \ldots, c'_n) as well as (f'_1, \ldots, f'_m) for which $CON_I(c'_1, \ldots, c'_n) \wedge CON_F(f'_1, \ldots, f'_m)$ holds. Clearly, every pair of tuples satisfying $CON_I(c'_1, \ldots, c'_n) \wedge CON_F(f'_1, \ldots, f'_m)$ corresponds to a pair $\langle F, C \rangle$. For each such pair $\langle F, C \rangle$ of tuples to be in $Prod(\Psi)$, we check if C covers F. By Lemma 2, this holds iff $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$. Clearly, for all pairs of tuples for which this is true, if an element is common, then it will evaluate to 1. This is given by saying $\forall c'_1, \ldots, c'_n, f'_1, \ldots, f'_m \{[CON_I(c'_1, \ldots, c'_n) \land CON_F(f'_1, \ldots, f'_m)] \Rightarrow p_c\}$. Note that in $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \Rightarrow p_c$. Note that in $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)]$ we are evaluating over all possible values of p_{c_1}, \ldots, p_{c_n} . In particular, for $c = c_i$, we are checking that whenever $c'_i = 1$ in a product, then $p_{c_i} = 1$. The converse is similar.
- 2. Assume c is live. Then there is a pair $\langle F, C \rangle \in Prod(\Psi)$ such that $c \in C$. The existence of a pair $\langle F, C \rangle \in Prod(\Psi)$ is expressed by saying $\exists c'_1, \ldots, c'_n, f'_1, \ldots, f'_m[CON_I(c'_1, \ldots, c'_n) \wedge CON_F(f'_1, \ldots, f'_m) \wedge f_{-covers}(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)]$. Clearly, if c is in one such tuple, $p_c = 1$. This is written by conjuncting p_c and obtaining $\exists c'_1, \ldots, c'_n, f'_1, \ldots, f'_m \{[CON_I(c'_1, \ldots, c'_n) \wedge f'_1, \ldots, f'_n] \}$.

 $CON_F(f'_1,\ldots,f'_m) \wedge f_{-covers}(c'_1,\ldots,c'_n,f'_1,\ldots,f'_m) \wedge p_c\}$. The converse is similar.

3. This is similar to 1.

Lemma 8. (Superflows) A component c_i is superflows iff $\forall c'_1, \ldots, c'_n, f'_1, \ldots, f'_m \{ [c'_i \land CON_I(c'_1, \ldots, c'_n) \land CON_F(f'_1, \ldots, f'_m) \land f_covers(c'_1, \ldots, c'_i, \ldots, c'_n, f'_1, \ldots, f'_m)]$ $\exists d'_1, \ldots, d'_n [\neg d'_i \land CON_I(d'_1, \ldots, d'_n) \land f_covers(d'_1, \ldots, d'_n, f'_1, \ldots, f'_m)] \}.$

