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Abstract

Lightweight computing devices are becoming ubiquitous
and an increasing number of applications are being devel-
oped for these devices. Many applications deal with a signifi-
cant amount of data and involve complex joins and aggregate
operations which necessitate a local database management
system on the device. However, scaling down the DBMS is
a challenge as these devices are constrained by limited sta-
ble storage and main memory. Optimum utilization of these
limited resources is a must for such a database system. New
storage models that reduce storage costs are needed and the
best storage scheme should be selected based on data char-
acteristics and nature of queries. Memory should be opti-
mally allocated among the database operators and the best
query plan should be chosen depending on the amount of
available memory and the underlying storage scheme.

We propose a novel storage model, ID based Storage
which reduces storage costs considerably. We present an
exact algorithm for allocating memory among the database
operators. Due to its high complexity, we also propose a
heuristic solution based on the benefit of an operator per unit
memory allocation. Our storage management and query pro-
cessing strategy ensures the best storage scheme and query
execution plan for a given handheld device. Our approach is
essentially one that composes a DBMS, its storage schemes
and query processing techniques, in a device and DBMS ap-
plication conscious fashion rather than in a single-size-fits-
all manner.

1. Introduction

In this era of pervasive computing, computation platforms
have extended to small intelligent devices like cellphones,
sensors, smartcards, PDAs etc. As new functionalities and
features are being added to these devices, increasing num-
ber of applications are being developed. Many such appli-
cations deal with a significant amount of data leading to the
need of embedded database support on these devices [3].
The queries go beyond simple SPJ queries but still have to

be locally computed on the device [6]. Most of the modern
day cellphones are being equipped with increasing memory
which means more data centric applications are being devel-
oped for them. Sensor networks are also coming up rapidly
and these collect data from the environment and subject them
to various queries. Most of these queries need to be executed
on the device itself to reduce communication costs [15]. Ap-
plications for PDAs execute complicated join and aggregate
queries on the device resident data. Thus, there is an increas-
ing need to facilitate execution of complex queries locally on
a variety of lightweight computing devices[14, 20].

However, scaling down the database techniques poses
challenges since these lightweight devices come with very
limited computing resources. The amount of main mem-
ory and stable storage available in such devices is relatively
small. Also, the devices are not uniformly endowed with
resources, the computing capability and main memory of a
cellphone differs from that of a PDA. It is essential that the
available resources be utilized optimally for a database sys-
tem that is developed for such devices.

The already limited stable storage has to accommodate the
operating system as well as the database system code, which
means even less storage is available to store the data. Storage
Models designed for such database systems should reduce
storage cost to a minimum to be able to store more data.
Limited stable storage precludes the presence of any addi-
tional index structures, hence the storage models should try
to incorporate some index information in the data model it-
self. Ideally, index structures which can speed up query pro-
cessing at no additional storage cost should be maintained.
Different storage models have different storage and update
costs. The selection of the best storage model for an attribute
depends on the size of the relation, selectivity and length of
the attribute, frequency of updates, and the nature of queries.

As far as the choice of query processing techniques are
concerned, RAM is the most critical resource in these de-
vices. Existing approaches [2, 10, 6, 7, 13, 21] have used
minimum memory algorithms for every operator. This can
lead to poor performance for complex queries involving sev-
eral joins and aggregates. Query execution time for com-
plex queries can be reduced by using operator algorithms



which build in-memory indices and save the aggregate val-
ues. Query plans should be generated in such a way that they
make effective use of the available memory. Optimal mem-
ory allocation among the database operators is a must if we
need to ensure the best usage of memory. Another factor
that influences query execution is the storage model used to
store the relations. Each storage scheme entails a different
cost for selecting and projecting a tuple, hence the cost of a
query execution plan will vary across storage schemes. Thus,
the selection of a query execution plan for a handheld device
should be governed by (i) the amount of memory available,
and (ii) the underlying storage model. Memory and storage
model cognizant query plan generation is hence essential.
Also, the query optimizer itself should not be too complex
to be executed on the handheld device.
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Figure 1. Selection of storage scheme and
query execution plan

Figure 1 characterizes the requirements of the database
system. The system should select the storage model based
on data characteristics and the expected type of queries. For
any query q, depending on the storage model and amount of
available memory, the optimal query processing technique
should be determined.

Lightweight versions of some of the popular DBMSs like
Oracle Lite [2], Sybase Adaptive Server Anywhere [10],
IBM DB2 EveryPlace [13], and Microsoft SQL Server for
Windows CE [21] have been developed with a reduced code
footprint by stripping down database features. IBM DB2
EveryPlace[13] organizes data in a flat way; records are
stored sequentially and column values are stored contigu-
ously in the record. The query optimizer does not gener-
ate and examine different evaluation plans for a query. Only
nested loop algorithm is used to evaluate joins.

Instead of having a statically defined storage scheme and
query processing technique independent of the database ap-
plication and the device resources, we need to have a dy-
namic approach where we choose the storage model and
query processing schemes depending on the application char-
acteristics and the resources present in the device. There has
been some work to this effect. For example, [6] proposes a

new storage model called Ring Storage for smartcards that
combines data and index storage in a single structure. Their
use of ring indices produces a side effect on query execution
since selections become costly. The query processing tech-
niques proposed are quite specific to the smartcard platform
where the amount of memory available is extremely small.
The optimizations suggested for aggregate queries rely on
the underlying storage and index model.

