
Real-time Event Handling in an RFID Middleware
System

Kaushik Dutta1, Krithi Ramamritham2, B. Karthik2, and Kamlesh Laddhad2

1 College of Business, Florida International University, Miami, FL
2 Indian Institute of Technology Bombay, Mumbai, India

Abstract. Radio Frequency IDentification (RFID) tags have emerged as a key
technology for real-time asset tracking. Wide application of RFID leads to huge
amounts of data being generated from scan of each of these RFID tags on indi-
vidual items, for example, the RFID system of a moderate size retail chain will
generate 300 million RFID scans per day. Extracting meaningful information out
of this huge amount of scan data is a challenging task. Moreover CIOs are looking
for real time business decision from this RFID scan data. In this paper we show
how to add value to an RFID middleware system by enabling it to handle a large
number of RFID scan data and execute business rules in real-time. Experimen-
tally we demonstrate that our proposed approach is very time efficient compare to
a similar implementation with existing technologies. Lastly we also propose an
architecture for a distributed RFID middleware system to handle raw RFID scan
data.

1 Introduction

RFID is an automated identification technology that allows for non-contact reading of
data [1], making it attractive in verticals such as manufacturing, warehousing, retail [2,
3], logistics, pharmaceutical [4], health care [5] and security. RFID systems are foreseen
as replacement to the legacy bar code system of identifying an item. One of the major
advantages of RFIDs over bar codes is that it is a non-line-of-sight technology - thus
every item need not be handled manually for reading. In addition, RFID readers can
read tags even when they are hidden. However, wide application of RFIDs leads to
huge amounts of data being generated from the scan of these RFID tags on individual
items; extracting meaningful information out of this huge amount of scan data is a
challenging task. Moreover, today’s CIOs are looking for real time business decisions
based on RFID scan data. For example, in the retail case, when the sale of a product
within an hour crosses a threshold, to avoid out of stock situations, a store manager
may want more products be ordered for the inventory. In a hospital, when the drug to be
given to a patient is considered along with the particulars of an ‘RFID tagged’ patient,
the doctor or the nurse can be informed of drug interactions with the drugs the patient is
currently taking. Once RFID tags are scanned and subsequently analyzed at the back-
end, such decisions are definitely possible in today’s technology. However with RFID
technology, users want real-time information to take a decision on the spot, e.g. users
of an online e-commerce site may want to know, in real-time, details of what stage of
production an on-demand produced item is.

In this paper we develop and present the architecture of a system that will allow
businesses to take real-time decisions on the basis of huge amounts of data generated
by the RFID scans.

To further motivate our work in the next section we briefly describe a case study on
the deployment of RFID technology in supply chain scenarios from Harvard Business
Case studies [6] and explain how our research can help in this scenario.

1.1 A Motivating Scenanio

Consider a Supermarket; Metro Group (MG). Let us assume supply to MG follows this
route: Manufacturers make pallets containing cases of same products and send them to
distribution centers (DC). At the DC, these pallets are reassembled into mixed pallets
and then sent to different stores of MG. Pallets arrive at stores in accordance with the
need specified by that store. Similarly, the pallets arrive at the DC in accordance with
the requirement from the DC. Using bar codes, mistakes happen while counting the
number of pallets loaded on to a truck at the manufacturer’s site or the kinds of cases
transferred to the mixed pallet at the DC. All these result in slowing down the process,
revenue loss or out of stock position at the stores [6].

To overcome such problems, pallet-level and case-level RFID tagging is used. The
pallets leaving the manufacturer’s site are tagged. They are loaded on to the truck and
the RFID reader counts the number of pallets being loaded. At the DC, pallets are
reassembled into mixed pallets. This can be automated with the help of RFID tags.
Thus, mistakes in packing the cases into the right pallets, will be reduced. Reassembled
pallets are now sent to the stores. These pallets are received at the backroom of the store
and are opened and verified for correct configuration using RFID readers.

The cases are kept at the backroom before replenishing the shelf when the store
closes. When the number of items at the shelf for a certain product falls below a thresh-
old, it is refilled from the backroom. This must be done in an automated way. The
employees may not always remember the number of items remaining on each shelf.
Thus, an indicator might inform the backroom to refill a certain item as its number falls
below the threshold.

Also, keeping excess stocks of all items in the backroom is not advisable. Thus,
ordering for new stocks should happen if the number of cases of that product in the
backroom is below a threshold. All these processes could not be efficiently handled
by human beings. At the shelf, sensors can be monitoring the conditions (e.g., tem-
perature for food items). Alarms can be raised if conditions worsen for a certain item.
Items which are about to expire can be identified for an extra discount. These can be
automated as the RFID tags may contain the item’s expiry date.

RFID Enabled Tasks In this paper we develop an event based RFID system that will
enable us to observe and detect the state of the system and take actions accordingly in
real-time. Our proposed approach will enable the RFID middleware system of MG to
address the following business rules.

1. If the number of items on a shelf goes below a threshold, send an alert to the
backroom.

2. If the number of items in the backroom is below a threshold, send an alert to the
store manager, or ask DC to send the item.
3. If the DC is out of stock for an item, a request for a new supply for the item should
be sent to the manufacturer.
4. If the DC has already dispatched the item in the last consignment to the store,
recognize this and alert the store manager.
5. If the temperature of a food item is being monitored by a sensor and it observes
abnormal temperature variations such that the item placed in that shelf can not be kept
in such situations, alert the concerned authority about this problem.
6. If a certain food item kept on a shelf is about to expire, make visual announcements
that the cost has been reduced.

