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ABSTRACT
A mobile wireless sensor network may be deployed to de-
tect and track a large-scale physical phenomenon such as a
pollutant spill in a lake. It may be called upon to provide
a description of a contour characterized by an isoline of a
specific concentration value. In this paper, we examine the
problem of tracing a contour of a particular concentration
within a bounded region of varying pollutant concentration
using a network of mobile sensors. Since controlled move-
ment of sensors within a given region is known to improve
the overall quality of measurements by reducing sensing un-
certainty, we explore various ways of guiding a set of mobile
sensors optimally so as to surround and trace the contour.
We formulate the contour estimation problem as a nonlinear
multi-extremal optimization problem. We use accuracy and
latency as performance metrics and show that in majority
of the cases our proposed strategy based on collaboration of
sensors delivers the best performance.

Categories and Subject Descriptors
C.2.1 [Computer - Communication Networks]: Net-
work Architecture and Design - Wireless Communication;
C.3 [Special-purpose and Application Based System]:
Real-time and Embedded Systems; J.2 [Physical Sciences
and Engineering]: Earth and Atmospheric Sciences

General Terms
Algorithms, Design, Performance, Measurement

Keywords
Mobile Wireless Sensor Networks, Contour Level Set Esti-
mation, Performance Metrics, Latency, Accuracy

1. INTRODUCTION
Wireless sensor technology has emphasized the impor-

tance of in-situ [1] measurements that could potentially re-
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duce the error in measurement and increase our understand-
ing of large scale physical phenomena like contaminant flow
[2]. They are ideal for deployment in adverse settings such
as explosion plumes, oil slicks etc.

Consider a pollutant spill in a water body. One of the first
tasks in spill response is to contain the slick and prevent it
from spreading. In order to do that, there is a need to es-
timate the spatial extents of hazardous areas in the spill as
well as track the movement of the spill. A common query for
a wireless sensor network deployed in such a scenario is to
estimate the spatial extent of contour of a particular concen-
tration (a contour of concentration T can be visualized as a
boundary that separates regions with concentration higher
and lower than T ). For example,

• Select all the spatial coordinates for the contour of
concentration 120 units, with 90% confidence.

Tracking contours also helps in determining the rapidity of
flow of contaminants and this results in providing an early
warning for sensitive areas located in the vicinity of the spill.

One way to architect a wireless sensor network to accom-
plish this task is to mount sensors on permanent moorings
(static network) in the region where the spill has occurred
and have each sensor measure the concentration of the pol-
lutant at the location where it is mounted. An energy effi-
cient algorithm would then choose appropriate nodes in the
network to estimate the contour with measurements made
at the chosen nodes. On the other hand, one can also make
use of mobile sensors, e.g. sensors mounted over rover buoys
to move, sample and measure at different locations in the
region. Use of mobile sensors

1. Improves sampling resolution — They can access those
areas in the region which are unreachable for a static
sensor network.

2. Eases deployment — Sensors can be dropped off in the
region where measurements are taken and the sensors
“intelligently” move and sample the region.

3. Increases adaptability to spatio-temporal dynamics of
the phenomenon — Redeploying a static sensor net-
work to do the same might be prohibitively expensive.

However, the main limitations of mobile in-situ sensors
are

1. Higher latency in estimating the contour — The sen-
sors take time to arrive at the contour and then trace
the contour.



2. Additional noise due to odometry errors in addition to
actual sensing errors.

3. Higher energy consumption due to mobility.

An energy efficient algorithm for mobile sensors therefore
must optimize accuracy, latency and movement while com-
puting the contour. In this paper, we propose and evaluate
different movement strategies for a mobile wireless sensor
network which is assigned the task of estimating a contour
of a specified concentration in a region of varying pollutant
concentration.

In Section 2 we describe the problem and our approach
to the solution. In Section 3 we provide the details of the
ingredients that go into our solution. In Section 4 we discuss
mobility model, assumptions and the movement strategies
used in our solution and follow it up with the description of
our simulation set up in Section 5. We discuss the results in
Section 6 and related work in Section 7. We conclude and
give directions to our future work in Section 8.

