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Abstract

A real-time database is composed of real-time objects
whose values remain valid only within their validity inter-
vals. Each object in the database models a real world en-
tity. The freshness of these objects is maintained by update
transactions that sample the real world entities. The liter-
ature proposes various ways to derive a schedule of trans-
actions that preserves the freshness (also known as abso-
lute consistency) of these objects. But these approaches do
not take care of the mutual consistency of the objects, i.e.,
whether together they represent a logical state of the sys-
tem. We investigate the problem of checking whether, given
an update transaction schedule, a periodic query would be
able to read mutually consistent values. We propose solu-
tions for both single- and multiple-query cases in the pres-
ence of non-preemptable query executions. Specifically, we
first investigate formulas that give the maximal value of mu-
tual gaps among a set of data read at a certain point in time.
(A mutual gap for two object values read from the database
refers to the difference between the times at which the two
objects were updated.) We then propose design approaches
to (1) decide the period and relative deadline of a query
so that it would guarantee mutual consistency; (2) decide
if a given set of queries with relative deadlines and periods
can guarantee mutual consistency. Finally, we suggest ways
of reducing the complexity of our proposed approaches for
both harmonic periods and general cases.

1 Introduction

A real-time database is composed of real-time objects
which are updated by periodic sensor transactions. An ob-
ject in the database models a real world entity like the po-
sition of an aircraft, whose state may become invalid with
the passage of time. Associated with the state is a temporal
validity interval. It is the responsibility of the update trans-
actions to maintain the freshness of the objects by refreshing
them before their temporal validity interval expires. There
are many approaches proposed in literature to determine

a schedule for the update transactions that maintains the
freshness of objects [22, 16, 9, 23, 24]. But these schedules
just concentrate on maintaining the individual freshness of
the objects without paying any regard to their relative fresh-
ness (also known as mutual consistency). This might result
in the presentation of an incoherent view of the system.

The need for mutual consistency is motivated by the ob-
servation that many objects may be related to one another
and that the system should present a logically consistent
view of the objects to any query. The need for mutual
consistency is apparent in the web domain, for example,
on newspaper websites carrying breaking news stories that
consist of text objects accompanied by embedded images
and audio/video clips. Since such stories are updated fre-
quently (as additional information becomes available), the
source serving the request has to ensure that any cached ver-
sion of the text is consistent with the embedded objects.
Similarly, while delivering up-to-the-minute sports infor-
mation, it has to be ensured that the cached objects are mu-
tually consistent with each other. In real-time databases,
the values of the objects sampled by different sensors may
be related to one another. Thus, it is important to preserve
the relative freshness of these objects in addition to their in-
dividual freshness. This motivates the work reported here.

We address the question of mutual consistency between
objects in this paper. Instead of proposing a schedule that
preserves both individual as well as mutual consistency we
look at a related problem of determining whether a given
schedule of queries and updates maintains the mutual con-
sistency among the objects.

There are already various approaches proposed to main-
tain mutual consistency in the web domain, e.g., see [20].
Let us first review the mutual consistency semantics. For
simplicity, the definitions are given for two objects but they
can be generalized for n objects. Consider two objects a
and b that are related to each other and updated by trans-
actions 1 and 2, respectively. The database versions of the
objects a and b at time t, i.e., Da

t and Db
t , are defined to

be mutually consistent in the time domain if the following
condition holds

if Da
t = Aa

t1 and Db
t = Ab

t2 then |t1 − t2| ≤ δ



where Aa
t refers to the correct version of the object a at time

t. For example, say the object is the altitude of an aircraft
and at time t1 the aircraft was at an altitude x. It is possible
that at time t (t1 < t) the database version reads x. So Da

t =
Aa

t1 means that the version of the object in the database at
time t is actually the correct version at time t1. We refer to
|t1 − t2| as the mutual gap between the two transactions 1,
2. Assuming that the transactions update the database with
the current version, for each object a, Da

t = Aa
t1 where t1

is the time at which the value of a was last updated. So
the mutual gap between the two objects a and b is just the
difference in the time when they were last updated by their
respective update transactions.

In this paper, we propose novel solutions for guarantee-
ing mutual consistency in the presence of non-preemptable
query executions. The main contributions of the paper are:

• Formulas that give the maximal value of mutual gaps
among a set of data reads.