Challenges in Exploiting RFID Full utilization of the RFID system deployed in MG
will occur only when these events (e.g., number of items on a shelf going below a
threshold) can be detected and respective action (e.g., send an alert to the backroom) be
taken in the least possible time. Some of the key challenges in developing such a system
are,
(i) The number of RFID events is huge. Every scan by RFID scanner generates an event,
leading to large number of such events from which identifying a particular event (e.g.,
number of items on a shelf goes below a threshold) is a challenging task. Following
the example given in [7] (which is also very much applicable in MG case), suppose
the retailer with 3,000 stores sells 10,000 items a day per store. Assume that we record
each item movement with a tuple of the form: (EPC, location, time), where EPC is an
Electronic Product Code which uniquely identifies each item. If each item leaves only
10 traces before leaving the store by going through different locations, this application
will generate at least 300 million tuples per day. Extracting meaningful information
from this 300 million tuples is the challenge.
(ii) The event should be detected in the least time possible for real time business deci-
sions to be taken. The time difference between a shelf becoming almost empty and the
time by which the shelf is replenished from the backroom should be as small as possi-
ble. So, nightly or periodic batch processing of such huge number of data will not serve
the purpose. The problem is more complex when the RFID system is distributed, where
both generation of events and detection of events happen in various systems distributed
geographically at various locations.

In the next section we describe the related work. In Section 3, we develop the event
based model for RFID system. In Section 4, we describe the detailed architecture and
approach. In Section 5 we describe an implementation of RFID event handling system
using relational database. We experimentally demonstrate the performance of our sys-
tem in Section 6. In Section 7 we explain how our proposed approach can be extended
in a distributed system. Lastly in Section 8 we conclude the paper.

2 Related Work

Recently, a number of RFID middleware systems have attracted industry attention [10–
12]. The event handling mechanism in these RFID systems is very rudimentary in na-

ture, based on Java’s event handling mechanism. In general they can handle very simple
basic events e.g., raw RFID scans. They do not have any infrastructure to handle large
number of complex events including events that combine RFID scans along with other
environmental conditions such as temperature. In real life business scenarios, however,
it is very natural to look for complex events. Developing an infrastructure to answer the
questions mentioned in Section 1.1 will require elaborate system development effort in
these systems and will not be efficient.

Research on active database systems and event-condition-action model seems rel-
evant to large extent. In this, some of the important work to mention are [13, 8, 14].
Because the nature of events in active databases and RFID systems is different, we can
not directly apply any of the existing research, however we have borrowed several con-
cepts from these areas to apply in our system, e.g., we borrowed the idea of indexing
events on the basis of parameter values as proposed in [15]. The key differences be-
tween an RFID system and active database systems are (i) the number of events to be
monitored is huge in RFID systems compared to typical active database systems (ii) the
events in RFID systems are more complex in nature linking several events (including
non-RFID events) together to form composite events and (iii) to achieve the desired
business goal real-time response is required in RFID event handling systems. These
differences make the handling of RFID events a challenging goal in it own right.

With respect to research related to real-world event handling, from [9], we bor-
rowed the idea of representing complex RFID events with the help of state diagrams.

In [16–18], authors proposed pre-processing of raw RFID scan data for cleaning
such as identifying missing data and detecting outliers. We show how the data-cleaning
as proposed in these can be integrated with our proposed system. In [19], authors pro-
posed a security mechanism for RFID data, which is orthogonal to the research of this
paper.

In essence, though we borrow some of the concepts from existing research work,
so far there has not been an end-to-end solution proposed in either academics or in
industry to handle large number of RFID events generated from RFID scans and hence
this research.

3 Events in RFID Systems

According to Wikipedia, an event is something that takes place at a particular place
and time. For software systems, an event is something that needs to be monitored and
may trigger a specific action. Specifying an event is therefore providing a description
of the happening. Following [8], each RFID event can be described with some set of
dimensions which includes source of event, event granularity, location of event, time
at which the event occurred and a possible set of operations for combining events. An
Event can be of primitive type or composite type. A primitive event occurs at a particular
place and time. A composite event is a combination of a number of such primitive
events linked by predefined operators (e.g., AND, OR, NOT etc.) [9]. In addition to this
classification, in an RFID system, we define two types of events - Basic Events and
Events of Interest.

3.1 Basic Events

A basic event (be) is an event generated by a source, e.g. an individual scan of RFID tag
affixed to an object in the system. Following [9] and [7] a basic event(be) can be defined
as a tuple (L, S, T) where L is the label dimension containing details of the event, S is
the location dimension of the event occurrence and T is the time dimension at which the
event occurs. As for example, going back to our example of MG’s supply chain system,
consider the following situation: An object o is being loaded on a truck in a warehouse
at location s at a certain point of time t. This object gets scanned by different readers.
Scan of this object by a reader attached to truck at time T = t at location S = s is a
basic event generating a tuple (l, s, t). The label l will contain details of the object o
such as the scanned RFID tag number of manufacturer details.