2. OVERVIEW OF THE PROBLEM AND
OUR APPROACH

Let R denote a bounded geographical region where the
pollutant spill has occurred. Let T ± ε denote the concen-
tration of the target contour. In the region, let N mobile
wireless sensors, each capable of measuring concentration at
their current location and in a small neighborhood around
their current location, be deployed. The task is to locate
points on the contour such that the error in estimation as
well as the time taken to estimate is minimized. Initially the
sensors may find themselves anywhere in the region both in-
side as well as outside the contour.

There are several approaches to solve the above mentioned
problem. In [12], the authors propose a mobile sensor to scan
through the region to get an estimate of the boundary within
a given error bound. However, instead of using a single
mobile node, can multiple nodes be used? Can knowledge
about the field characteristics and information from other
nodes be used to arrive and trace the contour with a lower
latency and a higher accuracy than a scan? In this paper,
we propose an alternative scheme where multiple sensors
collaborate to arrive at the contour. Sensors start from their
initial positions and begin to move in a direction such that
they approach the contour as well as distribute themselves
around it. We define this phase of sensor movement as the
Converge Phase. After it arrives at the contour, each sensor
moves along the contour locating the points on the contour
during its traversal. This phase is defined as the Coverage

Phase.
Once the sensors are deployed as shown in Figure 1 they

communicate their initial location information to each other
and they embed themselves in a ring i.e., one of the sensors,
say, S1 is chosen as a lead sensor and the one closest to it
(S2) is chosen as its anti-clockwise neighbor. Further, S2
picks the sensor (S1 not inclusive) closest to it (S3) and as-
signs it as its anti-clockwise neighbor and so on. The entire
region R is divided into N sections centered at a known
anchor point inside the contour (in our simulation we use
centroid of the contour to be the anchor point1). If θ1 is

1The anchor point or the centroid is approximated to be
very near to the source of spill.

the current angle2 with respect to the centroid as the origin
for sensor S1, then the target angle of the ith sensor Si in

the ring is given by θ1 + 2π(i−1)
N

. The target angle for each
sensor is its angle of approach towards the contour. An-
other approach to ensure the spread of the sensors is the
distance based approach where, each sensor moves as far
away as possible from its neighboring sensors. The advan-
tage of using the angular approach for achieving spread as
opposed to using the distance based approach is that, the
angular approach requires communication between the sen-
sors only at the beginning when the angles are being com-
puted while the distance based approach requires the sensors
to communicate their locations at every step. In Figure 1,
the sensors’ initial positions are marked {S1, · · · , S5}. At
the end of Converge phase, the corresponding positions are
{C1, · · · , C5}.

In order to minimize the error in contour estimation and
the overall time taken to perform the estimation, each sensor
needs to move in a direction such that it lies on the contour
at the appropriate target angle at the end of the converge
phase. One approach is to favor that direction which min-
imizes the difference between the concentration at the cur-
rent location and the target contour concentration T , and
also minimizes the difference between the angle with respect
to the centroid at the current location and the target angle.
This is modeled as benefit of movement and it is associated
with every possible direction of movement allowed per it-
erative step. The benefit of movement is zero or minimum
when the sensor locates itself on the contour at the correct
angle of approach. We derive the benefit mathematically in
the next section.

In coverage phase, the sensors that converged on to the
contour trace the contour in a non-overlapping fashion. One
possible way is for the sensors to move towards their respec-
tive neighbors in a preset direction (e.g., anti-clockwise).
Consider an arrangement of five sensors (S1, · · · , S5) at the
end of converge phase as shown in the second figure in Fig-
ure 1. The sensors embed themselves in a ring, i.e., each
sensor discovers its anti-clockwise neighboring sensor’s po-
sitions (just like in the beginning of the converge phase de-
scribed earlier). The sensors then move along the contour
towards their neighbors recording the locations of all the
points on the contour en route. For that, each sensor needs
to know its neighbor’s location also known as target point

for the sensor. The angle with respect to the centroid of the
target point is the target angle of approach for each sensor
in the coverage phase. As shown in the third diagram in Fig-
ure 1, it may not always be correct to terminate movement
as soon as the sensor approaches its target angle (point P
is not the target point but is a point on the contour at the
target angle) but terminate the movement only when the
sensor arrives at its target point along the curve.