[7] proposes a query execution model that has a lower
bound in terms of RAM usage. The operator algorithms are
mainly nested loop approaches which use minimum mem-
ory. To limit the number of iterations, some optimizations
called iteration filters are suggested. When more memory is
available, the algorithms benefit due to the presence of addi-
tional buffers. They measure the cost of an operator in terms
of the number of tuples accessed and distribute the mem-
ory among the operators using a heuristic cost model (The
memory allocation algorithm is not mentioned in [7]). They
provide guidelines to estimate the RAM resource of a hard-
ware platform according to the requirements. Their perfor-
mance study mentions that their algorithms scale well only
for SPJ queries having very few joins. In the presence of
several joins and aggregate operators their algorithms do not
perform well. For such complex queries, adding indices and
saving aggregate values are the effective alternatives to speed
up query processing.

The non-uniformity of resources across handheld devices
can result in a need for a special purpose database system
for each type of device, e.g. smartcards, cellphones, PDAs.
An approach that can cater to the needs of different types of
lightweight computing devices is needed. Our contributions
lie in the development of such an approach. Our contribu-
tions are two-fold:

1. In order to reduce the storage cost new storage tech-
niques may be needed and the best storage scheme
should be selected based on data characteristics and na-
ture of queries.

2. The query processing engine should optimally allocate
the available memory among the operators. It should
choose the minimum cost query plan for a given hand-
held device depending on the amount of available mem-
ory and the underlying storage scheme.

In this paper, we address these issues through the following
contributions:

• We utilize a novel storage model, ID based Storage
which is an improvement over the existing Domain
Storage Model[5]. For most of the relations that would
reside on a small device, ID Storage wins over Domain
Storage and thus reduces storage costs considerably. It
also provides a unidirectional Join Index between a for-
eign key-primary key pair thus speeding up joins. We
examine the suitability of this scheme vis-a-vis existing



storage schemes and depending on the data and query
characteristics, select the best storage scheme for an at-
tribute.

• Given the need for optimal allocation of memory among
the database operators based on the cost function of the
operator algorithms, we show that the exact memory
allocation algorithm proposed in [12] can be modified
to be used in our context. However since the time and
space complexity of the exact algorithm can prevent it
from being used in some devices, we also propose a
heuristic solution with a reduced complexity based on
the benefit of an operator per unit memory allocation.

We illustrate the efficiency of our storage management
and query processing techniques through a performance eval-
uation. We have implemented our approaches on the Sim-
puter [4], a handheld device, and performed our experiments
on the device. Our experience with this implementation indi-
cates that (a) ID based Storage can lead to lower storage cost
for the dataset used in [6] and (b) Our query processing tech-
niques based on the memory allocation algorithms always se-
lect the query plan with minimum cost and so, memory and
storage model cognizant query optimization is both feasible
and essential.

The rest of the paper is organized as follows. Section
2 covers the storage management issues and introduces ID
based Storage. Section 3 highlights the need for query opti-
mization for complex queries and presents the exact memory
allocation and our heuristic memory allocation algorithm. In
Section 4, we do a performance analysis of our storage man-
ager and query engine. Finally, we conclude in Section 5.

2. Storage Management

Lightweight devices are constrained by very limited stable
storage. Hence, storage models should lead to compactness
in the representation of data and indices. In this section, we
quickly review some compact storage models and then intro-
duce a novel approach that can often lead to further compact-
ness.

The simplest way to store data is Flat Storage(FS) where
tuples are stored sequentially. However, it consumes a lot of
space since it stores duplicate values. Also, tuples have to be
accessed sequentially, increasing query processing times. [5]
introduced the concept of pointer based models proposing a
new storage model called Domain Storage(DS) where dupli-
cate values are eliminated by partitioning the attribute values
into domains which are sets of unique values. Tuples refer-
ence the values of the attributes by means of pointers to the
domain values. [6] propose a storage model called Ring Stor-
age(RS), a modification of Domain Storage that addresses in-
dex compactness. It stores value-to-tuple pointers in the do-
main structure and tuple-to-tuple pointers that connect two

tuples that have the same value for the domain attribute thus
forming an index structure in the form of a ring.

To compare the storage cost associated with each of the
storage models. We define the following parameters:
N : Cardinality of the Relation
D: Cardinality of the Domain
L: Length of the attribute (expressed in bytes)
p: Size of a pointer (expressed in bytes)
S: Selectivity factor of the domain attribute. s = D

N

Cost(Flat Storage)=N ∗ L
Cost(Domain Storage)=N ∗ p + D ∗ L
Cost(Ring Storage)=N ∗ p + D ∗ (L+ p)

2.1. ID Based Storage
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Figure 2. ID Based Storage Model

In Domain Storage, a pointer of size p, typically 4 bytes,
is used to point to the domain value. This leads to (p ∗ N)
bytes being used for the attribute for which we set up a do-
main structure. Instead of having a pointer to point to the
domain value, we keep a distinct identifier for each of the
distinct domain values and store the identifier corresponding
to the value in the base relation. The identifier of a domain
value can be the ordinal value in the domain table. We can
then directly use the identifier value as an offset into the do-
main structure to retrieve the domain value. Hence, we need
not store the ID of the values in the domain structure along-
with the domain values and there is no need for a lookup in
the domain structure. Inspired by recent work on cache con-
scious indexing [16] and on Data Index [8] we could use an
integer to represent the IDs. However, this approach does not
lead in saving of space since size of a pointer and a integer
for most of the architectures do not differ much, both being
typically 4 bytes.