In an RFID system a basic event (be) can be generated in four ways.
Object Scan: A RFID reader scans a RFID tagged object and generates the basic
event, which is termed as RAW RFID event [7]. The RFID scan generates the label
L and the scanner id. The location S can be derived from the RFID database [20]
that contains the information about the location of the scanner corresponding to the
scanner id and the time when the scan happened. The time (T) will contain when the
actual event occurs.
Clock: A clock event is raised at some point in time independent of objects and other
state of the system. The clock time can be absolute (e.g. 15th of August at 7:55 AM),
relative (the next day after the match), or periodic (every day at 11:30 PM). The label
of a clock event will just identify it as “CLOCK” event. The location (S) will remain
empty in case of Clock event.
External: An external event is raised by a happening outside the system, which in-
cludes environmental conditions (e.g., the temperature of the hall/room goes above
30 degrees Celsius). Typically such external events will be generated by various sen-
sors deployed in a system e.g., temperature sensor. The label of the external event will
contain sensor data e.g., temperature value in case of temperature sensor. The location
will identify the location of the sensor which can be derived from a separate sensor
database. The time will identify, when the sensor generated the external event.
Internal: An internal event is related to internal state change of the system at time t.
The internal event can be the effect of cascading action of some basic event which got
fired by one of previously defined three ways. These are mostly program generated
events. The label(L) of an internal event will identify the details of the event such as
“Number of Items > 100” or “Average Price of item sold > 40”. The location (S) of
an internal event will identify the generator i.e., the particular systems or applications
that is generating this internal event. The time(T) will denote the time at which such
an event is generated.

3.2 Events of Interest (EI)

Events of Interest (EI) are the events which need to be monitored. EI can be of two
types (i) primitive EI and (ii) composite EI.

Primitive EI A primitive event(pe) can be defined as a tuple (L, S, T) where L is the
label containing details of the event, S is the location of the event occurrence and T is
the time at which the event occurs. However, unlike basic events, in case of primitive
EIs each of this may or may not be pointedly specified.

The label of a primitive EI is an indication of range of products, items or objects for
which this event has been defined. This may include a particular supplier, a particular
product from a particular supplier, etc. Since the EPC is a hierarchical representation of
entities in supply-chain, we can use bits of EPC code to define label for primitive EI in
case RFID tag contains the EPC code.

The time of a primitive EI is an indication of a range of time e.g. morning 8AM-
10AM or today or month September. As a specific case the time of a primitive EI may
be a specific time at the granularity at which it is defined in the basic event, e.g., 7.00
AM 29 Sept 2006.

The location of a primitive EI is a region that may contain one or more locations at
the granularity of basic events, e.g., a basic event may occur at a scanner located at the
distribution center in Miami, whereas an EI may be specified as a scan in a distribution
center in South Florida region which contains the distribution centers both in Miami
and Tampa.

For example, in the following p1
e is a primitive EI.

p1
e = (L = {product type = #54567},
S = Shelf#583, T =′ Morning′)

Here the primitive EI p1
e is looking for product with “product type” as “#54567” defined

in the label (L). The location (S) dimension of EI p1
e is defined by the shelf number

“#583”. The time (T) is morning.

Composite EI A composite EI(oe) is a combination of multiple primitive EIs (pe) or
multiple composite EIs linked by operators drawn from the following set [13].

AND (∧): Conjunction of two events E1 and E2, denoted as E1 ∧ E2, occurs when
both E1 and E2 occur (the order of occurrence of E1 and E2 is irrelevant).
OR (∨): Disjunction of two events E1 and E2, denoted as E1 ∨ E2, occurs when
either E1 or E2 occurs.
SEQ (⇒): Sequence of two events E1 and E2, denoted by E1 ⇒ E2, is when E2

occurs provided E1 has already occurred. This implies that the time of occurrence of
E1 is guaranteed to be less than the time of occurrence of E2.
NOT (!): The NOT operator, denoted by !(E1, E2, E3), detects the non-occurrence
of the event E2 in the closed interval formed by E1 and E3. It is rather similar to the
SEQ operator except that E2 should not occur between E1 and E3 [13]
Relative periodic (Rp): An event E2 which occurs periodically with specified fre-
quency after event E1 has occurred till event E3 occurs. This can be indicated as
P (E1, E2, E3).

Composite EIs are reactive. Some action is associated with such events and every time
such events occur, the system identifies them and executes these actions. Following
ECA model [8], a composite EI has three parts (i) event definition (ii) condition and
(iii) action to be executed.

Event Definition: The composition of EIs to create a composite EI is defined here, e.g.,
o1

e = p1
e ∧ p2

e is the event definition of composite EI o1
e which links two primitive EIs p1

e

and p2
e by ’AND’ operators. The derivation of L, S and T dimensions of composite EI

o1
e from dimensions of EI p1

e and p2
e is done following [9]. Note that, the event definition

of a composite EI can be expressed as a regular expression of multiple EIs. Thus the
event definition of a composite EI can be represented as a state graph (DFA for regular
expressions) as shown in [9]. We will use this event state graph of an EI in section 4.1.
Condition: For a given composite EI, condition is a side-effect free boolean compu-
tation or set of boolean computations on dimensions (L, S and T) of two or more
primitive EIs, which when evaluated as true may trigger an action associated with the
EI. The condition is not a mandatory specification. The result of condition is presumed
to be true if no condition is specified. Formally condition will be boolean combination
of multiple conditional elements of the form x⊗ y where,

⊗ ∈ {>,<,≥,≤, =, 6=}
x → qi

e.d.v

y → qj
e.d.v (1)