3. INGREDIENTS OF THE SOLUTION
In this section we describe the cost model for mobility and

performance metrics. We begin by making a few simplifying
assumptions.

2If (xc, yc) represents the location of the centroid, then the
current angle of the ith sensor at position, (xi, yi) is com-
puted as θi(xi, yi) = tan−1 yi−yc

xi−xc



Figure 1: Movement in Converge and Coverage Phases

3.1 Assumptions

1. Region R is discretized and is represented as a two
dimensional square grid with side length l and unit
grid granularity.

2. Contour is a well defined (not diffused) closed curve
and approximated by the grid points.

3. Contour exists in the region and its concentration value
T is known to the sensors. Typically, the threshold
of hazardous concentration values are known and the
sensors can be deployed to search for the contour cor-
responding to this threshold. We consider all points in
a band T ± ε) to be the contour.

4. An interior point in the contour referred to as anchor

point is known to the sensors.

5. There are no sensing or odometry errors. In reality,
sensors have sensing as well as odometry errors. We
assume the sensor reading to be the expected value of
several readings taken in the same location. We ignore
odometry errors in this paper.

6. All sensors can communicate with each other (maxi-
mum transmission range per sensor, rtrans =

√
2l).

7. The sensors are aware of their current location.

8. A sensor can sense concentrations at its current loca-
tion and also at its neighboring grid locations. We
assume zero cost for exploring the neighbor locations.

9. The distance travelled by the sensor per iteration is one
unit on the grid (the cost of moving to the diagonal
neighbors or the immediate neighbors is assumed to
be the same for the sake of simplicity).

10. There is enough energy available for each sensor to
move niters steps each in the converge and coverage
phases of movement.

3.2 The Cost Model
The benefit of moving to a particular neighboring location

is modeled as cost at that location. The cost is defined
per grid position per sensor. The cost ci for the ith sensor
has two components namely, an attractor component that
is responsible for attracting the sensor towards the contour
and a spread component that enables the sensor to approach
its target angle. Hence the cost ci(xi, yi) is a function of

• Difference between the concentration of the pollutant
at the current position (xi, yi) and concentration at
the contour T .

• Difference between the current angle (angle with re-
spect to the centroid at the current position) and the
target angle.

The attractor component acost is given by

acost(xi, yi) = (1 − f(xi, yi)

T
)2 (1)

where

• f(xi, yi) — pollutant concentration at a given position
(xi, yi)

• T — pollutant concentration at the contour.

Note, acost(xi, yi) = 0 when f(xi, yi) = T .
The spread component scost is derived as follows. Let,

• θi(xi, yi) — angle with respect to the centroid for the
sensor at its current position (xi, yi).

• θt — the target angle of approach for the ith sensor
(all angles are measured in radians).

If,

θd(xi, yi) = θi(xi, yi) − θt (2)

then scost
3 is given by

scost(xi, yi) = (
θd(xi, yi)

2π
)2 (3)

Note, scost(xi, yi) = 0 when θi(xi, yi) = θt at the given point
(xi, yi).

The total cost ci(xi, yi) at a given position for the ith

sensor is a weighted combination of acost(xi, yi) in Equation
(1) and scost(xi, yi) in Equation (3). For the ith sensor, the
cost at any given grid point (xi, yi) is given by:

ci(xi, yi) = α ∗ acost(xi, yi)� ��� �

attractor

+(1 − α) ∗ scost(xi, yi)� ��� �

spread

(4)

where, (0 ≤ α ≤ 1) is the biasing factor, (xmin ≤ xi ≤ xmax)
and (ymin ≤ yi ≤ ymax) where [(xmin, ymin), (xmax, ymax)]
are bounds of region R. Note that, ci(xi, yi) = 0 when

3We divide by 2π in order to normalize.



acost(xi, yi) = 0 and scost(xi, yi) = 0. In practice, there
may be more than one zero cost point per sensor if we con-
sider T ± ε instead of only T as points on the contour.

