1 Analysis Operations Encoded as QBF

Lemma 1. (Implements) Given an SPL, a set of components C, and a feature
[, implements(C, f) iff form_implementss(vy,...,v,), where C = (v1,...,vy),
evaluates to TRUF.

Proof. (=) : Let T(f) = {C4,...,Ck} and assume implements(C, f). By defi-
nition, there is a C; € 7(f) such that C; C C. Let Cj = {pe, ;- - - De,,, }- Then,
vg, =1 foralli=1,...,m. We have to show that

n

Vpe, ...pcn{[/\(vi = pe,)] = formula T(f)}.
i=1

Let (wq,...,wy,) be an assignment of boolean values (TRUE or FALSE) to
the propositional variables p,, ... p., such that A", (v; = pe,) = Ajey (vi = w;)
evaluates to TRUE. Since v, = 1 for all i = 1,...,m, this implies w,, = 1 for
all j =1,...,m as well. Therefore, for C; € T(f), (A.,ec, wi) = we, A Awe
= TRUE.

Since formula-T(f) = V;_1 s Ne,ec; Pes = Vj=1.k Ne,ec, wi, and one of

the disjuncts C; is TRUE, the entire expression for formula_7 (f) evaluates to
TRUE.
(<) : Assume that implements(C, f) does not hold. Then, for every C; € T(f),
C; ¢ C. This implies that for all j € {1...k}, there is a ¢; € C; \ C. Define
an assignment to the propositional variables as follows: v; = 1 for p., such that
¢; € C and 0 for the rest. Hence, v; = 0 for the proposition p.; corresponding
to component ¢; ¢ C.

This assignment evaluates the antecedent A, (v; = p.,) to TRUE. But the
consequent formula-T (f) =\ ,_; x Ac,cc, Pe; = FALSE for the above assign-
ment because each disjunct is falsified by the presence of an assignment v; = 0
for the proposition p.; & C. Therefore, form_implementsy(vi,...,v,) evaluates
to FALSE.

m

Lemma 2. (Realizes, Covers) Given a set of components C and a set of features
F,let C = (c,...,c,) and F = (f{,...,fl,). Then the following statements
hold:

1. C covers F iff f_covers(cy,....c, f1,---,)
2. C realizes F iff f_realizes(cy,...,c, f1,..-, 1)

Proof. Suppose C = (c},...,c\) and F = (f{,...,f.,). If C covers F, then
Provided by(C) = {f | Implements(C, f)} will contain F. Pick f € F. Since
F C Providedby(C), 3Cy € T(f),C1 C C. We then have C = (7 and

Ci = formula_T (f). Therefore, f_implementss(cy,...,c,,) holds. Hence, it

will be the case that py, = f-implementsy,(c},...,c,) for every f! € F. Hence,
f-covers(cy,....ch, f1y s fr).
Conversely, suppose f_covers(cy,...,ch, f1,..., fr.). Then

/\:‘)ll(pf{ = famplementsy, (c},...,c,)) holds. If f_covers(cy,... ¢, fi,-. ., i)

holds, then (1) either py; =0, or (2) py; =1 and f-mplementsy, (cy,. .., c;,)

holds. As seen in Lemma 1, f_implementsy,(c},...,c,) holds good when there
exists a set Cj, € T(f;) such that C;, C C. Since this is true for all f;, we
have J;, Cj, € C. Therefore, Provided_by(C) 2 Provided_by(lJ;, Cj,). By the
formula f_covers(ci,..., ¢, fi,...., fi,), whenever py, = 1, there exists Cj, € C
which implements f;. Therefore, C' implements possibly a superset of F', hence
covers F'.

The proof for realizes is similar. The only difference is that the implication

is both ways, which ensures that C' implements F' exactly.

Lemma 3. (Completeness, Soundness) Let W = (F,C,T) be an SPL, with F =
{fi,- s fm} and C ={c1,...,cn}.
1. ¥ is complete iff

Vi1 fLICONR(fi, ..., fl) = 3 ..., [CON[(c),. .. ch)Af-covers(ch,. ..

2. U is sound iff

Vey...ep[CONf(e1, ... ex) = 3f1... f;[CONE(f1,..., f;)Nf-covers(ci,...,ck, f1,...