• A design approach to decide the period and relative
deadline of a query so that it would guarantee mutual
consistency.

• A design approach to decide if a given set of queries
with relative deadlines and periods can guarantee mu-
tual consistency.

• Methods of reducing the complexity of our proposed
approaches for both harmonic periods and general
cases.

In what follows, we show the solution approach to the single
query case in Section 2 and also investigate it empirically
through various experiments. Section 3 looks at a solution
for the multiple-query case and in Section 4 we see how
harmonic periods can improve our solution. We then look
at some related work in Section 5 and present conclusions
in Section 6.

2 Checking Single Query for Feasibility

We begin by formally stating the problem along with the
assumptions made. Let {Xi}m

i=1 be a set of real-time data.
The validity of each Xi (1 ≤ i ≤ m) is maintained by an
update transaction τi. Let Di, Pi, Ci, (1 ≤ i ≤ m) denote
the relative deadline, period, actual execution time of trans-
action τi, respectively. Assume that Di ≤ Pi according to
the More-Less approach in [22]. The Di’s and Pi’s together
represent the schedule of the transactions.
The problem: Given a periodic query with relative dead-
line D, period P , and execution time C, determine if a
given schedule of update transactions can preserve the mu-
tual consistency requirements of that query.

The assumptions made to derive a solution for the prob-
lem are listed below:

T T+Pi T+2PiT+Pi+DiT+Di T+2Pi+Di
t
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Figure 1. If we are reading the object at time t,
the earliest possible time of update in this example
would be T + Pi

• There is a single valid version of the objects and the
queries only read valid values.

• All the data are read by an instance of the query at its
start time.

• It takes no time for queries to read the values.
• An object is sampled at the time of updating the object

in the database.
• The query and the transactions run on separate CPUs.
• The queries considered are non-preemptable.

2.1 Intuition

Since the schedule of the update transactions in the form
of periods and relative deadlines is already known to us,
our strategy is to derive a formula that gives the maximum
value of the mutual gap (µ (t)) at all points on the timeline
i.e., at all instances of time beginning with 0. Time 0 is
the instant at which all the transactions commence syn-
chronously. Then we check the value of P and D to see
if our query can avoid reading data at those points where
µ (t) is greater than the mutual consistency requirement (δ).
The same strategy can be modified to choose a suitable P
and D for the query.

2.2 Computing µ (t), the Mutual Gap

Supposing the objects X1 and X2 are related and there
is a mutual consistency requirement on them. We are inter-
ested in the µ (t) at any time t, between X1 and X2. To do
that, note that we only need to know the earliest and latest
time before t, when the current values being read could have
been updated. For that we first look at two possible cases of
“time of update”. Case I assumes that the time of update of
objects is the commit time of transaction. Case II assumes
that the objects could be updated before the commit time of
transactions; Assuming that the update will commit, there
is no risk of a dirty read and hence we also assume that the
query can read the updated object before the corresponding
update transaction has committed. We look at the cases in
order.
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Figure 2. If we are reading the object at time t1,
the latest possible time of update would be T + Di,
in case of t2 it would be t or T + Di respectively
depending upon whether T + Pi + Ci ≤ t2 or not.

Case I

Here we assume that the value cannot be updated earlier
than the commit time of the transaction. Consider Figure 1
for example, if the data is read at t, it could not have been
written earlier than T + Pi + Ci, where T , Pi, Ci are the
starting time, period and actual execution time of the trans-
action τi, respectively.

Basically if there is an instance of a periodic transaction
that has its deadline before t, you cannot have the earliest
update of the data available to the query at time t, started
before the time of beginning of that instance, T +Pi in Fig-
ure 1. For values of t that appear before the commitment of
the first instance of an update transaction, there is no previ-
ous version of the data for a query to read. Hence it should
be easy to see that ei, the earliest possible time of update
for Xi, would be

ei = Pi · � t − Di

Pi
� + Ci;

if ei ≤ 0 then {
ei = ei + Pi ;
if ei > t then ei = undefined.}

For deriving li, the latest possible time of update for Xi,
consider Figure 2. We just want to know the time when last
update transaction committed before t and if it had at least
Ci time before t so that the update was over. Hence,