Given the cost model, the next task is to determine how a
given sensor should move in each iterative step to arrive at
a minimum cost (≈ 0) point. Let us examine the amount of
information the sensor has at every step to make an informed
decision about its next direction of movement.

• The sensor can measure (by moving and sampling) the
concentration values at the grid points in its neighbor-
hood (f(xi±1, yi±1)) within the bounds of the region
R.

• The sensor knows a prior the bounds of region R,
{(xmin, ymin), (xmax, ymax)}, target concentration T,
target angle of approach θt and the coordinates of the
anchor point (xc, yc).

The sensor does not have any knowledge as to whether it is
inside or outside the contour. The sensor needs to make a
decision as to which one of its neighboring points to choose
as a next step in its path towards a point of zero cost. The
choice of the neighboring point is dependent upon the mo-
bility strategy. There are points where the cost evaluates to
be the smallest amongst all their neighbors but without be-
ing the smallest possible cost in the entire grid. Algorithms
for mobility should deal with this situation, else the sensor
will fail to converge on to a zero cost point.

Next we discuss the metrics for evaluating mobility strate-
gies.

3.3 Metrics
The performance of any mobility strategy depends on the

accuracy of estimation and the time taken for estimation.
The accuracy is a measure of how well the sensors esti-
mated the contour when compared to the actual contour.
One way to measure this is to define the accuracy in terms
of the difference between the actual contour and the esti-
mated contour. This difference is the actual error in estima-
tion. Approximating the contour with its bounding polygon
is concise in representation and also sufficient for applica-
tions where contours are estimated for bounding pollutants
as opposed to exactly matching the contour. We define the
metrics used in our simulation as follows.

• Relative Contour Error (RCE) : is defined to be the rel-
ative difference in the area between the polygon formed
with the points of the actual contour and the polygon
formed with the points on the estimated contour. The
formula is as shown below. Let,
Aact — area of the polygon of actual contour
Aest — area of the polygon of estimated contour

RCE =
|Aest − Aact|

Aact

(5)

• Latency (L): is defined as the maximum number of
steps on the grid taken by the sensors to estimate the
contour. Since the energy consumed is directly propor-
tional to the distance travelled, latency is a measure of
maximum energy consumed by a sensor due to move-
ment. If,
ti — Number of steps taken by the ith sensor

M — Number of sensors converged at the end of the
converge phase (M ≤ N) then,

L = argmaxi(ti) (6)

where, i = {1, 2, · · · , M}

In the next section, we present three different mobility
strategies for movement of the sensor.

4. MOBILITY STRATEGIES
Consider the case where the cost at every point in the re-

gion is known to the sensor. Let us assume that these cost
values are not changing dynamically. Then the problem at
hand reduces to finding the shortest path from the starting
point to a zero cost point on the contour. When the entire
field is unknown to the sensor and only the field at neighbor-
ing locations are known to the problem solver (each sensor
in our case), then the problem takes an online or distributed
form.

We present three different mobility strategies to address
this online problem.

4.1 Basic Steps
We will begin by outlining the common steps first and

then describe the three different strategies.

• Input— Number of sensors (N), location of anchor
point (xc, yc), target contour concentration T , α (bi-
asing factor – in the converge phase both acost and
scost components are biased equally) and bounds of
region R ({(xmin, ymin), (xmax, ymax)}).

• Output — Points on the contour (x1, y1), · · · , (xk, yk).

Steps 1–5 outlines the steps involved in the converge phase.

• Step 1 — Deploy the sensor nodes in the region.

• Step 2 — Sensors embed themselves in a ring.

• Step 3 — For each sensor,

1. Step 3a — Compute ci at all of its neighboring
grid points.

2. Step 3b — Move to a neighboring point depend-
ing on the movement strategy as described in Sec-
tions 4.2, 4.3 and 4.4..

3. Step 3c — If the current location is indeed the
zero cost point, terminate movement else go back
to Step 3a.

• Step 4 — If all sensors have terminated or if num-
ber of iterations equal the maximum allowed (niters),
terminate all sensors.