Our storage model uses extendable IDs, where the length
of the identifier grows and shrinks depending on the number
of domain values. The basic idea behind our model is that
D distinct domain values can be distinguished by identifiers



of length d log2D
8 e bytes. Initially we take 1 byte to represent

each identifier. With a single byte we can represent 28 do-
main values. When the number of domain values increases
beyond 28, one byte will not suffice and we have to increase
length of the identifiers by another byte. When the number of
domain values exceeds 28l where l is the length of the identi-
fier, then l needs to be increased. In this way, we increase the
length of the identifiers only when it is absolutely required.
If the deletions result in the number of domain values becom-
ing less than 28l, then l should be decreased. Thus, the length
of the identifier is always d log2 D

8 e bytes and hence, the data
storage cost is reduced by a considerable extent. Figure 2 il-
lustrates our storage model. Note that the solid line portrayed
pointers shown in the figure are not actually stored, they are
only to indicate references in the figure.

The identifiers to the domain values are assigned in
increasing order starting from 0 (We start from 0 in order to
use the ID value as an offset into the domain structure) and
adding one to the last value every time a new ID has to be
assigned. The last identifier value that has been assigned is
stored. If the value is one less (since we start assigning ID
values from 0) than 28l, then the length of identifier has to
be increased by one byte, otherwise length is not changed.
When deletion occurs, we check whether the last ID value
assigned was 28l. If yes, then we decrease the identifier
length by one. Tuple creation, insertion and deletion for this
model will be slightly more complex than Domain storage.
However, this small overhead is more than offset by the
space efficiency of the scheme.

Efficient Deletion of Domain values
A problem that exists for domain based models is how to
determine whether a domain value has to be deleted. One
simple solution is to keep a reference counter with the
domain value. But such a strategy defeats the very purpose
of saving more space. Instead, we do a periodic check
whether all the domain values are referenced by reading the
relations. But how often should the check be performed. We
keep a single byte count counting the number of deletions
done since the last time the check was done. Staring with
zero, for every deletion, the counter is increased by one. If
the value exceeds a threshold 1

S , S being the selectivity of
the domain attribute, it means that there is a chance of a
domain value being deleted. The check is done and the value
of counter is reset to 0. For small values of 1

S , we keep the
threshold as a small multiple of 1

S .

Do we really need to delete a domain value that is not
being currently referenced?. The fact that a domain structure
has been created for that attribute means a future insertion
might reference that domain value. It does makes sense not
to delete an unreferenced domain value. However, we need
to keep a count of such ”holes”. If the number of holes
exceed a deletion threshold, we perform deletion.

Avoiding the Ping Pong Effect
We observe that at the boundaries when the length of the
identifiers increases, there is reorganization of the ID values.
When the length decreases, again there is reorganization. If
there are frequent insertions and deletions at these bound-
aries, there might be a Ping Pong effect, resulting in a lot
of reorganization of the data. Such a situation should be
avoided. When the length of the IDs increases, we increase
the deletion threshold thus suspending deletion of domain
values at the boundaries.

Projection Index
Since the length of the identifiers grows and shrinks dy-
namically, a lot of reorganization would take place in the
relation data. It would make more sense to project out
the domain attribute identifier value from the rest of the
relation and store separately, with each identifier being in
the same position as its corresponding base relation. This
property also called Positional Indexing [8] enables us to
access tuples based on their ordinal position. Thus, the
IDs behave as a Projection Index for that domain attribute.
Data reorganization due to extendable IDs is avoided on the
whole relation data and is restricted to the projected column
only whose size is much lesser than base relation data.

2.1.1 Comparison of Storage Costs

We compare ID Storage model with Domain Storage and
examine the conditions under which ID Storage saves more
space than Domain Storage. ID Storage is only a data
storage model without any selection indices. Hence, we
cannot compare it with Ring Storage.

Cost(Domain Storage) = N ∗ p + D ∗ L
Cost(ID Storage) = N ∗ d log2 D

8 e + D ∗ L

The cost for the two models becomes equal when
p = d log2D

8 e. We observe that when the number of
domain values is not greater than 28(p−1) (224 for p = 4),
ID Storage is always a winner over Domain Storage. This
is likely to be the case for applications running on small
devices since the cardinality of the relations will not be very
high. Hence, we can easily expect the condition to be true
for majority of the relations. When ID Storage outperforms
Domain Storage, it can be easily seen that it outscores Flat
Storage as well.

2.2. ID Based Primary Key-Foreign Key Join Index

A primary key is a domain in itself since there are no
duplicates. Although a primary key will not be stored in a
domain structure and will be stored in Flat Storage, we can
treat the primary key as a domain for the foreign key and
implement the ID based scheme to represent the foreign key
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values. The foreign key values now reference the primary
key values by their corresponding IDs. The projected foreign
key column now becomes a Join Index for the child table
and the parent table since for every foreign key value we
have the information of the matching parent table tuple.
This leads to efficient join of the parent and the child table.
Figure 3 illustrates the join index for relations R and S where
R.A is the primary key and S.B is the foreign key. Note that
the situation resembles the Join Index of [8].

ID Based Join Index vs. Ring Storage Join Index
Ring Storage also provides a bidirectional Join Index
between a primary key-foreign key pair to speed up join
between parent table and child table. Hence, we need to
compare ID Based Join Index with the Ring Storage Join
Index. Suppose, N and D are the cardinalities of the child
table and the parent table respectively.

Cost(ID Based Join Index) = N ∗ d log2 D
8 e + D ∗ L

Cost(Ring Storage Join Index)=N ∗ p + D ∗ (L+ p)

Ring Storage has a greater storage cost than Domain
Storage. In Section 2.1.1, we already showed that for
applications running on lightweight devices, ID based
scheme wins over Domain Storage. Hence, ID based Join
Index outperforms Ring Storage in terms of storage cost.