if Pi · � t
Pi
� + Di ≤ t then li = Pi · � t

Pi
� + Di;

else if Pi · � t
Pi
� + Ci ≤ t then li = t;

else {
li = Pi · � t

Pi
� − Pi + Di;

if li < 0 then li = undefined. } �

Case II

After reading the derivation of µ (t) for the above case, it
should not be difficult to do it again. In this case, the only
difference is that the time of update is not constrained to be
at the commit time, the value could have been updated at
any time during the transaction execution. So, in the situa-
tion of Figure 1, the earliest possible time becomes T + Pi

t%30 µ (t) t%30 µ (t) t%30 µ (t)
0 8 10 8 20 13
1 8 11 8 21 13
2 8 12 8 22 13
3 16 13 11 23 21
4 17 14 12 24 22
5 18 15 13 25 8
6 18 16 13 26 8
7 18 17 13 27 8
8 18 18 13 28 8
9 18 19 13 29 8

Table 1. The µ (t) values given periodically
mod 30, for P1 = 10, D1 = 5, C1 = 2, P2 =
15, D2 = 10, C2 = 2, derived using Case I.

t%30 µ (t) t%30 µ (t) t%30 µ (t)
0 15 10 10 20 20
1 16 11 11 21 21
2 17 12 12 22 22
3 18 13 13 23 23
4 19 14 14 24 24
5 20 15 15 25 10
6 21 16 15 26 10
7 22 17 15 27 10
8 23 18 15 28 10
9 24 19 15 29 10

Table 2. The µ (t) values given periodically
mod 30, for P1 = 10, D1 = 5, C1 = 2, P2 =
15, D2 = 10, C2 = 2, calculated using Case II.

instead of T + Pi + Ci. In general,

ei = Pi · � t − Di

Pi
�;

if ei ≤ 0 then {
ei = ei + Pi;
if ei > t then ei = undefined.}

To derive the latest possible time, unlike in the previous
case, we do not have to worry whether the last transaction
of interest had enough time to commit before time t. Thus,

li = min
(
Pi · � t

Pi
� + Di, t

)
. �

Hence the maximum mutual gap (µ (t)) for X1 and X2

would be

µ (t) = max {|e1 − l2|, |e2 − l1|} .

Table 1 shows the µ (t) for P1 = 10, D1 = 5, C1 =



2, P2 = 15, D2 = 10, C2 = 2 derived using Case I. Note
that only values mod 30 (= LCM (10, 15)) are shown, be-
cause they repeat with period 30, except for some small val-
ues of t, that come before the commitment of even the first
instance of the transaction, in which case µ (t) wont be de-
fined. The experiments reported throughout the rest of the
paper calculate µ (t) using Case I. t%30 stands for t(mod
30). Assume t ≥ 30 because for t in (0,29), µ (t) might be
undefined as explained above and discussed in Case I.

Table 2 shows the same thing for Case II. It is also as-
sumed that t ≥ 30 for the same reasons as discussed for
Table 1.

In case the mutual consistency is specified on a set, say
X1, . . . , Xk rather than just a pair, we will have the set of
earliest and latest possible times of updates, e1, . . . , ek and
l1, . . . , lk, respectively. Let emax, emin be the maximum
and minimum elements respectively in the earliest possible
time set and similarly define lmax, lmin. Then it should be
easy to see that

µ (t) = max {|emax − lmin|, |emin − lmax|}

2.3 Checking for Mutual Consistency

We have to check the value of P ,D,C (the period, rela-
tive deadline, execution time of the query) to see that all the
mutual consistency constraints are satisfied. Now any con-
straint would be applied on a set of data X1, X2, . . . , Xk.
Note that a constraint in this section means the mutual con-
sistency constraint unless it is specified otherwise. Let us
first look at the case when D, C are 0: the query would
read the values periodically at only the points divisible by
gcd (P, L), where L = LCM