• Step 5 — This step denotes the end of converge phase.
All those sensors who failed to converge onto the con-
tour are eliminated from the next phase.

Steps 6 – 9 outlines the steps involved in the coverage
phase.



• Step 6 — One of the converged sensors is assigned
to be the lead sensor (chosen at random). At the end
of this phase, all other sensors send their estimates
of the points on the contour to the lead sensor. The
converged sensors discover their anti-clockwise neigh-
bors and assign their target angles to be that of their
neighboring sensor’s angle with respect to the centroid.
In addition, the neighboring sensor’s location (target
point) is also noted to determine the termination con-
dition.

• Step 7 — α (the biasing factor for the cost compo-
nents) is reset to be highly biased towards acost so
that the sensors do not stray away from the contour
(In Equation 3, ci is high for all those points that do
not lie on the contour).

• Step 8 For each sensor,

1. Step 8a — Compute ci at all of its neighboring
grid points.

2. Step 8b — Move to a neighboring point depend-
ing on the movement strategy. Record the point
visited.

3. Step 8c — If the current location is indeed the
zero cost point, and the distance between the cur-
rent location and the target point is zero, then
terminate movement else go back to Step 8a.

• Step 9 — The converged sensors send all their esti-
mated points to the lead sensor and the result is out-
put.

4.2 Greedy Algorithm
In the Greedy Algorithm (GA) approach, the sensor moves

to the neighbor with least cost. If this point has been vis-
ited by the sensor before, then the sensor is trapped at a
local minimum4 and terminates its movement. If the sensor
is neither trapped at local minimum nor has arrived at the
edge after a maximum number of iterations (niters), then
the sensor terminates. Thus for each move,

• Step 3b.1 Compute least cost point amongst all the
neighbors.

• Step 3b.2 If the new position has not been visited
before then move to the new position else terminate
the movement and got to Step 4.

4.3 Simulated Annealing
In Simulated Annealing (SA) approach [4], the sensor

chooses a neighboring point at random. If the cost at the
new point is lower than the current cost, it moves to its
new position. Otherwise it moves to the new position (bad
move) with a certain probability, Pbad.

Pbad = e
−δc

t (7)

If Pbad ≥ r ∈ [0, 1] then the bad move is made. Tem-
perature is reduced depending on the cooling schedule cho-
sen (linearly or geometrically with number of iterations) to
achieve convergence. The sensor is terminated when it ar-
rives at the contour or a predetermined number of maximum

4A sensor is said to be trapped in local minimum if it visits
a point more than once.

iterations (niters) is executed. In this approach, the sensors
are guaranteed to move out of local minima due to random-
ization. The following steps form the SA strategy.

• Step 3b.1 Pick a neighboring point at random and
compute the cost at this neighboring point.

• Step 3b.2 If the cost at this neighboring point is
smaller than the cost at the current location, move
to the new position else move to the new position with
probability, as computed as described in Equation 7.

4.4 Collaborative Algorithm based on Mini-
mizing Centroid Distance

In the two strategies, Greedy Algorithm and Simulated
Annealing discussed above, the sensors choose the direction
of movement based on local information alone. They do not
communicate. In Simulated Annealing technique the sen-
sors do not get trapped in local minima since they always
jump out with a certain probability. However, this tech-
nique has a disadvantage that it makes quite a lot of bad
moves initially. Given that the sensors are capable of com-
munication, the question one can ask is: can the sensors
collaborate with each other to correct their course of move-
ment when trapped in local minima? In this context, we
propose a strategy called MCD, that attempts to provide
course correction for the sensor trapped in local minimum
by computing the centroids of the convex hulls formed by all
the other sensor locations and neighboring points (if there
are eight neighboring points, the centroid of the convex hull
formed by each of these points with all other sensor locations
is computed). The algorithm then chooses that neighboring
point that minimizes the distance between the centroid of its
hull (known as hull centroid) and the actual centroid point
known to the sensor (prior information). This strategy is
inspired by the technique of computing the maximum over-
lap between convex polygons under translation as described
in [5] in the field of geometric algorithms. Part A in Figure
2 depicts the course correction during the converge phase
when a particular sensor is trapped in a local minimum and
the trajectory of the hull centroid. The hull formed by the
sensors at each of these time steps and the respective path
of the hull centroid are depicted.