Where qi
e and qj

e are EIs (primitive or composite), d is one of the dimensions label(L),
location(S) and time(T) of EIs qi

e and qj
e , and v is some attribute value of this di-

mension, e.g., company is one attribute of dimension label(L). Here v is an optional
item. If there is no v specified, the default value of the dimension is used, e.g., the
default value for the dimension label, L, corresponding to an RFID event on a prod-
uct will be the complete EPC code of the product. Note that, join conditions like
p1

e.L.company = p2
e.L.company is a valid condition for composite EI o1

e = p1
e ∧ p2

e,
whereas p1

e.L.company = “HP” is not a valid condition for composite EI o1
e, because

this is defined based on single primitive event and should have been represented in the
primitive EI p1

e itself.
Action: An action is arbitrary sequence of predefined operations which are executed
when the corresponding event gets fired on evaluations of associated conditions. Ac-
tions depend on the type of business where the system is being deployed.
Composite EI as a composition of composite EI: A composite EI may be composed
of two more composite events, e.g.

o3
e = o1

e ∧ o2
e

o1
e = p1

e

o2
e = p2

e ∧ p3
e

o3
e is a composite EI composed of two more composite EIs o1

e and o2
e. The event def-

inition of o3
e will be composition of o1

e and o2
e. The condition of o3

e can be separately
defined based on dimensions of o1

e and o2
e, whereas the individual condition of o1

e and
o2

e will be intact which will be evaluated before o1
e and o2

e triggers. Similarly the action
of o3

e will be separately defined whereas the individual action of o1
e and o2

e will remain
intact.

3.3 Example of ECA in MG

Here we present some examples of how the business rules regarding MG’s supply chain
system can be expressed as EI using ECA form.
Rule 1: When the number of items of product “54567” in the shelf “583” falls below a
threshold (let us say 5), then the backroom needs to be alerted.
This EI (o1

e) can be expressed in ECA form as follows.
Event:

o1
e = p1

e = (L = {product type = #54567}, S = #583, T = t1)

Here the composite EI o1
e contains single primitive EI p1

e. The primitive EI p1
e is looking

for product with “product type” as “#54567” defined in the label (L). The location (S)
dimension of EI p1

e is defined by the shelf number “#583”. The time (T) is t1, where t1
is anytime when the system will look for primitive EI p1

e.
Condition:

p1
e.L.count < 5

Here, we assume RFID reader has an attribute count. The value of count holds the num-
ber of items the reader would read for a given product-type.
Action: Notify backroom

Rule 2: The store manager wants the system to alert him when the temperature sensor
on a shelf “124” finds the temperature to be unsuitable for a certain item “54567”.
Event:

p1
e = (L = TEMP, S = #124, T = t1),

p2
e = (L = {product type = #54567}, S = #124, T = t2)

o1
e = p1

e ∧ p2
e

Here, p1
e and p2

e are primitive EIs with dimensions: (L, S, T), o1
e is the composite EI

denoting the event corresponding to rule 2. In this example, time denotes the time at
which the event occurs. Here we wait for only those events which satisfy the label and
location as specified above. The EI p1

e has label temperature from an external source
(temperature sensor) with location identifier indicating shelf #124, and the EI p2

e has
label RFID tag with source as RFID scanner located at shelf #124. When both of these
events occur the following condition is evaluated.
Condition:

(p1
e.L.temperature > 70 ∨ p1

e.L.temperature < 50)∧
(p1

e.T < p2
e.T + timethreshold ∧ p1

e.T > p2
e.T − timethreshold)

In the condition we check if the temperature is within a certain range and the time
difference between the two EIs does not exceed a threshold.
Action: Notify backroom

4 Architecture

Figure 1 describes the overall architecture of our proposed system. The key compo-
nent in this architecture is the RFID Event Handler (EH) and the Events of Interest
database(EIDB). Basic events are generated by various RFID sources (RFID reader)
and non-RFID sources (Clock, External and Internal). These basic events are reported
to EH. EIDB contains all EIs of the system. Based on incoming basic events, generated
out of RAW RFID scans by RFID readers, EH identifies matching EIs in the EIDB.
EH passes the identified EIs and the related basic events to the rest of the IT system. In
an RFID system as the number of basic events generated from RFID readers is huge,
the scalability of the EH is the biggest concern addressed by our design. In its simplest
form, EH is a centralized system. In complex systems, this EH may be a distributed sys-
tem. In this paper we primarily concentrate on the centralized EH and briefly describe
distributed RFID event handling mechanism in section 7.

Fig. 1. RFID Event Handler Architecture

4.1 EI Database

The EI database contains all EIs along with their respective details. In EIDB, EIs are
first broken into primitive events of interest (primitive EIs). Primitive EIs are stored and
maintained in EIDB in a multi-dimensional R-tree [21] structure. In each of the three
dimensions (L, S and T) of EI, the tree is formed by the semantic hierarchy similar to
R-tree. So we have three R-trees in the structure, e.g., if the label contains EPC code,
the hierarchy in the R-tree of label is defined by the EPC hierarchy. In the label di-
mension, a primitive EI with label “Compaq” will lie above a primitive EI with label

“Compaq-laptop”. Similarly in the R-tree of source dimension, the hierarchy is defined
by geographical hierarchy. A primitive EI with source (i.e. location of event) “Mumbai”
will stay above a primitive EI with source ”Powai” (a place in Mumbai). Such a hierar-
chy indicates, if a primitive EI p1

e is identified for “Powai”, another primitive EI p2
e with

source “Mumbai” and location & time same as that of p1
e should also be identified. In

the R-tree of time(T) dimension, the hierarchy is defined by natural hierarchy of time,
e.g. the EIs related to a particular time (e.g. 15th Oct 06, 8.00 PM) will reside below the
EIs related to a particular day (e.g. 15th Oct 06). Also against each primitive EIs m in
the EI tree, we maintain a list (Qm) of composite EIs that are composed of the primitive
EI m (for simplicity this list is not shown in the Figure 2).