({Pi}k
i=1

)
. Here we assume

that all data are read by the query at one instant and it takes
no time to read them. Therefore we only need to check for
the mutual consistency at such points on a timeline of L by
verifying that µ (t) ≤ δ. This checking can be done sepa-
rately across all other constraints as well since checking for
one constraint is independent of the other. For example in
the previous example shown as in the Table 1 a query with
period 15 can satisfy a mutual consistency requirement of
13 between X1 and X2. Now if D �= 0 and C < D, then
the query has a “slack” to execute, meaning there is a set of
points before the deadline when the query can start unlike
the previous case. These are the points where µ (t) < δ and
also there should be enough time for the query to finish ex-
ecution by the deadline. The point chosen should be such
that the other constraints are also satisfied, so in this case
the checking of all the constraints has to be done together
on one timeline which would be the LCM of the individ-
ual timelines of all the mutual consistency constraints. This
way on the same timeline we could write all the µ (t) values
necessary and then check if all the constraints are satisfied.

2.4 Choosing a Suitable P or D

Besides checking for feasibility given P and D, we can
also examine how good a given value of P is by calculating
the minimum value of D for which the query satisfies the
mutual consistency constraints. This can be done just as in
the feasibility checking, instead of checking if there is one
point in the given slack, you now check for the minimum
slack at each point where the query could arrive and the
maximum of all of this is the D necessary.
It might also be useful to know the shortest P that will work
given the relative deadline D. To do this just calculate the
points on the timeline which are intolerable in terms of the
mutual consistency constraints. Then find out those points,
using the value of D, at which the query should not start,
i.e., starting from those points there is no point within D
slack that can satisfy mutual consistency. They appear as
a set of intervals viz. (a1, b1), (a2, b2), . . . , (ak, bk). We
can find the minimum P by finding the least integer P >
F such that gcd(P, L) does not divide any element in the
above set of intervals, where F = maxk

i=1{bi − ai}. To see
why P > F , note that if P ≤ F then P will necessarily
divide at least one number in the interval (ai, bi), where
bi − ai = F , and hence will gcd(P, L), a contradiction. To
illustrate the procedure let us again consider the scenario
in Table 1 and suppose the mutual consistency constraint
δ is of 11. Assume 0 execution time for the query. Then
the points at which the mutual consistency is satisfied are
0, 1, 2, 10, 11, 12, 13, 25, 26, 27, 28, 29. Let D = 5, then
the periodic instances of query should not start at the time
points 3, 4, 14, 19. Now the minimum P > 5 that does not
divide any integers in [3, 4], [14, 19] is 10, hence P = 10.

2.5 Empirical Evaluation

To evaluate our approach we used the real-world traces
from [20] containing information about update frequency
of various newspaper websites as shown in Table 3. We
label them respectively as transactions 1,2,3,4 in the order
they appeared in Table 3. Let the schedule be represented
as P1 = 26, D1 = 5, C1 = 2, P2 = 12, D2 = 5, C2 =
2, P3 = 21, D3 = 5, C3 = 2, P4 = 5, D4 = 3, C4 = 1,
the deadlines for all except the last transaction have been
chosen to be 5 for the sake of simplicity. Now clearly 2 and
3 are related, so we try to impose a mutual consistency re-
quirement on them and then look for the feasible values of
P and D. We find out the minimum slack with which each
value of P makes the query feasible, i.e., the minimum D
at which the query could be run with a given P so that the
mutual consistency constraints are satisfied. Figure 3 shows
the graph for δ of 5, 10, and 15 respectively. As can be seen
when δ is very stringent as with 5, the values of D needed
are too large making most of the periods unsuitable to be



Trace Time Period Num. Updates Avg. Update Frequency
CNN Aug 7 13:04 - Aug 9 14:34 113 every 26 min

NY Times (AP) Aug 7 14:07 - Aug 9 11:25 233 every 11.6 min
NY Times (Reuters) Aug 7 14:12 - Aug 9 11:25 133 every 20.3 min

Guardian Aug 6 13:40 - Aug 9 15:32 902 every 4.9 min

Table 3. Trace Workloads from [20]
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Figure 3. Minimum D given P ; when δ = 5 be-
tween objects 2 and 3, the values of D are mostly
very large, but with δ = 10, 15 the situation im-
proves.

