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Abstract
Automakers are trying to make vehicles more intelligent

and safe by embedding processors which can be used to im-
plement “by-wire” applications for taking smart decisions
on the road or assisting the driver in doing the same. Given
this proliferation, there is a need to minimize the comput-
ing power required without affecting the performance and
safety of the applications. The latter is especially important
since these by-wire applications are distributed and real-
time in nature and involve deadline bound computations on
critical data gathered from the environment. These applica-
tions have stringent requirements on the freshness of data
items and completion time of the tasks. Our work studies
one such safety-related automotive application namely, Au-
tomatic Merge Control (AMC) which ensures safe vehicle
maneuver in the region where two or more roads intersect.

As our contributions, we (i) propose two merge algo-
rithms for AMC: Head of the Lane (HoL) and All Feasible
Sequences (AFS) (ii) demonstrate how DSRC-based wire-
less communication protocol can be leveraged for the devel-
opment of AMC (iii) present a real-time approach towards
designing AMC by integrating mode-change and real-time
repository concepts for reducing the processing power re-
quirements and (iv) provide a scheduling strategy to meet
AMC tasks’ timing requirements. Simulations and imple-
mentation on robotic vehicular platforms demonstrate the
advantages of using our approach for constructing merge-
by-wire systems.

1. Introduction

It is believed that automation of vehicles will im-
prove safety, reduce accidents, increase traffic flow, and
enhance comfort for drivers. Automakers are trying to
achieve automation by embedding more processors, known
as Electronic Control Units (ECUs) and sensors into ve-
hicles which help to enhance their intelligence. As a re-
sult, computer-controlled functions in modern cars have in-
creased at a rapid rate and today’s high-end vehicles have

as many as 80 microprocessors [1]. The features currently
governed by Electronic Control Systems (ECSs) applica-
tions range from a simple door locking module toadaptive
cruise control, anti-lock braking systemsandhybrid power-
train management. Sophisticated features likecollision-
avoidance systemsandby-wiresystems are on the verge of
becoming a reality.

Typically, these systems are distributed and real-time in
nature. However, the current practice of implementing each
application as an independentblack-boxexcludes any possi-
bility of sharing the microprocessors. This trend of increas-
ing the number of microprocessors in relation to individual
applications will be difficult to maintain both in terms of
cost and integration complexity. Hence, the microproces-
sors must be effectively used to progress in this area to make
fully electronically controlled vehicles a reality. Also,all
these safety-related systems have stringent timing require-
ments apart from having specific functional requirements.
Hence, it is necessary to provide real-time guarantees for
such systems while deploying shared processing power.

With a larger goal of understanding the requirements of
by-wire applications and hence a fully autonomous vehi-
cle, we studied one such safety related application, namely
Automatic Merge Control (AMC), which ensures safe ve-
hicle maneuvering in the region where two or more roads
intersect. This application is distributed in nature, requir-
ing multiple vehicles to communicate and take a collective
decision to ensure safety of the whole system, i.e., all the
relevant vehicles on the road (a.k.a.global safety).

Our goal is to develop algorithms and provide system
support for the AMC application to:

1. Ensure safe maneuvering of vehicles at intersections.
2. Optimize average Driving-Time-To-Intersection

(DTTI). DTTI is the time taken by a vehicle to cross
the merge region. It is further explained in Section 2.

3. Maintain a safe separation distance between two suc-
cessive vehicles on each lane.

4. Efficiently utilize both computational and communica-
tional resources.



5. Minimize the averageduration of external control
which is equal to the time during which vehicles lose
their autonomy, i.e., are controlled by AMC system.