To summarize, ID based Storage has the following ad-
vantages

• Instead of storing a static pointer, the model uses ex-
tendable IDs. A lot of space is saved especially when
the number of domain values is less, which will be usu-
ally the case for small devices.

• Using the same scheme, we can represent primary key-
foreign key relationships and get a join index almost for

Storage Model Selection Criteria
Flat Storage S > L−p

L
, Frequent Updates

Domain Storage S < L−p
L

, p < d log2 D

8
e, Few Updates

ID Storage S < L−p
L

, p > d log2 D

8
e, Few Updates

Ring Storage S < L−p
L

, Few Updates
Frequent selections on the attribute

ID Join Index S < L−p
L

, p > d log2 D

8
e, Few Updates

Primary key-Foreign key relationship

Figure 4. Choosing the best storage scheme

free. This leads to efficient join of the parent and child
tables.

2.3. Choosing the best storage model

Figure 4 summarizes the conditions in which a storage
model would perform well. These serve as guidelines to de-
cide which storage model to be used for an attribute.

3. Query Processing

Lightweight computing devices are characterized by a
small amount of main memory and most of them use flash
memory as secondary storage. Writes to flash memory are
very costly. Hence, the query processing schemes should
minimize materialization in secondary storage. Flash mem-
ory read costs are equivalent to main memory reads, so there
is no need for read buffer. If read/write ratio is very high we
can use flash memory as write buffer, otherwise main mem-
ory should be used as write buffer. The main memory limits
the query execution capabilities in a small device, hence the
techniques should make optimum usage of the memory.

3.1. Features desirable in Query Optimization for
lightweight computing devices

Need for Left Deep Query Plan
The query processing unit should minimize writes to sec-

ondary storage. Hence, materialization of intermediate re-
sults should be minimized. Materialization if absolutely nec-
essary, should be done in main memory. All these constraints
favour the use of left-deep tree [18] as the query plan tree
since all other query plans resort to some materialization. In
left-deep tree, the right operand of every operator is one of
the base relations appearing in the query. Left-deep tree is
most suited for pipelined evaluation, since the right operand
is always a stored relation, and thus only one input to each
operator is pipelined.

Need for Optimal Memory Allocation
When we have a fully pipelinable schedule, we can-

not assume that the entire memory is available for all the



operators[12]. This problem is crucial since handhelds are
constrained by limited memory. Memory has to be shared
optimally among all the operators. Of course, it all depends
on how each database operator is evaluated, how much mem-
ory each requires. If the nested loop approach is taken, we
can ensure a fully pipelinable schedule with minimum mem-
ory usage. Nested loop joins involves as many scans over the
inner relation as there are tuples in the outer relation, nested
loop aggregation involves as many scans over the input as
there are distinct aggregate values. Though nested loop ap-
proach ensures the minimum usage of memory, it does not
give the best query execution plan. Query plans depend on
the amount of main memory available for storing indices and
aggregate values. Memory usage need not be restricted to a
bare minimum at the cost of performance. Since the amount
of memory available in handhelds is increasing with every
new device, different handhelds come with different memory
sizes. A database system for handheld devices should be able
to cater to the needs of various forms of handheld devices
and exploit their resources as efficiently as possible, there-
fore we cannot restrict our strategies to a static set. Nested
loop join need not be the only join technique used, memory
might be available to perform a hash join which gives better
performance. We need to have a strategy that ensures the best
query execution plan for every device depending on available
main memory. Thus, optimal memory allocation among the
operators becomes necessary in a handheld device.

There are two approaches to solve the memory alloca-
tion problem: a 1-phase and a 2-phase approach [12]. In the
1-phase approach, the query optimizer is made to be mem-
ory cognizant. The optimizer takes into account division of
memory amongst operators while choosing between plans
and hence, is too complex to be implemented on a handheld.
In the 2-phase approach, the query is first optimized and an
optimal query plan is found. Then, the division of memory
amongst the operators is done. The 2-phase approach has
lesser complexity and suits a handheld DBMS.

Need to consider Storage Model during Query Optimiza-
tion

The underlying storage model used to store the relations
also influences query processing. The cost of selecting and
projecting a tuple is different for each storage scheme. Sup-
pose R is the flash memory read cost and k is the number of
domain attributes. Then the cost of projection and selection
in different storage schemes are as shown in Figure 5. The
cost of a query execution plan depends on the selection and
projection costs and hence will vary across storage schemes.

Need to consider characteristics of complex queries
Existing approaches to query processing in small devices

[6, 7, 13, 21] use minimum memory nested loop algorithms
for every operator thus minimizing the usage of memory.
Such an approach gives very poor performance for queries

Model Projection Selection
Flat Storage R N ∗ R

Domain Storage (1 + k) ∗R N ∗ (1 + k) ∗R
ID Storage (1 + 2 ∗ k) ∗ R N ∗ (1 + 2 ∗ k) ∗ R

Ring Storage (1 + k ∗ (
N
Di
2

)) ∗ R ((Di
2

) + ( N
Di

)) ∗R

Figure 5. Projection Costs for storage models

involving complex joins and aggregations over several rela-
tions. The cost of a query execution plan depends on the
operator algorithms used and the ordering of the operators.
Execution time for complex queries can be reduced by using
non-nested loop operator algorithms that gives better perfor-
mance. The operator order also plays a crucial role since it
determines the size of the subtree over which the iterators
reiterate.

The ordering of the operators depends on the underlying
storage scheme since the cost of selection and projection de-
pends on the storage scheme. The cost of projection mainly
depends on the number of domain attributes in a relation
(Figure 5). An optimal join order for Flat Storage might be
suboptimal for Domain Storage if some of the relations have
a significant number of domain attributes.