Proof. Assume c_i is superflows. Then by definition, for all $C \in \overline{C}$ containing c_i and which covers F, there exists $C' \in \overline{C}$ which does not contain c_i and which covers F. First consider all $C \in \overline{C}$ containing c_i which covers F. This is given by considering all tuples (c'_1, \ldots, c'_n) and (f'_1, \ldots, f'_m) which satisfy $CON_I(c'_1, \ldots, c'_n) \wedge CON_F(f'_1, \ldots, f'_m), c'_i = 1$, for which $f_covers(c'_1, \ldots, c'_i, \ldots, c'_n, f'_1, \ldots, f'_m)$ holds. The pairs $\langle C, F \rangle$ are enumerated by considering all tuples satisfying $CON_I(c'_1, \ldots, c'_n, -c'_n) \wedge CON_F(f'_1, \ldots, f'_m)$, and for those in $Prod(\Psi)$, we need to check that C covers F. Now, if such a C contains c_i , then $c'_i = 1$ in the tuple (c'_1, \ldots, c'_n) . To check if there exists a pair in $Prod(\Psi)$ which does not contain the *i*th component c_i , among all tuples (c'_1, \ldots, c'_n) , we check if there exists a tuple (d'_1, \ldots, d'_n) such that $CON_I(d'_1, \ldots, d'_n) \wedge f_covers(d'_1, \ldots, d'_n, f'_1, \ldots, f'_m)$ holds and where $d'_i = 0$. This is expressed by $\neg d'_i$. Thus, if c_i is superflows, we have $\forall c'_1, \ldots, c'_n, f'_1, \ldots, f'_m \mid \exists \exists d'_1, \ldots, d'_n \mid \neg d'_n \land OON_F(f'_1, \ldots, d'_n) \wedge f_covers(d'_1, \ldots, d'_n, f'_1, \ldots, f'_m) \mid \exists \exists d'_1, \ldots, d'_n \mid \neg d'_n \land OON_I(d'_1, \ldots, d'_n) \wedge f_covers(d'_1, \ldots, d'_n, f'_1, \ldots, f'_m) \mid \rbrace$ holds.

The converse is similar.

Lemma 9. (Redundant) A component c_i is redundant iff $\forall c'_1, \ldots, c'_n f'_1 \ldots, f'_m \{ [c'_i \land CON_I(c'_1, \ldots, c'_n) \land CON_F(f'_1, \ldots, f'_m) \land f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)] \Rightarrow f_covers(c'_1, \ldots, \neg c'_i, \ldots, c'_n, f'_1, \ldots, f'_m) \}$

Proof. Suppose c_i is redundant. Then for every $C \in \overline{C}$ containing c_i , there exists a $C' \in \overline{C}$, $C' \subseteq C$, $c_i \notin C'$, and Provided_by(C) = Provided_by(C'). First, we have to enumerate all tuples (c'_1, \ldots, c'_n) for which we have $CON_I(c'_1, \ldots, c'_n)$ and c'_i (i.e, enumerate all members of \overline{C} containing c_i). Now, we have to look at the sets of features F that these implementations cover - by definition of covers, this means that the set $Provided_by(C)$ is in $\overline{\mathcal{F}}$, and $F \subseteq Provided_by(C)$. This basically means to look at all tuples (f'_1, \ldots, f'_m) such that $CON_F(f'_1, \ldots, f'_m)$ (which correspond to some element of $\overline{\mathcal{F}}$) and $f_covers(c'_1, \ldots, c'_n, f'_1, \ldots, f'_m)$ (which are covered by C). This is expressed by specifying $\forall c'_1, \ldots, c'_n, f'_1, \ldots, f'_m$]. For each such C covering F, we want to say that there exists a $C' \subseteq C$ which covers Fand which does not contain c'_i . This is expressed by saying that there exists a tuple (d'_1, \ldots, d'_n) for which (i) $CON_I(d'_1, \ldots, d'_n)$ holds, (ii) $f_covers(d'_1, \ldots, d'_n, f'_1, \ldots, f'_m)$ holds, (iii) $\neg c'_i$ holds, and $(iv)(\bigwedge_{i=1}^n c'_i \Rightarrow \bigwedge_{i=1}^n d'_i)$. This last condition checks that $C' \subseteq C$. Thus, the required formula to hold is $\forall c'_1, \ldots, c'_n, f'_1, \ldots, f'_m$]] $\Rightarrow \exists d'_1 \ldots d'_n [\neg d'_i \land (\bigwedge_{i=1}^n c'_i \Rightarrow \bigwedge_i^n) \land f_covers(d'_1, \ldots, d'_n, f'_1, \ldots, f'_m)]$ }.

The converse is similar.