6. Provide real-time support so that all the tasks meet
their deadlines to guarantee safety of the system.

To this end, we (i) propose two merge algorithms and (ii)
provide system support for AMC. A bird’s eye view of the
entire paper is shown in Figure 1 (with section numbers in
square brackets).
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Figure 1. Overview of our contributions

The rest of this paper is organized as follows. Section 2
gives an overview of the AMC application. The overview
of our approach and design are discussed in Section 3. The
AMC algorithms and the system design are discussed in
Section 4 and 5 respectively. Experiments and their results
are discussed in Section 6 and 7 respectively. Section 8
presents the related work followed by conclusions and fu-
ture work.

2. Automatic Merge Control System: An
Overview

Automatic Merge Control (AMC) is a distributed intel-
ligent control system that ensures safe vehicle maneuver-
ing at road intersections. It ensures that the time instants
at which two vehicles cross the merge region are separated
by at leastδ (which depends on the size of the merge region
and permitted velocity of vehicles while at the intersection),
by giving commands to adapt their velocities appropriately.
This system involves the following sub-problems:

• S1: Maintain safe separation distance between vehi-
cles.

• S2: Ensure safe maneuvering of vehicles at merge re-
gion and hence determine the Merge Sequence (MS)
i.e., the order in which vehicles cross the merge region.

• S3: Minimize the time taken by vehicles to cross the
merge region, for example, minimize the average Driv-
ing Time To Intersection (DTTI). DTTI of a vehicle is
the time it takes from Area of Interest (AoI) boundary
(refer Figure 2) to cross the merge region.

Figure 2 shows an intersection ofLane1 and Lane2,
where vehicles (denoted asxij) are atleastS distance apart
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Figure 2. Automatic Merge Control System

from each other and represented by points. It is assumed
that Lanei containsmi vehicles, where1 ≤ i ≤ 2 (lane
index) and1 ≤ j ≤ mi (vehicle index).

The AMC has to respect the following constraints at any
given point of time:

• Precedence Constraint: No vehicle overtakes its
leading vehicle.

• Mutual Exclusion Constraint: No two vehicles are
present in the merge region at any given instant of time.

• Safety Constraint: Safe distance is always main-
tained between consecutive vehicles on the same lane,
before they enter the merge region.

• Other Constraints: Limits on the velocity and accel-
eration range of vehicles must be respected.

3. Overview of Our Approach and Design

In this section, we give an overview of the two algo-
rithms developed for safe maneuvering of autonomous
vehicles at road intersections: Head of the Lane (HoL)
and All Feasible Sequences (AFS) towards realizing goals
1-5 listed in Section 1. We also discuss system support
provided for AMC which comprises of (a) a high-level
dual-state triple-zone design (b) DSRC-based communi-
cation protocol [2] for vehicles to communicate with each
other and (c) real-time system support towards achieving
goals 3, 4 and 6 as defined in Section 1.
Our algorithms determine the safe merging sequence and
profile (velocity, acceleration, etc.) for every vehicle to
adhere to so as to achieve safe maneuvering at intersections.
Among our two algorithms, HoL is a distributed solution
that considers only the head or lead vehicle on each of
the lanes for determining the merge sequence. Head or
lead vehicle is defined as the vehicle closest to the merge
region and whose profile has not yet been decided by AMC
algorithm. AFS is a centralized solution which looks at a
snapshot of vehicles along with their current profiles and
determines the merge sequence and new profiles of all
the vehicles at once and communicates the same to every
vehicle.



Our low-level system design exploits two well known
design techniques from real-time domain namely, mode-
change protocol [3] and real-time data repository [4]. Both
the approaches lead to effective utilization of the CPU ca-
pacity by understanding the needs of the system’s task and
data characteristics. The mode-change protocol is atask-
centric approach that allows the designer to vary the task
sets and their characteristics (period, etc.) as the system
moves from one mode to another. The real-time data repos-
itory model is adata-centricapproach that decides the task
characteristics from the freshness requirements of base and
derived data items. In this paper, we have integrated both
these approaches to leverage the advantages offered by the
two methods. The DSRC-based wireless communication
protocol used for inter-vehicle communication is explained
in Section 5.2.

We now discuss the high level design of AMC system
that operates in differentstatesin differentzones.