Consider the healthcare database schema [6] and some
sample queries in Figure 6.

Prescription
Visit 
Drug

Query Q1. 

Query Q2. 

Query Q3. 

Query Q4. 

Who prescribed Antibiotics in 2003?

Number of  Antibiotics prescribed per doctor in 2003.

Number of prescriptions per type of drug

(DrugId,name,type,...)
(VisitId,DocId,date,diagnostc,..)

(VisitId,DrugId,qty...)
Doctor (DocId,name,speciality,...)Healthcare Database 

Schema 

Number of prescriptions per doctor and per type of drug

Figure 6. Sample schema and queries

(91)

(2155)

(2155)

(2155)

(830)

(270)

(77)

(77)

(270)

 σ

Visit

 σ

Doctor

Prescription Drug

 σ

 σ

Drug

Doctor

Visit

(77)

(7)
(2155)

(830)

(830)

(91)

(2155)

(2155)

Prescription

(2155)

 σ

Drug

Doctor Prescription
(91) (2155)

(77)

(77)(2155)

(2155)

(196105)  σ

Visit
(830)

QEP 1 for Q1 QEP 2 for Q1 QEP 3 for Q1

Figure 7. Query execution plans for Q1

Query Q1 is a complex join over several relations while
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Q2 to Q4 are aggregate queries. Query Q4 is the most com-
plex since the result should be grouped on two attributes.
Consider the query plans for Q1 and Q4 in Figures 7 and
8 respectively. Alongwith every operator is given the size
of its result. We observe that (Query Execution Plan) QEP 3
contains a cartesian product and is the worst plan. QEP 1 and
QEP 2 do not have a cartesian product but the cost differs due
to different join order. QEP 2 is the best plan for query Q1.
If we consider the aggregate query Q4, the cost of the QEP
1 and QEP2 vary a lot depending on the GroupBy operator
at the root. If there is not enough memory to store the aggre-
gated values and GroupBy needs to be evaluated in a nested
loop manner, then the cost of the subtree below GroupBy
should be minimized to get the optimal join order. Memory
should be optimally allocated among the GroupBy and Join
operators to get the most efficient QEP. Query optimization
becomes a must for such complicated queries. However, [6]
uses a single nested loop join plan for all the queries.

3.2. Our Cost based Resource Cognizant Query Op-
timizer

Our query optimizer is cost-based since only cost-based
approach can ensure the best execution plan. The query exe-
cution plan takes the shape of a left-deep tree since it is most
suited for pipelining. The optimal operator order is evaluated
using the System-R dynamic programming approach [18].
When we have left-deep tree and a fully pipelinable schedule,
pushing down selections becomes tricky. Selections which
occur at the leaf nodes of the left-deep tree reduce the num-
ber of tuples going up the tree. Other selections which occur
in the right child of a join are evaluated as many times as the
join attribute itself. Non-leaf selections are evaluated in the
join algorithms together with the join filters.

3.2.1 Operator evaluation schemes

The schemes for evaluating an operator use different amount
of memory and have different cost. All the schemes result
from the fact that left-deep tree is used as query plan and can
be implemented using the well known Iterator Model [11].

The memory usage of the schemes excludes the input buffers
and the output buffer. Cost of a scheme is the expected time
of computation. Evaluating computation time involves con-
sidering the number of tuples read and index, aggregate list
creation, and lookup[9]. The schemes for join operator are
nested loop, index nested loop, hash join, and join using Join
Index. If enough memory is not available for storing the en-
tire index (on the right input of a join), we do not construct a
partial index which indexes a subset of the attribute values. A
partial index increases code complexity (deciding the subset)
and makes cost estimation difficult. For aggregation, we have
nested loop aggregation and buffered aggregation where we
store the aggregate values. More information about the oper-
ator schemes is available at [19].

3.2.2 Benefit/Size ratio of a scheme and operator cost
function

In the previous sections, we defined several schemes for im-
plementing the database operators and their associated cost
and memory. Every scheme is characterized by a benefit/size
ratio, which represents the benefit of the scheme per unit
memory allocation. In this section, we describe how to com-
pute this ratio for every scheme.

Suppose there are n schemes s1, s2......sn to implement
an operator o. All these schemes have a cost and memory
associated with them. The cost function of an operator is the
collection of (memory,cost) points of its schemes as shown
in Figure 9b. It is a piecewise linear function. We define the
function min, which for every operator returns the scheme
that has the maximum cost and minimum memory.

min(o) = smin
∀i, 1 ≤ i ≤ n : Cost(si) ≤ Cost(smin),

Memory(si) ≥Memory(smin)

Suppose smin is the scheme returned bymin for operator
o. Then the benefit and size of every scheme si is defined by

Benefit(si) = Cost(smin)− Cost(si)
Size(si) = Memory(si)−Memory(smin)

An operator is defined by the benefit and size of each of
its schemes. Every operator is a collection of (benefit,size)
points, n points for n schemes. Figure 9a shows the benefit
and size points for an operator. In general, the benefit of a
scheme increases with the amount of memory provided.

3.2.3 Modified 2-phase memory allocation

In the 2-phase approach, while determining the optimal plan
in phase 1, maximum memory is allocated to all the opera-
tors. With this (maximum) amount of memory in hand, for
every operator in the plan, the best scheme is determined in
phase 1. Memory allocation in phase 2 is based on the cost
functions of these schemes. Such a strategy assumes that
memory is available for all the operator schemes which may
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not be true for a resource constrained device limited by main
memory. Some of the schemes may not be feasible1. For
a limited memory device, depending on the amount of avail-
able memory, we need to determine the best scheme for ev-
ery operator out of all feasible ones. So, schemes chosen
in phase 1 and schemes chosen after phase 2 need not be the
same. Clearly, optimal division of memory to the operators
should involve selecting the best feasible scheme for every
operator given the available memory.