Proof. Let ¥ = (F,C,T) be an SPL with n components and m features. Let

C ={5S1,...,Sk}. Given a tuple of component parameters ¢}, ..., c, where each
¢, is 0 or 1, the predicate CONy(c}, ..., c),) is defined as

VA<

J ci€S;

Then CONy(ch,...,c,) is satisfied iff {c} | ¢, = 1} = S, for some S, € C.

’r n

CONF(f1,..., f],) is defined similarly.

1. Assume that the SPL is complete. Then for every F € F, there exists some
C € C such that Covers(C, F). Pick any F € F and its corresponding C € C.
Let F' = (f{,...,fh)and C = (c},...,c),). Then CONg(fi,..., f},) will be 1
iff there exists a set F; € F such that F(i) = 1iff f/ = 1. Since Covers(C, F)
holds for all F' € F, we have by Lemma 2, f_covers(cy,...,ch, f1,..., f})
is true for every tuple (ff,..., f/,) such that f/ = 1 iff 3F; € F such that
F;(i) = 1. That is, for every tuple (f1,..., f/,) that satisfies the feature con-

straints, there exists some tuple (¢}, ..., c,) such that f_covers(cy,...,c\, f1,...

holds. Thus,

V1. fLA[CONE(f1, ..., fl,) = 3} ..., [CON((cy, ..., c,)Nf-covers(ch,...

holds.

Conversely, assume Vi ... f/, {{CONg(f1,..., f,) = 3¢, ..., [CON(c], . ..

f-covers(cy,....ch, fi,-.., f1.)]} holds. Then for all possible ways of satisfy-
ing CONg(f1,...,f}) (ie, over all F € F), there exists some tuple satisfy-
ing CONy(c},...,c),) such that f_covers(cy,...,c,, fi,..., fl). Each tuple
satisfying CONg(f{,..., f.) corresponds to a set in F. Corresponding to
each such set, there is a tuple (c,...,c}) satistying [CON(ci,...,ch) A
f-covers(cy,...,ch, fi,-.., fi)] : that is, there is some C' € C with C' =
(c},...,c),) such that f_covers(cy,...,c, f1,..., fr.). This says that for ev-
ery F € F, there exists some C € C such that C covers F. Hence, ¥ is

complete.

AR (I

/

7c"’L

» fm)

AN (U

A

» f)]]
)]

f)l

2. The proof of soundness is similar.

Lemma 4. (Ezistentially Ezplicit Features) Given a set of features F, let F =
(f1,---, f). Then F is existentially explicit iff

rJm

Ac) ..., [CON(cy, ... ch) N forealizes(cy, ..., chy f1, ooy fr)]-

Proof. Suppose F' is existentially explicit. Then there exists a C' € C such that
C realizes F'. By Lemma 2, C realizes F iff f realizes(ci,...,cp, fi,..., fh,)-
CON(c},...,c,) is true iff there exists a C' € C such that C' = (c},...,c),).

rn
Hence, if F' is existentially explicit, 3¢}, ..., c, [CON(cy, . .., ch)Afrealizes(cy, ... ¢, f1,...
holds.
Conversely, assume 3¢, ..., ¢, [CON(c, ..., c,)Afrealizes(cy, ..., ch, fi, -, fin)]
holds. Then, there exists a C € C with C' = (¢}, ..., c,,) and f_realizes(cy,...,c, f1,.-., fl.)-

Again, by Lemma 2, frealizes(cy,...,cp, f1,..., f,) iff C realizes F, with
C=(,....c),F = (ff,..., f},)- That is, for F € F, there exists a C € C
such that C covers F. Hence, F is existentially explicit.

Lemma 5. (Universally Ezplicit Features) Given a set of features F, let F =
(f1s---y fl). Then F is universally explicit iff ¢ holds, where @p is given by
c) ..., [CON(cy, ..., c) A forealizes(c), ..., ¢, f1,-- s fh)IA

Vey ... {[(CON((cy, ...,)Nf-covers(cy,...,c, f1,-- ., f1)] = f-realizes(c),...,c, f1,...

Proof. Assume F' is universally explicit. Then by definition, (i) there exists a
C € C such that C realizes F' and (ii) for all C € C, C covers F' = C realizes F'.

The first point (i) can be expressed as 3¢} ..., [CON(c, ..., ¢)Afrealizes(cy, ... ch, f1,...