Consider the following example of a set of primitive EIs.
p1

e = { L=Compaq-laptop, S= Mumbai, , T= Jan, ’06 }
p2

e = { L= HP-Printer 3650, S=Powai, T=15th Oct, ’06 }
p3

e = {L=HP-Printer , S=San Francisco, T=15th Oct, ’06, 8:00 PM }
p4

e = {L=Compaq, S=IIT Bombay, T=*}
p5

e = { L=*, S=IIT Bombay Convocation Hall, T=Every morning-Jan, ’06}.
These events are kept in the EIDB in a multi-dimensional R-tree as shown in Figure 2.
Whenever a basic event (be) arrives at EH, EH looks into the EIDB and does three tree
traversal one on each of the event dimensions - label, source and time. The traversal
on each of these dimensions results in three sets SL, SS and ST . Where SL is the set
of all primitive EIs that match with be on the label (L) dimension, SS is the set of all
primitive EIs that match with be on the location (S) dimension, and ST is the set of all
primitive EIs that match with be on the time (t) dimension. Next we compute the set
P = SL ∩SS ∩ST , where each primitive EI pe ∈ P matches with the basic event be in
all three dimensions L, S and T . NextQpe , the list of composite EIs, that are dependent
on primitive EI pe ∈ P is computed.

Handling Composite EIs The semantic of composite EIs can be captured by a state
transition diagram. The current state of a composite EI is maintained in the EIDB. The
state graph of a composite EI is give by G = (V, E) where V is set of all the possible
states for given composite EI and E is set of edges indicating occurrence of primitive
EIs which leads to state transition. The final states of the state graph G will denote the
occurrence of corresponding composite EI.

For example, a typical composite EI can be a combination of two or more primi-
tive events such as o1

e = p1
e ∧ p2

e. This specifies that when p1
e and p2

e both occur, the
occurrence of composite EI o1

e will be identified. However, this does not specify what
will happen if more than one p1

e occurs before occurrence of a p2
e. Both the Figure 3

and Figure 4 represents the composite EI o1
e. In Figure 3, once event p1

e has occurred all
subsequent occurrence of p1

e will be ignored unless a p2
e occurs. Whereas in Figure 4,

once p1
e has occurred, subsequent occurrence of event p1

e will lead to a state where con-
secutive two occurrences of event p2

e will result in the identification of composite EI o1
e

twice. Thus the event state graph of a composite EI will also help us to clarify these
details of the composite EI.

Fig. 2. R-Tree Structure of Primitive EIs

Fig. 3. State Diagram for Composite EI o1
e=p1

e ∧ p2
e

Handling Conditions in RFID ECA As explained in section 3.2, the condition part
of an EI is described based on dimensions L, S and T of the EI. Conditions are typ-
ically join conditions on multiple primitive EIs. Such conditions can result in mon-
itoring the same EI with different parameters. E.g., consider an EI o1

e = p1
e ∧ p2

e,
with condition p1

e.L.company = p2
e.L.company, which identifies two primitive events

on the product of the same company. The composite EI o1
e will be identified if two

events having the same company on the product label occur. Once primitive EI p1
e with

p1
e.L.company = company1 occurs how to store it efficiently so that occurrence of

p2
e with p2

e.L.company = company1 at some later time can be linker together very
efficiently.

Fig. 4. State Diagram for Composite EI o1
e=p1

e ∧ p2
e

This is an example of multiple instances of the same composite EI (o1
e) occurring

simultaneously for different companies. So we need to maintain multiple instances of
the state graph as well. Here we borrow from the implementation of “scalable trigger”
in [15]. We maintain single state graph of a composite EI. In an indexed structure
similar to the one proposed in [15] we keep each instance of the composite EI (oe)
along with following information - (i) Boe a list of all basic events related to a partic-
ular instance of the composite EI oe, e.g. basic events related to a particular company
(e.g., L.company), (ii) the current state in the event state graph for that instance of
the composite EI and (iii) values of fields (e.g., L.company) in condition clause (e.g.,
p1

e.L.company = p2
e.L.company) in each state transition. The structure is indexed on

the field values of condition clause e.g., in the example it will be indexed on l.company.
A sample of this structure is shown in table 1.

Instances
of EI

Basic
Events

Current State Field1 Field2 ...

Instance
1 of o1

e

bi
e, bj

e, ... Sa pi
e.L.company=“HP” pj

e.S.city = “Mumbai” ...

Instance
2 of o1

e

bm
e , bn

e , ... Sb pm
e .L.company=“Compaq” pn

e .S.city = “Miami” ...

Table 1. Multiple Instances of Composite EI

5 A Solution using RDBs

We are not aware of any RFID system that can identify complex events from input
stream of basic events. So to compare the efficacy of our approach we developed an al-
ternate approach of detecting EIs from input of basic events. In this section we describe
this “RDB” approach which primarily exploits and uses existing relational database
technology. In Section 6 we compare the performance of our approach with this RDB

approach. The details of the experiment can be found in section 6 where we compare
the performance of our approach with this RDB approach.