chosen. A period of 42 as shown would need minimum D
but that too is as large as 47. When δ is 10 the situation is
much better with lower deadlines and when δ is as tolerable
as 15 most of the values of P look good. Similarly, Figure 5
shows the plot of minimum possible P with which the query
becomes feasible versus the D. The situation for δ = 5 is
once again very poor with P being as high as 80 for even
values of D till 40. But the situation improves sharply with
a δ of 10. As can be seen, one can now attain feasibility at
even values of D till 10, with values of P less than 10. With
the help of these graphs a user can obtain insight about the
best combination of P and D.
To extend the experiment on cases with the mutual consis-
tency constraints on a set,we conducted the second set of
experiments imposing a δ of 10,15,20 on the entire set of
data objects. Similar graphs are shown in Figure 4 and 6.
Compared to Figures 3 and 5, we observe one notable dif-
ference: P obtained in Figure 6 is much larger than that in
Figure 5 while D obtained in Figure 4 is similar to that in
Figure 3. This is because P is more sensitive than D when
the number of objects increases, i.e., it is more difficult to
get a period that works.
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Figure 4. Minimum D given P ; δ = 10, 15, 20
among all objects now, once again for δ = 10, very
large values of D are needed for a particular value
of P to make the query feasible.

3 Multiple Queries

In case of multiple queries, the set of feasible points for
different queries on the timeline could intersect. Hence
we have to decide which point be allotted to which query
so that all of them read mutually consistent data. Note
that the timeline we are talking about is of length l =
LCM(Pq1 , Pq2 , . . .), where Pqi s are the periods of the
queries. For the case of multiple queries we assume the
following:

• The queries are non-preemptable.

• ∀ queries, D ≤ P .

• ∀ queries, P divides l.

Let vi,j denote the boolean variable indicating if at time i,
query j starts, where j = 0 means no query starts. Then we
have

∀i,

k∑
j=0

vi,j = 1;



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60  70  80

P
er

io
d 

of
 q

ue
ry

(P
)

Relative Deadline of query(D)

delta=5
delta=10
delta=15

Figure 5. Minimum P given D ; δ = 5, 10, 15 be-
tween objects 2 and 3
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Figure 6. Minimum P given D ; δ = 10, 15, 20
between all objects

Also, the possibility of a query to start on any of the possible
points within the deadline can be expressed in the form of
constraints as

vi1,j + vi2,j + . . . + vil,j = 1;

where i1, . . . il are the points where the mutual consistency
constraints are satisfied and also there is enough time for the
query to finish execution before the deadline. The query has
to choose exactly one amongst these points to start. This is
because we assume that all data objects are read at the point
that a query starts so it is important that the query start at
a point where mutual consistency is satisfied . The equal-
ity holds because we assume that ∀ queries i, Dqi ≤ Pqi .
This assumption is necessary since if Dqi > Pqi then the
set of “allowed” points would intersect with those for the
next instance and hence the equality is no longer valid. For
example, say the period is 5, deadline is 8 and the first in-
stance of the query has to choose a point to start among

6,8,11,12 and the next instant amongst 11,12,14. So it is
possible that the first instance starts executing at 11, the sec-
ond at 12 (ignore the execution time for the time being). So
v6,p+v8,p+v11,p+v12,p �= 1. Hence the assumption holds.
Now if the execution time of query j is cj , then if query j
chose a mutual-consistency satisfying point t to start then
we cannot have any other query starting from t + 1 to
t + cj − 1 on the same processor, hence

vt+i,0 ≥ vt,j , 1 ≤ i < cj ∀t

Note that we are dealing with non-preemptable queries here.
So the problem is equivalent to solving the above system of
equations which is a 0-1 ILP. The problem in general is NP-
hard but [1],[2],[3] solve the above problem to a very good
approximation. In our experiments, we use OPBDP [2] –
a Davis-Putnam Based Enumeration algorithm for solving
(non)linear 0-1 (or pseudo-boolean) optimization problems
with integer coefficients.
Now we show how to extend our solution in order to re-
lax the second and third assumption as listed at the begin-
ning of this section. If we see the rationale for introducing
the assumption D ≤ P , which was that the “feasible” set
of points for various instances of the same query intersect,
the solution to revoke this assumption becomes apparent as
well. We just have to treat the various instances of the same
query as different ones in case D > P , the overhead will
be paid in terms of the number of variables that would in-
crease.
The assumption that P divides l was used once again to sim-
plify the calculations, so that a timeline of l works. In case
the periods of queries do not divide l, the length of timeline
would be LCM (l, l1), where l1 is the LCM of the peri-
ods of queries. So the possible values of t would increase,
which would once again mean more variables.