(recall that CONy(c}, ..., cl,) holds iff there exists a C' € C with C = (¢}, ...,c)),
and f_realizes(cy,...,c,, f1,..., fr,) holds iff C realizes F' by Lemma 2).

To formalize the second point (ii), we have to consider all possible component
tuples (¢}, ..., c,) satisfying CONy (), ..., c,,), such that f_covers(cy,...,ch, f1,.--, fh)
holds. For each such tuple, we have to ensure that f_realizes(c),...,c,, f1,---,)
holds. This is true iff V] ... ¢, {[(CONy(c}, ..., ch)Nf-covers(cy, ..., chy f1,-- s f)] =
f-realizes(cy,...,ch, fi,..., f1.)} holds. Clearly, if F is universally explicit, then
@ holds.

Conversely, assume @ holds. Now, 3¢} ..., [CON(cy, ..., ch)Nfrealizes(cy,...,c., f1,...
holds whenever there is a tuple (c},...,c,) satistying CON;(c},...,c,) for
which f realizes(c},...,cy, fi,..., fy,) is true. This corresponds to a set in
C € C with C = (c,...,c},) which realizes F. V¢| ..., {[(CON[(c},...,c},) A
focovers(cy,....ch, fi, ... f1)] = f-realizes(cy,...,c, f1,--., f1,)} considers
all possible tuples (c},...,c,) satisfying CON(c,...,c,) for which, whenever
fcovers(cy,... e, fi,-- -, fi,) is true, so is f.realizes(cy,...,cp, fi,--, fo)-
By definition, each tuple satisfying CONy(c}, ..., c,) corresponds to a set C' € C.

The formulae holds iff for each such C' € C, whenever C covers F', C realizes F.
Therefore, F' is universally explicit whenever ¢ g holds.

Lemma 6. (Unique Implementation) Given a set of features F, let F = (f{,..., f.).
Then F has a unique implementation iff oy holds. py is given by
c) ..., [CON(ch, ... ch) N feovers(cy,...,ch, 1,y fEDIA

 f)]

s fin)}-

s fm)]

s Sl

v, ...d {[CONy(d,,...,d.) A fcovers(d),....d\, fl,..., f2)] = (AN (d <
)}

Proof. Let F have a unique implementation. Then there exists a C' € C which
covers F' and for all C' € C which covers F, C = C’. Two implementations
C,C" are same when C = (’. That is, C(i) = C’(i) for all 1 < i < n.
As given by the definition of CON;(cl,...,c,), CON((c,...,c),) is satisfi-
able iff there exists some C € C with C = (¢},...,c,). Such a C covers F
ift f_covers(cy,....ch, f1,...,f,) as given by Lemma 2. We have to check that
there is a unique C' € C that can cover F - for this, we enumerate over all
possible tuples (dj,...,d}) that satisty CONy(d,...,d,), and then ensure that
(dy,...,d,) =(c,...,c,). This check is given by Vd ...d, {{CON;(d},...,d,)A
focovers(dy,....d), f1,..., fl)] = (A, (d} < ¢})} Thus, if F has a unique im-
plementation, we have ¢y holds.
The converse is similar.

Lemma 7. (Common, live and dead elements)

1. A component c is common iff

Ve, ooy fy e SLAICONT(ey,y .oy b)NCONE(f1, ..oy fLNf —covers(ch, . ..

pe} holds.
2. A component c is live iff

ad,....c, f1y o fLA{I[CON[(¢}, ...,)NCONg(f1,..., fi,)Afcovers(c,...

pe}
3. A component c is dead iff

Ve, ooy fy e SLAICONL(eyy .oy b)NCONE(f1, ..oy fLNf —covers(ch, . ..

—pc} holds.

Proof. 1. Assume that c is a common component. Then by definition, for all
(F,C) € Prod(¥), c € C. To enumerate all possible (F,C) for F € F and
C € C, we consider all possible tuples (¢}, ...,c,) as well as (f],..., f’) for
which CONy(cy, ..., e,)NCONg(f1,..., f,,) holds. Clearly, every pair of tu-
ples satisfying CONy(c),...,c) A\CONEg(fi,..., f],) corresponds to a pair
(F,C). For each such pair (F,C) of tuples to be in Prod(¥), we check if C
covers F. By Lemma 2, this holds iff f_covers(c,...,ch, f1,..., fh,). Clearly,

for all pairs of tuples for which this is true, if an element is common, then it

will evaluate to 1. This is given by saying Vci, ..., ch, f1, ..., fL{I{CON(c, . ..