To tackle the earlier mentioned sub-problems, S1 and
S2, we have abstracted the AMC system to operate in one
of the two states, asafe distance(SD) state where vehicles
maintain safe separation distance from each other, or insafe
merge(SM) state where safe merging of vehicles is ensured.
To draw a boundary on the section of the road that comes
under AMC and to easily understand the system behavior,
we have defined an Area of Interest (AoI).The AoI is di-
vided into three zones described below and is shown in Fig-
ure 3.
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Figure 3. Zone-based partitioning of AOI re-
gion with system’s state of operation

• Zone3 (Z3): The vehicles enter this zone with ran-
dom profiles but they maintain a safe separation dis-
tance from their immediately following vehicles, i.e.,
the system operates in SD state in this zone. Even
though vehicles are required to operate in SD state in
this zone, they are not directly under the control of
AMC system, as each vehicle itself determines its own
profile and follows it.

• Zone2 (Z2): The vehicles present here are consid-
ered by AMC algorithms for determining the merge
sequence and hence for computing profiles of each ve-
hicle. In this zone, the system transitions from SD to

SM state. The exact time of transition of each vehicle
from SD to SM state depends on the merge algorithm.

• Zone1 (Z1): The vehicles enter this zone with new
profiles (set by AMC) and are left undisturbed i.e.,
once their profiles are decided by AMC inZ2, they
are never reconsidered for computation. The system
operates in SM state here. As soon as a vehicle crosses
the merge region, it switches to SD state.

This partitioning of AoI into multiple zones also serves fol-
lowing purposes:

1. Stability: The vehicles being left undisturbed inZ1

add to the stability of the system, as these vehicles are
very close to the merge region and have very little time
or space to adapt to any new changes in their profile.

2. Continuous stream of vehicles: This zonal parti-
tioning also helps algorithms to deal with continuous
streaming of vehicles, as described in Section 4.

3. Modular design: As described earlier, this helps to
design the system for two exclusive states, namely, SD
and SM, thereby allowing us to look at different sub-
problems in different states.

After briefing about the system design, we discuss the two
merge algorithms along with a brief description of vehicle
to vehicle communication in each of them.

4. AMC Algorithms

We have made the following assumptions while develop-
ing the algorithms.

• The vehicles are assumed to follow the profile decided
by AMC.

• In AFS algorithm, an intelligent (communication +
computation capable) infrastructure node is situated
roadside near the merge region. It performs all the
computations and determines profiles to be followed
by the vehicles. It does this while maintaining the pro-
files of vehicles whose order in the merge sequence
is already decided. Note that the infrastructure node,
which might incur additional setup cost is required
only by the AFS algorithm.

• There exists a mechanism to identify the lead vehicles
on each lane (e.g., a magnetic belt).

• Only those vehicles which are in AoI are considered
by the AMC system.

• All the vehicles execute the same algorithm.

4.1. Head of Lane Algorithm: HoL

This algorithm is a distributed solution that determines
the merge sequence in an iterative manner. This approach
is motivated by the way drivers in manually driven vehicles
resolve the conflict at an intersection in practice. The
drivers who are closest to the merge region on each lane
decide among themselves the order in which they pass



through the merge region (based on some criterion, say
First Come First Serve). This algorithm achieves the
goal of safe maneuvering by considering the lead vehicle
(a.k.a. Head of the Lane (HoL) vehicle) on each lane for
determining the merge sequence. This approach postpones
taking over the autonomy from vehicles as long as possible
and easily maps to the way merging happens in real-world
scenarios where vehicles are not automated. The algorithm
is explained in detail below for the scenario as depicted in
Figure 2.

Algorithmic Steps:

1. When a lead vehicle on any of the roads reaches mag-
netic belt, it declares itself as HoL of that road (sayx11

onLane1). This event triggers HoL to bëelected̈on the
other road (Lane2).