3.1 Empirical Evaluation

For the case of more than one query, we demonstrate the
estimated percentage of queries that can be scheduled for
a given mutual consistency constraint. Assuming a relative
deadline (D) of 10 and execution time (C) of 2 we ran-
domly choose the periods for the queries between D and
LCM (P2, P3) such that it divides LCM (P2, P3). We
do this 20 times and then see how many times the query set
was schedulable. As stated above we use [2] for our exper-
iments with a timeout of 30 minutes. This timeout may not
be sufficient especially when the size of query set increases,
so we have run our experiments only for 2,3,4 queries. The
results with the mutual consistency constraints of 10,15,20
are presented in Table 4. It should be expected that with
larger, i.e., more lenient, mutual consistency constraints the
number of queries schedulable would increase and with in-
crease in the size of query set this number should decrease.



Size of query set −→
δ ↓ 2 3 4
10 16 15 0
15 20 10 14
20 20 19 20

Table 4. The number of feasible query sets
(out of 20 randomly generated sets), when
the number of queries in each set were 2,3,4
and δ = 10, 15, 20.

This is not strictly followed in Table 4, but that is probably
because of inadequate timeout given. However, the number
of queries schedulable come out to be fairly good, despite
the low timeout given, which is encouraging.

4 Harmonic Periods and Scaling Down ILP

Since the calculations so often involve LCM , we inves-
tigate the effect of using harmonic periods. We define the
sequence of periods P1, P2, . . . , Pk as harmonic if P1 < P2

implies P1 divides P2. Now note that the length of timeline
in both single- and multiple-query cases was LCM of the
periods of all transactions. In case we have periods of trans-
actions that are harmonic, the LCM would be the maxi-
mum period, say Pk. So the change in scale is from the
order of worst case P1 × P2 × . . . × Pk to Pk.
As we saw in the multiple-query case the number of vari-
ables could get very large and hence the ILP could get in-
tractable and the ILP solvers might give up without giving
any solution. Although these calculations are done offline,
the above problem might still arise in some circumstances.
If the periods of queries are harmonic we show that in-
stead of one big ILP, we can reduce the solution to many
scaled down small ILPs. Let P1 < . . . < Pk be the pe-
riods of the queries and all the assumptions of multiple-
query solution in Section 4 hold true. Since Di ≤ Pi

(∀1 ≤ i ≤ k), note that any query that starts between
time 0 and Pk − 1 has to finish in the same interval as
well, assuming as already stated all queries commence syn-
chronously at time 0. This should not be difficult to see,
for example query k has Dk ≤ Pk, so it will finish by
Dk. Any other query with period, say P1, would have its
instances starting periodically at {0, P1, 2P1, . . . , Pk, . . .}.
As P1 divides Pk, and all those instances have to finish by
{D1, P1 + D1, . . .} ≤ {P1, 2P1, . . . , Pk, . . .}. This was
shown to establish that actually the calculations for the in-
tervals (0, Pk − 1) , (Pk, 2Pk − 1), and so on, can be done
just exactly as shown for multiple-query case without con-
cerning the other intervals. This will reduce the number of

variables from l.(n+1) to Pk.(n+1) and the number of in-
equalities from approximately l+ l/P1+ . . .+ l/Pk +C.n.l
to Pk + Pk/P1 + . . . + Pk/Pk + C.n.Pk, where C is the
execution time of queries (assume same execution time), n
is the number of queries and l = LCM of the periods of
transactions. As one can see the ILP is heavily scaled down,
of course now instead of one ILP we have l/Pk ILPs, but
solving ILPs of this scale should not be a problem and the
important thing is now we do not have to worry about ILP
solvers giving up without any solution when the “parame-
ters” become very large.
There was nothing holy about harmonic periods that
brought down the scale of our ILPs, in fact take the l1 =
LCM of the period of all queries and then we can break
the big ILP into l/l1 ILPs, just as in the above case since
feasibility on the timeline could be checked separately for
(0, l1 − 1) , (l1, 2l1 − 1) and so on. Thus the formidable
looking ILP can be scaled down in general as well this way.