Given the knowledge of the anchor point, it is logical to
question why any given sensor should use gradient informa-
tion (characterized by field cost) to approach the contour
instead of moving directly towards the anchor point. Con-
sider the case where the sensor is nearer to a point on the
contour but far away from the point of intersection of the
shortest path to the anchor point and the contour as shown
in part B in Figure 2. Then, the gradient information allows
the sensor to converge on to the contour more rapidly than
approaching the anchor point. Hence there is a need to use a
hybrid approach like MCD, where, the sensor uses gradient
information to move until it hits a local minimum and uses
anchor point to get out of the local minimum.

The following steps describe the MCD strategy.

• Step 3b.1 Compute least cost position amongst all
the neighbors.

• Step 3b.2 If the least cost position has not been vis-
ited before then move to the new position and go to
step 3c



Figure 2: A: Course Correction during Converge Phase, B: Gradient Vs. Anchor Pt path comparison

• Step 3b.3 Else, for each neighboring point (xr, yr),

1. Compute the convex hull of all other sensor loca-
tions and (xr, yr) and determine the centroid of
this hull.

2. Compute the distance between the hull centroid
and the actual centroid (xc, yc)

• Step 3b.4 Move to the neighboring point with mini-
mum distance between the hull centroid and the actual
centroid.

In the next section, we describe our simulation set up and
measure the performance of each of the mobility strategies
described above.

5. SIMULATION
In our simulation, we assume homogeneous sensors (sen-

sors with similar characteristics). In this paper we focus
on the effect of varying number of sensors, type of deploy-
ment and type of contour on RCE and latency for the three
different movement strategies and for a given sensor field.

For obtaining R, we used a sensor field of varying pol-
lutant concentration generated by a pollutant flow model-
ing tool, WQMAP TM5. The sensor field was generated
by running the simulation for 120 time steps. The output
generated by WQMAP TM was imported into a GIS tool,
GRAM++ 6and rasterized to generate a two dimensional
pollutant concentration field of dimensions (500, 500). In-
terpolation and triangulation were performed to generate
the grid and the contours. Figure 3 depicts the pollutant
concentration field and the concentration isolines as gener-
ated by WQMAP and GRAM++.

The biasing factor α was chosen to be 0.5 in the con-
verge phase so as to encourage the sensors to move towards
the contour as well as the target angle. We experimented by
varying α from 0 to 1 and observed that RCE was not signifi-
cantly sensitive to α (in spite of α = 0, MCD exhibited a low
RCE indicating that once the sensors reached their target
angles, choosing the direction that minimized the distance
between the hull and the actual centroids resulted in the sen-
sors converging onto the contour). However, latency showed

5Applied Science Associates Inc., http://www.appsci.com/
6GRAM++: Full runtime GIS supporting Vector And
Raster map data creation, query, analysis and layout ap-
plication, http://www.csre.iitb.ac.in/gram++/

some variation with α and at α = 0.5, both the SA and
the MCD algorithm displayed a low latency value. The plot
that depicts the sensitivity of the performance parameters
to α has been omitted due to lack of space. In the coverage
phase α was chosen to be 0.9995 so as to discourage the sen-
sors to stray away from the contour while they approached
the target angle at the target point. The sensors termi-
nated when the cost ci was less than a pre-specified threshold
(10−8). We chose two contours as representatives of convex
and non-convex contours, two types of deployment scenar-
ios, random, where the sensors were uniformly distributed
in the region and regular, where sensors were deployed in
a circle with varying radii. The maximum number of itera-
tions per phase was niters = 5000 per phase per simulation
(a simulation includes: deployment of sensors, movement
until all the sensors terminate or a pre-determined number
of iterations have been executed in each phase). For the
random deployment case in all the three strategies and for
all types of deployment in the SA technique, (nsim = 1000)
simulations were performed to obtain the average behavior.
In the MCD case, we used the Graham Scan algorithm [6]
whose time complexity is of the order Θ(nlogn) to compute
the convex hull.