2. The vehicle which is nearest to the merge region on
Lane2 and whose profile is not yet determined by
AMC is elected as the HoL, sayx21. If the other road is
empty then the HoL which triggered this action elects
itself as the winner. Control goes to step 1.

3. Now, x21 sends its profile tox11 which performs the
computation to determine the winner i.e., the HoL that
gets inserted into the MS along with a new behavior
that the winner has to follow till it crosses the merge
region.

4. x11 broadcasts the computed profile of the winner and
the vehicle is inserted into the MS. The winner is
elected on the basis of minimizing the DTTI of the
vehicles. The algorithm also considers the profile of
the vehicle which was recently inserted into the MS so
as to respect the safety criteria. Ifx11 itself is not the
winner in step 3, it repeats steps 2-4 by declaring itself
as the leader onLane1 till it gets inserted into the MS.

5. Steps 1-5 are repeated in a continuous loop.

Whenx11 is decided as the winner in step-4, the other op-
tion for electing the new HoL on that road (instead of wait-
ing till one of the vehicles reaches the magnetic belt) is to
immediately declarex12 as the new HoL. We decided to
take the earlier option since it allows the vehicles to enjoy
the autonomous state as long as possible without compro-
mising on the global safety. The algorithm is sporadically
executed whenever a vehicle reaches the magnetic belt.

The fact that the HoL algorithm considers only two
(head) vehicles at a time for computation makes it easy to
deploy in the real-world. But, due to the same fact, it might
fail to work at a higher traffic density since, it does not con-
sider the effect of its decision on the DTTI of following ve-
hicles. In other words, the local decision made might affect
the global scenario (simulation results in Section 7 confirm
this). To overcome this drawback, we propose another al-
gorithm namely, All Feasible Sequences (AFS) algorithm
in the next section.

4.2. All Feasible Sequences Algorithm: AFS

This algorithm is a centralized solution that considers all
the relevant vehicles from a snapshot, i.e., vehicles inZ2

at a time and determines the merge sequence and profiles
of these vehicles. The primary aim of this algorithm is to
guarantee safe maneuvering of vehicles even at higher traf-
fic densities. The secondary aim is to minimize the average
DTTI and to delay taking over the autonomy from vehicles
as long as possible. The algorithm is initiated by a new ve-
hicle sending theMergeInitiatemessage upon reaching the
magnetic belt on one of the roads. The infrastructure node
located adjacent to the merge region collects the profiles of
all the vehicles present inZ2 and tries all possible combina-
tions except those which are eliminated by the constraints
specified in Section 2. For e.g., precedence constraint elim-
inates those combinations which don’t retain the original
order (the one determined by the ascending order of their
distance from the merge region) for determining the solu-
tion. The newly computed profiles are communicated back
to all the vehicles.

Since this algorithm works with a snapshot of vehicles
(set of vehicles that are present inZ2 at a given point of
time), to make this algorithm work for continuous stream
of vehicles, following issues need to be considered:

(i) Frequency of Invocation of Algorithm: The al-
gorithm is invoked whenZ2 on one of the lanes contains
new vehicles. The algorithm can also be run for every new
vehicle or N vehicles enteringZ2, but this will increase the
computational overhead since majority of vehicles in new
snapshot will be from old snapshot (whose profiles have
already been computed in previous iteration) which would
lead to redundant computations and also frequent changes
in their profiles.

(ii) Handling Previous Vehicles: Whenever the algo-
rithm is executed again with completely new vehicles
on one of the lanes (sayLane1), other lane (Lane2)
might have old vehicles (vehicles considered in previous
snapshot) inZ2, whose profiles have already been com-
puted in previous iteration. Apart from all new vehicles
in Z2, only the relevant vehicles from previous snapshot
(i.e., only those vehicles whose profiles will be affected
by the new vehicles) from the other lane (Lane2) in Z2

are reconsidered for the current iteration. In order to
determine which old vehicles from the other lane (Lane2)
to reconsider, following analysis is done. Minimum DTTI
(say, DTTI1,min) of the first new vehicle on the lane
which triggered the current iteration (Lane1) is determined
with the help of its current profile and profile of vehicle
immediately in front of it. Only those old vehicles from
other lane (Lane2) whose DTTI (determined using the
profile computed in previous iteration) is greater than



DTTI1,min are reconsidered for new computation.