Our query optimizer is a 2-phase optimizer with a modifi-
cation. In phase 1, it determines the operator order by choos-
ing the least cost scheme for every operator. However, in
phase 2, it chooses the best feasible scheme for every oper-
ator depending on the memory allocated to it.

3.2.4 Exact Memory Allocation

A 2-phase exact solution to the memory allocation problem
is proposed in [12]. In phase 1, the scheme for every oper-
ator is determined. In phase 2, the cost functions of all the
operator schemes are used to divide the memory among all
operators. For optimal allocation of memory among n oper-
ators, it merges the cost functions of two operators and forms
a superoperator cost function. The superoperator cost func-
tion stores the optimal division of memory along with the
cost value for each memory division point (i.e., the amount
of memory to be given to each of the two operators). Then
this combined cost function is merged with the cost function
of the third operator to get combined cost function of the
three operators. In this way, all operator cost functions are
merged into a single cost function and then memory division
is done by tracing back the steps for each intermediate plan.

The optimization done in [12] is traditional 2-phase opti-
mization. Hence, we need to modify the algorithms proposed
in [12] to be able to use them in our system. [12] provides
a procedure OptMerge (see Appendix) that constructs a su-

1A scheme is feasible if its memory requirements can be met with the
available memory

peroperator cost function from piecewise linear operator cost
functions. OptMerge is used to divide memory optimally
among piece wise linear cost functions. [12] also proves that
optimal division of memory for piece wise linear functions
takes place only at change-over points.

The exact solution can thus be used in our context with
the following modification. The schemes for every opera-
tor should be determined in phase 2, hence memory need
to be divided among the operator cost functions rather than
the cost function of an operator scheme. Our operator cost
functions are piecewise linear functions and hence we can
use the exact memory allocation algorithm by replacing the
scheme cost functions with the operator cost functions in the
procedure OptMerge. The scheme for an operator is decided
based on the memory allocated to it. The amount of mem-
ory allocated to an operator will exactly match with one of
its schemes since optimal division of memory for piecewise
linear functions takes place only at change-over points.

Time and Space Complexity
Suppose there are ni schemes for an operator i. The time

complexity of merging two operators i and j (i.e. OptMerge)
is O(z2 log z) where z = max(ni, nj) [12]. The number of
line segments in the combined cost function is O(z2) in the
worse case.

Time complexity =
∑m

i=1((z)2)i log((z)2)i−1 where m is
the number of operators.

A superoperator point consists of the cost value, memory
value, and the division of memory at that point. Assuming
an integer to store them and I as integer size,

Space complexity =(4 ∗ I) ∗∑m−1
i=1 ((z)2)i.

3.2.5 Heuristic Memory Allocation

The time and space complexity of the exact algorithm is very
high and some of the handheld devices might not be able to
cope with these. So, we need a heuristic solution to the mem-
ory allocation problem, one with a reduced time and space
complexity.

We propose the following heuristic solution. Given the
available memory, the heuristic determines which operator
gains the most per unit memory allocation and allocate mem-
ory to that operator. The gain of every operator is determined
by its best feasible scheme. We repeat this process until all
the operators have been allocated memory. Our heuristic is
as follows:

Select the scheme that has the maximum benefit/size ratio
and allocate its memory.

Our heuristic solution is inspired by the greedy algorithm
for cache management in [17]. The procedure MemAllocate
that allocates the memory is shown in Figure 10. It takes as
input the memory available to evaluate the query Mtotal and
allocates memory to all the operators. It makes use of two



MemAllocate(Mtotal)
{Evaluate the minimum memory required
to execute the query plan}
1. Mmin =

∑m

i=1
Memory(min(i))

{Allocate initially the minimum scheme
to all the operators}
2. for i = 1 to m do
3. Scheme(i) = min(i)

{Evaluate the available memory for allocation}
4. Mavail = Mtotal −Mmin

5. RemoveSchemes(Mavail)

6. sbest, obest = GetBestScheme(Mavail)

{sbest is the best scheme and
obest is the corresponding operator}
7. if no best scheme return
8. else

{Allocate Memory(sbest) to the operator obest }
9. Mavail = Mavail −Memory(sbest)

+ Memory(Scheme(obest))

10. Scheme(obest) = sbest
11. RemoveSchemes(obest, sbest,Mavail)

12. RecomputeBenefits(obest, sbest)

13. end if
14. goto step 6

Figure 10. Pseudo Code: MemAllocate

procedures GetBestScheme (Figure 11) and RecomputeBen-
efits (Figure 12). Mmin is the minimum amount of mem-
ory that is required to execute the plan. Initially, we select
the minimum scheme for every operator and reserve Mmin

amount of memory, this ensures the execution of the query.
Memory that remains after allocating Mmin is then divided
optimally among all the operators. At every step of the algo-
rithm, the amount of memory to be allocated is Mavail. The
procedure GetBestScheme takes as input the current avail-
able memory Mavail and outputs the best scheme sbest and
its corresponding operator obest. The required memory of
the best scheme, i.e. Memory(sbest) is allocated to the op-
erator obest and Mavail is recomputed accordingly. sbest
and all the schemes of obest which need less memory than
Memory(sbest) are removed from the list of schemes. The
benefit and size values of the schemes of obest which need
more memory (and have more benefit) than Memory(sbest)
need to be recomputed. If no best scheme has been returned
it means that memory allocation is over and the procedure
returns.