6. RESULTS
We studied the variations of RCE and latency with dif-

ferent strategies for movement, type of deployment, type of
contour and varying number of sensors. For each case, we
varied one and fixed all other parameters.

6.1 Variation of Performance with Mobility
Strategies

Figure 4 shows the variation of RCE and latency for differ-
ent movement strategies for a given configuration. For this
experiment, the number of sensors was chosen to be N = 10,
the type of deployment was random and the contour type
was convex. The MCD algorithm had the least RCE and
latency for the given configuration. SA performed the worst
since the sensors did not converge for many random deploy-
ment configurations in the simulations and whenever they
did, the latency was high.

6.2 Variation of Performance with Deployment
Next, we measured the variation of RCE with different

deployments. The configuration comprised of N = 10 sen-
sors and the contour type was convex. The graph in Figure



Figure 3: Pollutant Concentration Field and Contours

Figure 4: Performance Vs. Mobility Strategies for N = 10, Random Deployment and Convex Contour

5 indicates that the lowest RCE for all deployments is ob-
tained by the MCD algorithm. The Greedy Algorithm has
the worst RCE when the sensors were deployed far away
from the contour. The reason for that is, many sensors got
trapped in local minima and could not converge onto the
contour resulting in a large RCE. The Simulated Annealing
algorithm displayed large RCE for random and far deploy-
ments indicating that the sensors did not converge onto the
contour in these cases. In summary, we see that RCE is
low for the MCD algorithm for all the deployments. That
is, MCD algorithm did not display sensitivity to the type of
deployment in this configuration.

Figure 5 indicates the latency was the least for the reg-
ular deployment when the sensors were deployed inside the
contour for the MCD algorithm. Therefore for low latency
requirement, using MCD algorithm as the movement strat-
egy with regular deployment is preferable. In summary, the
MCD algorithm had least value for RCE and latency com-
pared to the other strategies and was found to be sensitive
to deployment.

6.3 Variation of Performance with Number of
Sensors

Next, we studied the variation in performance for ran-
dom deployment and convex contour and the results are as
shown in Figure 6. For the MCD algorithm, except for the
case where N = 1, the RCE values were uniformly small
as N varied. This indicates that the MCD algorithm is not
sensitive to varying number of sensors for RCE in the given
configuration. Greedy Algorithm and Simulated Annealing
strategies exhibited high RCE values for lower number of
sensors and RCE decreased as number of sensors were in-
creased. This indicates that the MCD algorithm achieves
high accuracy of estimation with a lower number of sensors.

The graph for latency variation in Figure 6 indicates that
SA displayed lowest latency values for higher values of N .
We notice that RCE and latency for the MCD algorithm is
indeed small even with a small number of sensors and does
not vary much with increase in number of sensors. This im-
plies that a high accuracy can be attained with a smaller
number of sensors for MCD. However, as the number of
sensors increases, RCE and latency decrease sharply for SA
and the latency for MCD shows a slight increase as shown in
Figure 8. This behavior can be better explained by count-
ing the number of sensors that actually converged in each
strategy at the end of converge phase. Our simulation in-
dicated that this number was the highest for MCD. Since
latency is the maximum path length of converged sensors,
it tends to be high for MCD algorithm since on an average
more sensors converged on to the contour. However, when
large number of sensors are deployed, it may be sufficient for
only a fraction of the sensors to arrive at the contour and
trace it. We experimented by terminating the movement
of all sensors when half the deployed sensors converged at
the contour and measured the RCE and latency. In this
case, the MCD algorithm had a significantly lower latency
and RCE and performed better than the SA algorithm. The
plot for these observations has not been provided due to lack
of space.

6.4 Variation of Performance with Different
Contours

Figure 7 depicts the variation of the metrics with different
contours for random deployment and N = 10 sensors. The
MCD algorithm has the overall lowest RCE and latency for
various contours. This indicates that the MCD algorithm is
not sensitive to the shape of the contour.