5. System Support for AMC

In this section, we describe the rest of our system sup-
port, i.e., (i) real-time system support for ensuring deadline
guarantees and for reducing processing power requirements
and (ii) communication support for inter-vehicle communi-
cation.

5.1. Real-Time Support: Dual-Mode, Two-
Level Data Repository Approach

This section describes the low level design of the AMC
system for providing real-time support for guaranteeing
deadlines and reducing the processing power requirements
by integrating mode-change and real-time data repository
protocols. Our goal is to develop solutions that address the
following issues:

• Effective tracking of dynamically varying data. A
data item from a sensor reflects the status of the real-
world entity only for a limited amount of time. When
this time expires, the data item is considered to be stale
and not valid anymore. This validity interval of a data
item is not necessarily fixed during the execution of the
system. For instance, the validity interval (and hence
the sampling period) for the data itemhost velocitywill
be small when the vehicle is accelerating and it will
be large when it is moving with a uniform velocity.
To have a fixed sampling time as in existing systems
requires a worst-case design, leading to over-sampled
data and ineffective use of the processing power.

• Timely updates of derived data.The data derivation
should be complete before the derived item’s read set
becomes invalid [4]. The derived item needs to be up-
dated only when one or more data items from its read
set change more than a threshold value.

• Handling mode-specific task sets.AMC operating
in SD state performs different tasks while following
a close vehicle when compared to following a vehicle
which is far away. In current approaches, all the tasks
across multiple modes are executed at all the times.
This leads to unnecessary processing power consump-
tion and scheduling overhead.

Our approach to address the above mentioned issues ex-
ploits two well known design techniques from real-time
system domain: mode-change protocol and real-time data
repository protocols.
The concept of mode-change is motivated by the need to
carry out different tasks when the vehicle is following a
closeleading vehicle compared to one that isfar. The con-
cept of data repository is motivated by: (a) the presence
of raw and derived data items and (b) the fact that a small
change in raw data i.e., sensor values, might not affect the
action of the controller.

Now, we proceed to give the details of low-level design of
AMC responsible for execution of tasks and to effectively
track the dynamically varying data to achieve efficient re-
source management and provide real-time guarantees.

Mode-change protocol: Real-time applications typi-
cally exhibit mutually exclusive phases/modes of operation
and control [3]. A mode change will typically lead to either:
adding/deleting a task or increasing/decreasing the execu-
tion time of a task or increasing/decreasing the frequency
of execution of a task. In different modes, we can have the
sensing tasks execute at different frequencies to deal with
dynamically varying data and we can have different set of
tasks active in different modes. Hence, we do not need to
have all the tasks active all the time. The design of the sys-
tem with this approach is explained in the following points:

(i) Two mutually exclusive modes of operation:

• Non-Critical (NC) Mode: In NC mode, the environ-
ment status does not change rapidly. For instance,
when the host vehicle is following a leading vehicle
at uniform velocity, the parameters like Distance of
Separation (DoS) and leading vehicle velocity do not
change rapidly.

• Safety-Critical (SC) Mode: In SC mode, the envi-
ronment status varies rapidly and hence tasks execute
more frequently to get as accurate a view as possible
about the environment.

(ii) Details of the modes: The decision on the current
mode of the system is taken based on two parameters, DoS
and Rate of change of separation distance (RoD) and change
in their values triggers the mode-change. Table 1 shows all
the possible situations for the system to operate in each of
the modes.