In the RDB approach all EIs are stored in a relational database and whenever a new
basic event occurs, this database is queried using standard SQL to get matching EIs.
The database schema to store EIs is as follows.
Composite event table:
CET = (oid

e , Composite EI expression, conditions, actions).
Primitive event table:
PET = (pid

e , location, time, label)
Primitive-Composite event map:
PCM = (oid

e , pid
e)

The CET table maintains definitions of all composite EIs. PET maintains all primitive
EIs that are part of these composite EIs and the table PCM maintains which primitive
EI is being used by which composite EI. We also maintain three tables namely Time,
Label and Space, each of which keep the dimension related abstractions mapped to ac-
tual values of corresponding dimension i.e., each of them has schema as (abstraction,
actual value) e.g. Time table will tell us ‘morning’ is ‘6:00 AM to 11:59 AM’, Space
table will tell us ‘Powai’ is part of ‘Mumbai’, and so on. Along with these, we maintain
a datastructure, an adjacency list (AL) of active composite EIs - all composite EIs that
have been partially fulfilled based on already occurred basic events. So AL maintains
the detail of all composite EIs waiting for one or more primitive EIs to occur. AL will
be empty when the system is initialized.

Having described our approach for real-time RFID event handling and a RDB ap-
proach, in the next section we compare these two approaches to experimentally demon-
strate the efficacy of our approach.

6 Experimental Results

In this section we experimentally demonstrate the efficacy of our approach of event
handling in an RFID middleware system. We study the experimental result from two
dimensions (i) performance of our approach (denoted as “R” approach) compared to
the RDB approach (ii) how the performance and scalability of our approach varies on
various parameters.

We developed the RFID EH system using JDK 1.5. We ran the system on a Windows
XP machine with pentium 2.8 GHz processor and 1 GB RAM. The EIDB database is
a main-memory data-structure of multi-dimensional R-tree. The input basic events are
simulated using a Java program communicating with the RFID EH using shared mem-
ory. The basic events are randomly generated by event simulator. The set of primitive
EIs in EIDB are randomly generated based on a predefined hierarchy of label, location
and time. The composite EIs are randomly generated by combining multiple primitive
EIs with operators defined in section 3. In RDB system, the database tables as defined
in Section 5 are created and populated with EIs in Oracle 10g Express Edition(XE) [22]
on the Windows XP machine. The Oracle 10g XE was set to use memory to store tables
and indices required for all experiments. This ensures that no disk access was required
in Oracle for the RDB approach. To ensure that same set of events are generated by

simulator in both RDB and our approach (denoted as “R” approach), same seed was
used for generation of random numbers in both the approaches.

The parameters of our experimental analysis are chosen as shown in table 2. During

Parameter Values Base
Value

Number of Composite EIs 2000 4000 6000 8000
10000

10000

Rate of incoming basic events
(number/sec)

50 70 90 110 130 50

Number of Primitive EIs per
Composite EIs

4 8 12 16 20 4

Table 2. Experimental Parameters

the experiment we measure (i) the time it takes to identify primitive EIs, we denote this
time as “Time to identify Primitive EI” (TP) (ii) the time it takes to identify compos-
ite EIs, we denote this time as “Time to identify Composite EI” (TC). The total time
required to process an input basic event will be the sum of TP and TC.

To compare the performance of our “R” approach with the “RDB” approach, we
first initialize the EIDB with 2000 composite EIs and we programmatically simulate the
basic event generation and send basic events to RFID EH at a fixed rate (50 basic events
per seconds). We continue this for 5 minutes. We note the TP and TC for each basic
event. We compute the average value of all TP and TC during the run for 5 minutes.
We repeat this process for each value of number of composite EIs in the EIDB as given
in Table 2. In all cases, we keep the rate of incoming basic events constant at the base
value 50 per seconds. We complete this experiment both for “R” and “RDB” case.

In Figure 5 and Figure 6, we plot the TP and TC respectively as it varies with the
number of composite EIs in EIDB. As can be seen, at any number of composite EIs
our approach provides much lower value of TP and TC compare to RDB approach. The
more number of composite EIs will require more search time in the R-tree in “R” case
and in the database in “RDB” case. Thus as number of composite EIs increases, the TP
increases both for “R” and “RDB” case. The improved performance of “R” approach
can be explained due to mainly two reasons (i) R Tree - The R-Tree approach of finding
primitive EIs is taking 1

3 rd time of that being taken by the SQL query in Oracle in-
memory database (ii) State Diagram - Representing composite EIs as state diagram
means maximum one operation per basic event to determine whether the composite EI
has occurred or not, whereas in “RDB” approach this requires computing the boolean
function based on matching primitive EI. As a result TC in “R” approach is 1

20 th of that
of “RDB” approach.

To demonstrate the scalability of our approach we kept the number of composite EIs
in EIDB constant at its base value 10000. We varied the rate of incoming basic events in
our system. For each value of rate of incoming basic events, we measured the total time
(TP + TC) required to process each basic event and average it over 5 minutes. We plot

5000

10000

15000

20000

2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(m

ic
ro

-s
ec

on
ds

)

Number of Composite EI

RDB
R

Fig. 5. Variation of TP with # EIs

0

50000

100000

150000

200000

250000

2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(m

ic
ro

-s
ec

on
ds

)

Number of Composite EI

RDB
R

Fig. 6. Variation of TC with # EIs

the total processing time with the rate of incoming basic events in Figure 7. The y-axis
denoting “Average Processing Time” (i.e., TP + TC) starts at 18900. As the incoming
rate of basic events increases the average processing time for each basic event increases
gradually, however one should note that the increase in processing time is very minimal,
from 19000 µseconds at 50 basic events per seconds to 19500 µseconds at 130 basic
events per seconds.