CONp(f1,- s [1) N f-covers(cy,...,ch, f1,---y fm)] = pc}. Note that in
f-covers(cy,...,ch, fi,..., fl.), we are evaluating over all possible values of
Deys- - -5 Pe, - In particular, for ¢ = ¢;, we are checking that whenever ¢} =1
in a product, then p., = 1.
The converse is similar.

2. Assume c is live. Then there is a pair (F,C) € Prod(¥) such that ¢ € C.
The existence of a pair (F,C) € Prod(¥) is expressed by saying
... 1, [LICONL(chy ..o cl) N\CONR(fi, ..., fl A
f-covers(cy,...,ch, fi,..., f1)]. Clearly, if ¢ is in one such tuple, p. = 1.

This is written by conjuncting p. and obtaining 3¢}, ..., d,, f1, ..., fr.{[CON; (¢}, . ..

AN C

,Cln,fﬂ..

AN S

s [l =

S)N

s [l =

CONFEp(fi,.... fL) N fcovers(cy,....ch, f1,...s fr.) A pc}. The converse is
similar.
3. This is similar to 1.

Lemma 8. (Superflous) A component c; is superflous iff

Ve, e fly e L AIEACON (e, ..., G)ANCONE(f1, ...y fL NS covers(c), ...

ady, ..., d,[~d; NCONf(d,...,d)) A fcovers(dy,....d,, fi,..., fi)]}-

Proof. Assume ¢; is superflous. Then by definition, for all C € C containing
¢; and which covers F, there exists ¢’ € C which does not contain ¢; and
which covers F. First consider all C € C containing ¢; which covers F. This
is given by considering all tuples (cf,..., ;l) and (f1,...,fr,) which satisfy
CON;(cy, ..oy s)ANCONE(f1, ..., f]), c; = 1, for which f_covers(c,...,c}

5 Ciye e

holds. The pairs (C,F) are enumerated by considering all tuples satisfying
CONy(c}y... ¢y)NACONE(f1, ..., f],), and for those in Prod(¥), we need
to check that C' covers F'. Now, if such a C' contains ¢;, then ¢; =1 in the tuple

(c},...,cl). To check if there exists a pair in Prod(¥) which does not contain
the ith component ¢;, among all tuples (c},...,c,), we check if there exists a

tuple (di,...,d}) such that CON(d},...,d,) A f_covers(dy,...,d,, f1,..., f})
holds and where d} = 0. This is expressed by —d;. Thus, if ¢; is superflous,
we have Vei,...,ch, fi,. ., fi{lci A CONi(cy,....ch) ANCONEp(f1,....fl) A

focovers(cy,....ch, fi, .., fi)] = 3dy, ..., d, [~d;ACONy(dy, ..., d,)\f-covers(dy,...

holds.
The converse is similar.

Lemma 9. (Redundant) A component c; is redundant iff

Ve, ... ¢ f{ .,f’ {[EACONy(cy,y ...,)NCONER(f1,..., flL)Nf-covers(c,,...

fcovers(cy,....,~c, ... ¢, f1, o f1)}

Proof. Suppose ¢; is redundant. Then for every C € C containing c;, there exists
aC' €C,C"CC,c ¢, and Provided by(C) = Provided_by(C'). First, we
have to enumerate all tuples (cf, ..., ¢,,) for which we have CON;(cf, ..., c,) and
c; (i.e, enumerate all members of C containing c;). Now, we have to look at the
sets of features F' that these implementations cover - by definition of covers, this
means that the set Provided_by(C) is in F, and F C Provided_by(C). This basi-
cally means to look at all tuples (fy,. .., f}) such that CONg(f1,..., f},) (which
correspond to some element of F) and f_covers(cy,...,ch, fi,..., f,) (which
are covered by (). This is expressed by specifying V¢, ..., ¢, f1, ..., fL.{lc; A
CONy(c}y...,ch)) N\CONp(fi,....fl) AN fcovers(c),...,chy f1,---, f1)]}. For
each such C covering F', we want to say that there exists a C’ C C which covers F
and which does not contain ¢}. This is expressed by saying that there exists a tu-

ple (df, ... d’)forwhich (i) CONy(dy, . .., d),) holds, (ii) f-covers(dl,...,d., f1,...