5 Related Work

Recently, there has been extensive work in real-time
database systems (RTDBSs) for guaranteeing data freshness
[18, 11, 12, 9, 16, 17, 5, 19, 21, 10, 25, 7, 8, 4, 22, 23, 6, 24].
Data freshness is maintained in [16, 9] by using Half-Half
approach where an update transaction’s period and relative
deadline are defined to be half of the validity interval length
of the updated object. More-Less, studied in [22, 25, 4], re-
duces update workload compared to Half-Half while guar-
anteeing data freshness. In More-Less, the period of an up-
date transaction is more than half of the validity interval
length, while its corresponding relative deadline is less than
half of the validity interval length of the same object. If the
sum of the period and deadline is equal to the validity inter-
val length, and the update transaction set can be scheduled
by the deadline monotonic scheduling algorithm [13], then
data freshness can be guaranteed. Recently, the deferrable
scheduling algorithm (DS-FP) has been studied in [23, 24].
Compared to More-Less, DS-FP reduces update workload
further by adaptively adjusting the separation of two con-
secutive jobs while guaranteeing data freshness.

In [6], a safety-critical automotive application, adaptive
cruise control, is studied. It deals with critical data and in-
volves deadline bound computations on data gathered from
the automobiles’ environment. These applications have
stringent requirements on the freshness of data items and
completion time of the tasks. Gustafsson and Hansson study
guaranteeing the validity constraint of real-time data for
embedded systems in a vehicular application [7, 8]. [8]
presents a vehicular application with embedded engine con-
trol systems, and an on-demand scheduling algorithm for
enforcing base and derived data freshness. [7] proposes an
algorithm for updating data objects that can skip unneces-



sary updates allowing for better utilization of the CPU in
the vehicular application. The concept of data-deadline is
proposed in [21] along with data-deadline based scheduling.
Forced-wait and similarity-based scheduling techniques are
additionally used to maintain the freshness of real-time data
and meet transaction deadlines in RTDBSs.

However, there is much less work related to mutual con-
sistency. Urgaonkar et. al. study various approaches to
maintain mutual consistency in the web domain [20]. Song
and Liu [18] study real-time transaction scheduling to main-
tain temporal consistency including both absolute consis-
tency and relative consistency (a.k.a. mutual consistency)
in RTDBSs. The performance of several concurrency con-
trol algorithms for maintaining temporal consistency are
studied in [18]. However, it is assumed in [18] that earli-
est deadline first and rate monotonic scheduling algorithms
[14] are used for on-line scheduling of queries and transac-
tions. Our work is different as we focus on deriving sched-
ules of queries off-line, which is achieved by choosing a
right time to start queries such that they can preserve mutual
consistency of accessed objects. Since we only assume that
periods and deadlines for update transactions, schedulabil-
ity wise, for non-preemptive query schedules are known, a
valid assumption for real-time applications, it is appropriate
for offline scheduling decisions.

6 Conclusions

We have proposed approaches to check for mutual con-
sistency, for both single- and multiple-query cases. The ap-
proach developed here should be viewed as a first-cut so-
lution to the problem of satisfying the mutual consistency
requirements as query input. In the single-query case, we
show how to pick a suitable period and deadline for the
query. In the multiple-query case, we show how to deter-
mine if a given set of queries with relative deadlines and
periods can guarantee mutual consistency. Besides that, we
also show means of scaling down the complexity of solution
for the multiple-query case.

The mutual consistency problem in the real-time
databases has not been paid much attention until now and
there are no other approaches for our solutions to be com-
pared with. Our solution is based on calculations done of-
fline and assumes non-preemptable queries. The proposed
approach needs to be extended to work for preemptable
queries. Also, the queries may not always need “com-
pletely” fresh data. For some applications, it is acceptable
for queries to access stale data with bounded inconsistency
so that mutual consistency can be achieved. In such cases,
we need to maintain multiple versions of an object. Analy-
sis and performance of our solution with real world data can
provide insights into weakening some of the assumptions.
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