The complexity of composite EI should also affect the scalability of our system.
One way to measure the complexity of a composite EI is the number of primitive EI
it depends on as described in Section 3. We kept the total number of composite EIs in
EIDB constant at the base value of 10000, the rate of incoming basic events to 50 per
seconds and vary the average number of primitive EIs per composite EIs as described

18900

19000

19100

19200

19300

19400

19500

60 80 100 120

A
ve

ra
ge

 P
ro

ce
ss

in
g

tim
e

pe
r

B
as

ic
 E

ve
nt

 (
m

ic
ro

-s
ec

on
ds

)

Number of Basic Events per seconds

Fig. 7. Total Performance

in Table 2. For each value of average number of primitive EIs per composite EI, we
compute the average processing time of each basic event (TP + TC) over 5 minutes
and report it in Figure 8. The y-axis denoting the ”Average Processing Time” (i.e., TP
+ TC) starts at 18900 and the x-axis denoting the “Average Number of Primitive EIs
per Composite EI” starts at 4. It is obvious that as the complexity of the composite
EIs increases the system is taking more time to process each basic event and identify
corresponding composite EIs, however the increase in processing time is very minimal
compared to the increase in the complexity of composite EI - from 19000 µseconds at 4
primitive EI per composite EI to 19900 µseconds at 20 primitive EI per composite EI.

19000

19200

19400

19600

19800

4 8 12 16 20

A
ve

ra
ge

 P
ro

ce
ss

in
g

tim
e

pe
r

B
as

ic
 E

ve
nt

 (
m

ic
ro

-s
ec

on
ds

)

Average Number of Primitive EIs per Composite EI

Fig. 8. Performance with Complexity of Composite EI

Thus we can conclude that not only our approach of handling incoming RFID basic
events provides much improved performance compared to “RDB” approach based on
latest technologies, our approach also scales very well with increased rate of incoming
basic events and the complexity of composite EIs giving real-time performance (few
milliseconds) in all scenarios.

7 Handling Distributed RFID Events

So far in the paper we have assumed a single instance of RFID EH where all RFID
basic events are being gathered for identifying and handling EIs. If the number of event
sources (i.e. RFID scanners) increases, both the number of basic events and EIs will
increase. This may result in performance degradation of the centralized event handler
system. Moreover in a centralized system, there is a potential risk of system failing
even with single failure. The performance of the system, scalability and reliability can
be improved by having a distributed event handling system. Moreover in real life sit-
uations raw RFID scans happen at distributed locations e.g. at various DCs or various
stores in case of MG’s RFID deployment scenario. Each DC and store will have their
own respective computer system to handle local data. Following this, in this section
we briefly describe a distributed RFID event handler system that processes local basic
events locally in local computer system and cooperate with other locations to address
global business rules, that spans across multiple DC or multiple stores.

Fig. 9. Distributed Event Handler

Figure 9 depicts a schematic diagram of a distributed event handling system, where
D1, D2,...,D5 are local RFID event handler (EH) in local computer (e.g. local computer
in DC). Local RFID basic events generated out of local RFID scanners are processed
by the corresponding local RFID EH. However there are some events that require mon-
itoring and combining basic events at two locations e.g. “the number of a pallets of a
particular color in all DCs in Powai should not go below a certain threshold”. To iden-
tify such EIs it is necessary to consolidate basic events from multiple locations. For this

in a simplistic brute force approach, basic events generated at location will be broad-
cast to all other locations. So each local computer system will be aware of basic events
in other locations. However the obvious drawback for such brute force approach is in-
creased overhead of communication cost. The communication cost can be reduced by
designating primary handler for each global EI (a global EI is an EI corresponding to
global business rules that require basic events from multiple locations) and keeping a
distributed directory of global EI along with its primary handler. A number of variations
of such approach can be borrowed from distributed cache architecture and invalidation
literature [23].

Fig. 10. Location based Hierarchy in Distributed Event Handling

Typically, geographically distributed enterprise systems follow organizational hier-
archy, e.g., in MG case, store specific systems communicate with the DC responsible
for a region. Computer systems at regional DC communicate with state-wide DC and so
on. In developing an efficient distributed RFID handler system we exploit such a hier-
archy in the enterprise distributed system. Even if such hierarchy does not exist in other
distributed systems of an enterprise, based on location we can create such hierarchy in
the distributed RFID EH system of the enterprise. We group the EHs located at geo-
graphically distributed locations based on “location” parameter, which coincides with
the location dimension (L) of an RFID basic event. An example hierarchy is shown in
Figure 10. Here, we group city based store EHs (Miami and Fort Lauderdale) on the
basis of the distribution centers (South Florida region) serving them.