The procedure GetBestScheme depending on the current
available memory Mavail, determines which operator
scheme has the highest benefit/size ratio among all the
schemes of all operators that are feasible with the current
available memory Mavail. The procedure RemoveSchemes
removes all the schemes of obest which need less memory
than Memory(sbest). It also eliminates all the schemes

GetBestScheme(Mavail)
1. Take all schemes of all operators,that satisfy

Memory ≤Mavail

2. if no scheme satisfies Memory ≤Mavail

3. then return no best scheme
4. else
5. Select the scheme sbest that has maximum benefit/size

∀i, 1 ≤ i ≤ m, ∀j, 1 ≤ j ≤ ni : Benefit(sbest)
Size(sbest)

≥ Benefit(sj )

Size(sj)
,

Memory(sj) ≤Mavail

6. obest = operator(sbest)
7. return sbest, obest

Figure 11. Pseudo Code: GetBestScheme

RecomputeBenefits(obest, sbest)
{Recompute the benefit of all the schemes of the operator
obest which have Memory > Memory(sbest)}

1. for i = 1 to nobest do
2. if Memory(si) > Memory(sbest) then
3. Benefit(si) = Benefit(si)−Benefit(sbest)
4. Size(si) = Size(si)− Size(sbest)
5. end if
6. return

Figure 12. Pseudo Code: RecomputeBenefits

which are not feasible with Mavail.

Recomputation of Benefits
Once the operator obest gets memory Memory(sbest),

the benefit and size of all the schemes of obest that have
higher memory requirements than sbest change. The new
Benefit and Size values of those schemes will be the dif-
ference between their old values and the values for sbest.
sbest need not be the final best scheme for operator obest.

There will be other schemes of obest that might not have a
better Benefit/Size ratio than sbest but have more benefit
and need more memory. After recomputation of benefits
and sizes, later during the process of allocation, one of these
might have the highest Benefit/Size and memory to be
implemented. Then GetBestScheme will select that scheme
and allocate the additional memory to the operator. Figure
13 shows an example of benefit and size recomputation.
Scheme 1 has the highest Benefit/Size ratio but Scheme
2 has more benefit than Scheme 1. Initially, Scheme 1 will
be selected and values for Scheme 2 will be recomputed.
Now later during allocation, if (s2− s1) amount of memory
is available and Scheme 2 has the highest Benefit/Size ,
Scheme 2 will be selected.

Time and Space Complexity
The time complexity of the procedures GetBestScheme,

RemoveSchemes, and RecomputeBenefits are O(nm),
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O(nm), and O(n) respectively where n is the number of
schemes and m is the number of operators. Thus, the com-
plexity of MemAllocate is O(nm2). The space complexity
is 0 since no additional values are stored.

4 Performance Analysis

Performance analysis of a database on a handheld envi-
ronment is quite complex. Parameters like processor speed,
caching strategy, RAM, and Flash RAM speed will strongly
affect the response time of a query in a handheld device. [6]
measures the performance of their query engine for smart-
cards on a desktop Pentium-486 computer varying the sys-
tem parameters. [7] measures the performance on a cal-
ibrated platform. However, the database will be eventu-
ally running in a lightweight device. To determine the ef-
ficiency of the database techniques accurately, we feel that
the database should be ported on a handheld computing de-
vice and queries executed on the device. Only then we can
expect to get real performance numbers. So this is precisely
what we did.

4.1. Experimental setup

We implemented our database system on the Simputer [4],
a handheld device. Our version of the Simputer runs on a In-
tel Strong Arm processor at 206 MHz. It has 28MB of Flash
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Figure 15. Performance Results for Query Q1

RAM for permanent storage and 24 MB of DRAM. The gcc
cross compilation toolkit for Strong Arm processor was used
to cross compile the code for the Simputer. Simputer runs on
Linux and has besides the operating system and DBMS other
computationally intensive applications like music player run-
ning on it. Many other handheld devices like HP iPAQ, NEC
MobilePro etc. run on Intel StrongArm processor and hence,
our performance numbers will be valid for them too.

As discussed earlier, we use the healthcare
schema and queries used in [6] and described in
Figure 6 since healthcare applications are common
in handheld devices. The dataset taken was a rel-
atively large one (Doctor(91), Drug(77),
Prescription(2155) , Visit(830)) leading
to a 31K database (using Flat Storage). The datasets used are
the same as [6]. We stored the data in three different storage
schemes, Flat Storage, ID Storage, and ID based Join Index.
The domain attributes are Doctor.Name, Drug.Name,
and Drug.Type. The cardinalities of Doctor and Drug
are smaller compared to Visit and Prescription.
Hence, we expect ID Storage to reduce storage cost but the
saving will not be very high. With ID based Join Index, we
expect the storage cost to reduce considerably since relations
Prescription and Visit have foreign keys. Figure 14
shows the storage costs for all the models.

We choose query Q1 as the representative for complex
joins and query Q4 for aggregate queries. Query Q1 has 2
selections and 3 joins while query Q2 performs an aggrega-
tion over two attributes. We executed all the 4 queries on
the Simputer using the dataset. We measure the absolute re-
sponse time of each query, varying the amount of memory
available for execution. We optimize both the queries using
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Figure 16. Performance Results for Query Q4
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Figure 17. Performance Results using ID Join
Index

the exact memory allocation method and the heuristic mem-
ory allocation method. Figure 15 and Figure 16 show the
results for query Q1 and query Q4 with Flat and simple ID
Storage. Figure 17 shows the results with ID based Join In-
dex. Since there is an extra cost for projection in ID Stor-
age we expect the numbers for ID Storage to be higher than
Flat Storage. The joins in both the queries are primary key-
foreign key joins and hence we expect ID based Join Index
scheme to reduce the query execution time considerably.