»'n

holds, (iii) —¢; holds, and (iv)(A]_, ¢, = Ai_; d;). This last condition checks
that C" C C. Thus, the required formula to hold is Vei,...,c, f1..., fl.{[c; A

CONy(c}, ..., n)/\C’ONF(fl,...7f7’n)/\f,couers(c’1,..., s iy fh)] = 3ds ...

(A, ¢ = Nd) N\CON((dy,...,d,) A fcovers(dy,....d,, f1...., f1)]}-

The converse is similar.

/

AN A

)
rJm

70;'7,7.]6{""

9 n7f17"

d’ [~d! A

/ /
JChy oy ST,

’f’fln)

[l =

s fm)]

S)l

Lemma 10. (Critical) A component c is critical for f; iff
VPeys -y Pey, {formula T (f;) = pe}-

Proof. Assume c is critical for f;. Then, every implementation which does not
contain ¢ cannot implement f;. In other words, every implementation in C which
implements f; must contain c. Lets look at 7(f;) = {C1,...,Ck}. Then, ¢ must
belong to all the C;’s. Clearly, if this is the case, then whenever \/f=1 Nacc, Pd
is true, so must be p, : Assume there exists C; € 7(f;) such that ¢ ¢ C;. Then
clearly, we have an assignment of p,, ..., pc, where A, ¢, Pd is true, but p. =0
(as ¢ ¢ (7). Thus, c is critical for f; iff Vpc,, ..., pc, {formula_T(f;) = pc}.

Lemma 11. (Extends) Let F' and F' be subsets of features. Let F = (f1,..., fm)
and F' = (f{,....f}). Then F' extends F iff \i=,(fi = []) is true. F' is
extendable iff 3f1, ..., fL.IN\iey fi = f1)]-

Proof. If F' extends F, then F(i) = 1 = F’(i) = 1. Then clearly, \;", (fi = f/)
is true. Conversely, if A",(f; = f/), then whenever f; = 1, f/ = 1. That is,
F(i) =1 = F'(i) = 1. Clearly, then F’ extends F'. If F' is extendable, then there
exists some F’ such that I’ extends F. This is same as existentially quantifying
the variables of I such that the implication holds.

2 QPRO Syntax

The QPRO input format is divided into two section, preamble and the formula.

1. Preamble : The Preamble contains different types of information about the
file, namely,

(a) Comments : Each comment line should start with lower case character
'c’. There can be multiple comment lines in the File.

Format:

c COMMENT_STRING

Example:

c Testing (BF formulae.

c QPRO file for completeness.

(b) @BF : After the comments, the string 'QBF’ is followed by positive
integer. The integer indicates the number of variables occurring in the
formula. First variable name is associated with integer 2 and so on.
Format:

QBF < number of wvariables >
Example:
QBF 10
2. formula : The formula may contain either a conjunction, a disjunction or a
quantifier.

(a) quantifier block : The quantifier block always start with lower case char-
acter 'q’ and end with ’/q’. The line after ’q’ start with letter 'a’ or ’e’
indicating universal quantifier or existential quantifier respectively.

Format:

q
a varl var2 ...

e varll var22 ...
/q
Example:

o QO

23
45

/q

conjunction block : The conjunction block always start with lower case
character 'c’ and end with ’/c¢’. The first line after 'c’ contain all the
positive literals and the second line contain negative literals.

Format:

c

positive literals

negative literals

/c

Example:

The propositional formula c2 A ¢3 A =c4 can be written as:
c

23

4
/c

disjunction block : The disjunction block always start with lower case
character 'd’ and end with ’/d’. The first line after ’d’ contain all the
positive literals and the second line contain negative literals.

Format:

d

positive literals

negative literals

/d
Example:

The propositional formula ¢2Ve3V—cd can be written as:

3

SN Q

/d

As an example, the QPRO format for the formula VXIY ((XV-Y)A (=X VY)
is as follows.

¢ Illustration
QBF 3

q

2
3

o o e