Lemma 10. (Critical) A component c is critical for f_j iff $\forall p_{c_1}, \ldots, p_{c_n} \{ formula_T(f_j) \Rightarrow p_c \}.$

Proof. Assume c is critical for f_j . Then, every implementation which does not contain c cannot implement f_j . In other words, every implementation in \overline{C} which implements f_j must contain c. Lets look at $\mathcal{T}(f_j) = \{C_1, \ldots, C_k\}$. Then, c must belong to all the C_i 's. Clearly, if this is the case, then whenever $\bigvee_{i=1}^k \bigwedge_{d \in C_i} p_d$ is true, so must be p_c : Assume there exists $C_l \in \mathcal{T}(f_j)$ such that $c \notin C_l$. Then clearly, we have an assignment of p_{c_1}, \ldots, p_{c_n} where $\bigwedge_{d \in C_l} p_d$ is true, but $p_c = 0$ (as $c \notin C_l$). Thus, c is critical for f_j iff $\forall p_{c_1}, \ldots, p_{c_n} \{formula_\mathcal{T}(f_j) \Rightarrow p_c\}$.

Lemma 11. (Extends) Let F and F' be subsets of features. Let $\overline{F} = (f_1, \ldots, f_m)$ and $\overline{F}' = (f'_1, \ldots, f'_m)$. Then F' extends F iff $\bigwedge_{i=1}^m (f_i \Rightarrow f'_i)$ is true. F' is extendable iff $\exists f'_1, \ldots, f'_m [\bigwedge_{i=1}^m f_i \Rightarrow f'_i)]$.

Proof. If F' extends F, then $\overline{F}(i) = 1 \Rightarrow \overline{F}'(i) = 1$. Then clearly, $\bigwedge_{i=1}^{m} (f_i \Rightarrow f'_i)$ is true. Conversely, if $\bigwedge_{i=1}^{m} (f_i \Rightarrow f'_i)$, then whenever $f_i = 1$, $f'_i = 1$. That is, $\overline{F}(i) = 1 \Rightarrow \overline{F}'(i) = 1$. Clearly, then F' extends F. If F is extendable, then there exists some F' such that F' extends F. This is same as existentially quantifying the variables of F' such that the implication holds.

2 QPRO Syntax

The QPRO input format is divided into two section, preamble and the formula.

- 1. *Preamble* : The Preamble contains different types of information about the file, namely,
 - (a) Comments : Each comment line should start with lower case character 'c'. There can be multiple comment lines in the File.
 - Format:
 - c COMMENT_STRING
 - Example:
 - c Testing QBF formulae.
 - c QPRO file for completeness.
 - (b) QBF : After the comments, the string 'QBF' is followed by positive integer. The integer indicates the number of variables occurring in the formula. First variable name is associated with integer 2 and so on. Format:

QBF < number of variables >Example: QBF 10

- 2. *formula* : The formula may contain either a conjunction, a disjunction or a quantifier.
 - (a) quantifier block : The quantifier block always start with lower case character 'q' and end with '/q'. The line after 'q' start with letter 'a' or 'e' indicating universal quantifier or existential quantifier respectively.

```
Format:

q

a var1 var2 ...

e var11 var22 ...

/q

Example:

q

a 2 3

e 4 5

...

/q
```

(b) conjunction block : The conjunction block always start with lower case character 'c' and end with '/c'. The first line after 'c' contain all the positive literals and the second line contain negative literals. Format:

```
c positive literals negative literals .... /c Example: The propositional formula c2 \wedge c3 \wedge \neg c4 can be written as: c 2 3 4 /c
```

(c) disjunction block : The disjunction block always start with lower case character 'd' and end with '/d'. The first line after 'd' contain all the positive literals and the second line contain negative literals. Format:

```
d
positive literals
negative literals
...
/d
Example:
The propositional formula c2\lor c3\lor \neg c4 can be written as:
d
2 3
4
```

As an example, the QPRO format for the formula $\forall X \exists Y ((X \lor \neg Y) \land (\neg X \lor Y))$ is as follows.

c Illustration QBF 3 q a 2 e 3 c d 2 3 /d d 3 2 /d d 3 2 /d /d /c /q

/d