4.2. Performance Results and Observations

The storage cost saving with simple ID Storage was 2.5K
since the cardinalities of the relations having domain at-
tributes was not very high. However, with ID based Join
Index the saving was around 13K which is a significant sav-
ing for a small device. The storage costs and the resulting
choice of storage models are consistent with our guidelines
mentioned in Figure 4.

From Figures 15, 16, and 17 we see that the response time
was the highest with the query plan for zero memory and
least with maximum memory. In all the graphs, the query
plans change at a finite number of points. These points are
the memory division points. The query plans remain the
same till the optimizer finds that memory is available for
an operator scheme that leads to a better plan. We do not
compare our numbers with those in [6] for two important
reasons (i) As mentioned earlier, [6] executed the queries in
a Pentium-486 system while we executed them on the Sim-
puter. (ii) Their optimizations were specific to the smartcard
platform and domain-based storage while our query engine
is meant for all types of devices and all storage schemes.

The response times for query Q1 ranged from 7.6s to 0.4s
for Flat Storage and 12.8s to 0.6s for simple ID Storage. This
was expected considering the complexity of the joins and the
computational power of the handheld device. The join order
determined in phase-1 was QEP 2 of Figure 7. Our heuristic
memory allocation algorithm generated the same query exe-
cution plan as the exact allocation method except for a few
points, those in which the scheme having highest benefit was
not the one having the highest benefit/size. As we increased
the memory, better schemes were selected for every operator
which resulted in better query plans and the response time re-
duced. The response times for simple ID Storage were more
than Flat Storage. This was expected because of the extra
cost of projecting out a tuple in ID Storage. The time differ-
ence was more when nested loop join was selected for leaf
join operator, since the input relation Doctor has a domain
on Name.

For the aggregate query Q4 the response times ranged
from 44.4s to 2.1s for Flat Storage and 73.5s to 2.76s for ID
Storage. Q4 had groupby on two attributes, hence such a re-
sponse time was not unexpected. The join order determined
in phase-1 was QEP 2 of Figure 8. The groupby operator at
the root was the most costly operator and influenced the ex-
ecution time the most. As was the case in Q1, the heuristic
algorithm generated the same query plan as the exact algo-
rithm barring a few points. With increasing memory, query
plans became less costly. The numbers for ID Storage again
followed the same pattern as in Q1, the difference with Flat
Storage being more when nested loop join was the scheme
for the leaf join operator.

The influence of ID based Join Index on the query re-
sponse times was significant. Only the groupby operator
needed memory as joins were done by traversing the Join In-
dex. Q1 was executed in 1.6s. The times for query Q4 were
21.6s with zero memory and 2.4s with memory buffered ag-
gregation. Thus, the response time reduced significantly for
both the queries. The heuristic and exact allocation algorithm
generated the same query plan in this case.

In summary, the performance results clearly suggest that
query optimization is a must for complex queries. Our tech-
niques chose the best possible plan given the available mem-



ory and the underlying storage model. Our heuristic memory
allocation generated the same plan as the exact method for
most of the memory points. The reason for this is that even
after selecting a scheme for an operator, we do not throw
away the other schemes and recompute their benefits. When
simple ID Storage is used, the response time increase by a
small factor. Hence, the best way to store the domain at-
tributes is ID Storage. ID based Join Index is the best way
to represent a primary key-foreign key relationship since not
only does it save storage cost but also speeds up query pro-
cessing.

Use with an existing application
We also used the database management system with an

existing application. AQUA is an online database backed
discussion forum developed at Media Lab Asia, IIT Bombay
[1]. The application is also meant to be used in mobile hosts.
We ported AQUA on the Simputer and used our database to
store the data and query it. This showed the generality and
ease of portability with our approach.

5. Conclusion

Lightweight computing devices are increasingly flooding
many aspects of our life. As new applications appear, the
need for embedded database support arise in various forms of
such devices. The main constraints are limited stable storage
and main memory. Storage models that save storage costs
need to be designed and the best storage scheme should be
selected based on data characteristics and nature of queries.
Optimal memory allocation among the database operators is
necessary and the best query plan should be chosen depend-
ing on the amount of available memory and the underlying
storage scheme.

We proposed ID Storage, a new storage model that leads
to considerable saving in storage space. We presented an ex-
act and a heuristic algorithm to allocate memory among the
database operators, Our storage management and query pro-
cessing techniques select the best storage scheme and query
execution plan based on the device resources and application
characteristics.

In future, we plan to build a DBMS module toolkit for
handheld devices. Modules from this toolkit can be plugged
into a system depending on the type of the application and
resources of the device.
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A. Procedure OptMerge of [12]

OptMerge(c1, c2)
mergeCost =∞
for each change-over point (m, c) in c1 do

c′2 = c2 shifted by (m, c)
mergeCost = MinMerge(mergeCost, c′2)

for each change-over point (m, c) in c2 do
c′1 = c1 shifted by (m, c)
mergeCost = MinMerge(mergeCost, c′1)

return mergeCost

The operation shifted by used in the procedure shifts the cost
function along the memory and the cost axes by the respective
amounts. The routine MinMerge used in the procedure com-
pares input cost functions for the entire memory range and at each
memory point picks up the lower cost value.