RFID basic events may arrive at any EHs in the hierarchy. The EIs are also specified
at any EH in the hierarchy. An EI defined for a particular EH can have label dimension

specified at the same level in the hierarchy or below it, e.g., at the label dimension (L) of
any EI for EH at South Florida can have one of following values South Florida, Miami
or Fort Lauderdale. When an EI is defined at an EH, corresponding primitive EIs are
appropriately propagated to all respective EHs, e.g., when an EI oi

e = p1
e ∧ p2

e with label
dimensions p1

e.L=‘South Florida’ and p2
e.L=‘Central Florida’ is specified at the EH in

FL, the primitive EI p1
e is passed to EH in South Florida and subsequently to EHs in

Miami and Fort Lauderdale. Similarly the primitive EI p2
e is passed to EH in Central

Florida and subsequently to EHs in Tampa and Gainesville. At each level primitive
events are stored along with the EH where the EI has been originally specified, in this
case EH in FL for both p1

e and p2
e.

Assume a basic event be with L=‘Miami’ arrives at the EH in Miami. If EH iden-
tifies a match between be with p1

e in all dimensions (L, S and T) following the R-tree
structure described in section 4, the be and p1

e is passed to the EH in the immediate
higher level, here the EH in South Florida. When EH in South Florida receives this
message, it identifies that the p1

e is for EH in FL and accordingly it passes this to the
higher level until it reaches the appropriate EH in the hierarchy (in this case the EH in
FL).

Few noteworthy properties of this scheme are -
1. Basic events are screened at the level where a basic event is first reported. Thus
if a basic event does not meet any of the EIs in the system the basic event will not
be processed and propagated to the higher level in the hierarchy. This distributes the
identification of EIs across all EHs.
2. Conditions of an EI is evaluated where an EI is originally specified, e.g., in our
example any condition related to composite EI oi

e will be checked in the EH at FL.
3. Once a primitive EI is identified to match a basic event, intermediate nodes passes
the basic event and identified primitive EI to higher level. The identification of a prim-
itive EI for a basic event happens only once at the EH where basic event first arrives
in the system.
4. A single basic event may identify multiple primitive EIs and accordingly multiple
message may need to be passed to higher level.
5. Number of basic events processed at each EH is limited by the number of basic
events being first reported in the system at that EH, making it a very efficient scheme
for EI identification.

8 Conclusions

In this paper we described the architecture of a system that can handle large number
of incoming RFID events and identify events of interest in real-time. We developed an
event based model for RFID system using the ECA framework. We demonstrated that
our approach in identifying RFID events of business interest can perform significantly
better than an implementation using latest technologies. Lastly we described how our
approach can be extended in a distributed scenario. In future we intend to implement the
distributed architecture for RFID event handling mechanism and show the performance
of our proposed distributed architecture.

References

1. Glover, B., Bhatt, H.: Rfid essentials - theory in practice (2005)
2. IDTechEx: Rfid progress at wal-mart (2005)
3. TechWeb: Albertsons launches rfid initiative (2005)
4. RFID Journal: Rfids in pharmaceuticals (2005)
5. RFID Journal: Rfids in healthcare (2005)
6. Ton, Z., Dessain, V., Stachowiak-Joulain, M.: Rfids at the metro group (2005)
7. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing and analyzing massive rfid data

sets. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE’06).
(2006) 85

8. Paton, N.W., Dı́az, O.: Active database systems. ACM Comput. Surv. 31(1) (1999) 63–103
9. Nagargadde, A., Varadarajan, S., Ramamritham, K.: Semantic characterization of real world

events. In: DASFAA. (2005) 675–687
10. Hoag, J., Thompson, C.: Architecting rfid middleware. IEEE Internet Computing 10(5)

(2006) 88– 92
11. Sun Microsystems: Software solutions: Epc and rfid (2006)
12. IBM Inc.: Integrate your enterprise application with ibm websphere rfid middleware (2006)
13. Chakravarthy, S.: Sentinel: an object-oriented dbms with event-based rules. In: SIGMOD

’97: Proceedings of the 1997 ACM SIGMOD international conference on Management of
data, New York, NY, USA, ACM Press (1997) 572–575

14. Chakravarthy, S., Le, R., Dasari, R.: Eca rule processing in distributed and heterogeneous
environments. In: Proceedings of the International Symposium on Distributed Objects and
Applications. (1999) 330 – 339

15. Hanson, E., Carnes, C., Huang, L., Konyala, M., Noronha, L., Parthasarathy, S., Park, J.,
Vernon, A.: Scalable trigger processing. In: Proceedings. of 15th International Conference
on Data Engineering. (1999) 266–275

16. Rao, J., Doraiswamy, S., Thakkar, H., Colby, L.S.: A deferred cleansing method for rfid data
analytics. In: Proceeding of VLDB Conference. (2006) 175–186

17. Jeffery, S.R., Garofalakis, M.N., Franklin, M.J.: Adaptive cleaning for rfid data streams. In:
Proceeding of VLDB Conference. (2006) 163–174

18. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online
outlier detection in sensor data using non-parametric models. In: Proceeding of VLDB Con-
ference. (2006) 187–198

19. Song, J., Kim, H.: The rfid middleware system supporting context-aware access control
service. In: Proceedings of The 8th International Conference Advanced Communication
Technology, 2006. ICACT 2006. (2006) 4 pp.

20. Hoag, J., Thompson, C.: Architecting rfid middleware. IEEE Internet Computing 10(5)
(2006) 88 – 92

21. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD ’84:
Proceedings of the 1984 ACM SIGMOD international conference on Management of data,
New York, NY, USA, ACM Press (1984) 47–57

22. Oracle Inc.: Oracle database 10g express edition (2006)
23. Pong, F., Dubois, M.: Verification techniques for cache coherence protocols. ACM Comput.

Surv. 29(1) (1997) 82–126