Figure 5: Performance Vs. Deployment for N=10 and Convex Contour

Figure 6: Performance Vs. Number of Sensors for Random Deployment and Convex Contour

6.5 Summary
Table 1 summarizes mobility strategy recommendation for

various combinations of parameters considered in this paper.
High accuracy requirements imply low RCE. The MCD al-
gorithm has the lowest RCE for all deployments and contour
types. Low energy available for mobility translates to low
latency requirements. MCD algorithm displays overall low
latency values for regular and random deployment. In envi-
ronments where regular deployment is possible, using MCD
algorithm as a movement strategy would reduce latency ir-
respective of the type of contour, with smaller number of
sensors. However, in those cases where only random deploy-
ment is possible, restricting the number of sensors that need
to converge before the coverage phase begins reduces the la-
tency and MCD algorithm works out to be a better strat-
egy. We also measured the mean square deviation (SPMSE
- Shortest Path Mean Square Error) of the path length in
converge phase (number of steps) of those sensors that con-
verged onto the contour (over nsim simulations) from the
geometric shortest path length (we measured the distance
from the initial starting point of the sensor to the point
where the sensor landed at the end of converge phase on
the contour). We found that the MCD exhibited a smaller
deviation when compared to SA as shown in Figure 8. For
most cases, the deviation was found to be between 20 - 40%.

7. RELATED WORK
Boundary detection and estimation using a network of

static sensors has been studied extensively in the recent past
[3]. The authors in [7] derive a theoretical bound on the
number of sensors needed in a lattice network of static sen-

sors to achieve a certain accuracy. In [8] the authors explore
the use of mobile sensors to improve the quality of mea-
surement by ensuring that there are enough sensors in a
pre-specified critical region. The task is to push more sen-
sors into the critical region in the shortest possible time.
However in our scenario, the position of the points on the
contour is not known to the sensors. The work in [9] and
[10] is close in spirit to ours where the authors use a static
sensor network to guide a swarm of mobile sensors. In [9],
the mobility is modeled based on group mobility vector (di-
rection of the swarm as a “whole”) and individual mobil-
ity vector (generated using random wave-point model but
within the group boundary). In this paper, we follow a dif-
ferent approach where in the sensor movement direction is
not random but determined by the gradient of concentra-
tion in its neighborhood. The sensors do not “know” the
destination a priori. In [10] the authors propose “Robo-
Motes” for contour tracking in a scenario where a single
mobile node collaborates with a static sensor network for
contour detection. However, in our simulation, we use mul-
tiple mobile nodes as well as the local gradient information
to optimally move towards the contour. In [11], the authors
discuss isobar estimation using in-network aggregation in a
static sensor network whereas our work focuses on a mobile
sensor network.

8. CONCLUSION AND FUTURE WORK
In this paper we considered the problem of estimating a

contour of a given pollutant concentration in a region of
varying pollutant concentration using controlled mobility of
sensors. We defined performance metrics for the mobile sen-



Figure 7: Performance Vs. Contours for N = 10 and Random Deployment

Figure 8: RCE/Latency Vs. Number of Sensors and Deviation From the Shortest Path

sor network and compared the strategies for different com-
binations of parameters. For the various configurations we
considered, the MCD algorithm exhibited the least sensi-
tivity to parameters and had better accuracy and latency
values compared to the other strategies.

As part of our ongoing work, we intend to relax the as-
sumption of the knowledge of the interior point and use es-
timates of an interior point to arrive at the contour. We
also intend to introduce communication cost to our mobil-
ity model. Finally, we plan to validate our simulations with
an experimental test-bed in the near future.
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Deployment Number of Sensors Contour Type RCE Latency Combined
Regular (d = 200) Low (N = 10) Convex (T = 121) MCD MCD MCD
Regular Low Non-convex (T = 51) MCD MCD MCD
Random Low Convex MCD MCD MCD
Random Low Non-convex MCD SA MCD
Regular High (N = 80) Convex MCD MCD MCD
Regular High Non-convex MCD MCD MCD
Random High Convex MCD MCD MCD
Random High Non-convex MCD SA SA

Table 1: Suggested movement strategy for different combination of parameters