LeadDist RoD Mode
FAR Decr-Fast SC
FAR Incr-Fast NC
FAR Decr-Slow NC
FAR Incr-Slow NC

NEAR — SC
FOLLOW — Retain Mode

Table 1. The system state in different modes

(iii) Switching modes: A mode change request is gener-
ated from either the radar task, when DoS parameter satis-
fies the condition for mode change or another periodic task,
which tracks the RoD to satisfy the condition. Once the
mode-switch condition is satisfied, the mode change pro-
cess involves deleting the tasks in the current mode and
creating the new tasks ensuring schedulability at any given
point of time throughout this process.

Task sets in different modes are shown in Table 2. As
described earlier, few tasks are periodic and few tasks are
sporadic in nature. The tasks in NC mode perform non-
critical operations whereas the tasks in SC mode carry out
certain critical operations.



Mode Task Set
NC Only WeatherT, FrictionT, AdaptT, EDrT
SC only TimeLeftT, SuggestT, AdjLaneT

WheelT, SpeedT, CruiseT, SDCtrlT, RadarT,
Both Modes LeadVelT, DistT, DriverT, BrakeT, ThrottleT,

SwitchT, MagnetT, CommRxT, CommTxT, SMCtrlT

Table 2. Task sets in different modes of AMC

Data Repository: All the sensors embedded in an auto-
mobile generally sense periodically providing the raw data
from the environment which should be processed to convert
them to derived data. The raw items reflect the external en-
vironment and the derived items are derived from raw items
and/or other derived items, i.e., each derived item‘d’ has a
read set denotedR(d) that can have members from both the
raw and the derived set [4]. For instance, while maintaining
safe distance in SD state, vehicle velocity is derived from
the angular velocity of the wheels obtained from four wheel
sensors. The data repository approach provides a facility
for on-demand updateof derived data thereby updating the
derived data only when necessary.

Two-level real-time data repository: The system com-
prises of two levels of data store:Environment Data Repos-
itory (EDR)andDerived Data Repository (DDR)as shown
in Figure 4. EDR is an active entity, storing the data pertain-
ing to the environment. EDR contains base data items and
the procedures for data derivation task. The second repos-
itory DDR in the model acts as a global database for the
system. As shown in Figure 4, circular nodes represent data
items and arrows acting on these nodes represent tasks op-
erating on data items.
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Tasks and derived data update:The system has four
types of tasks: (T1) periodic sensor reading tasks for col-
lecting data from sensors and updating EDR and periodic
communication receive task, (T2) sporadic on-demand up-
date tasks for calculating the derived data and updating
DDR, sporadiccommunication transmit taskand controller
task for maintaining safe distance and ensuring safe merg-

ing, (T3) periodic lower level controller tasks for giving
commands to the mechanical system of the vehicle and (T4)
other lower priority tasks which are executed only when
there are no pending critical tasks to be executed.

Scheduling tasks in different modes: The tasks and
their characteristics (periodicity, minimum inter arrival
time) are knowna priori. Hence, an algorithm that provides
offline guarantee to meet task deadlines is a good choice
for our system. The presence of sporadic tasks makes our
job of choosing an appropriate scheduling algorithm a lit-
tle non-trivial. We found the algorithm proposed in [3, 5]
as the best match for our task set. The algorithm provides
offline guarantees to both periodic and sporadic tasks and
schedules them online to incorporate other low priority and
aperiodic tasks whenever possible.

5.2. Inter-Vehicle Communication Scheme

In all our algorithms, vehicles communicate using Ded-
icated Short Range Communication (DSRC) based wire-
less protocol [2] with each other for exchanging profiles
and other information. This is motivated by the fact that
IEEE has adopted the DSRC, a variant of 802.11a technol-
ogy for Vehicle-Vehicle (V-V) and Roadside-Vehicle (R-V)
communication. In particular, we have used Asynchronous
Fixed Repetitions with Carrier Sensing (AFR-CS) proto-
col [2] for communication since it has less probability of
reception failure and smaller Channel Busy Time compared
to other protocols. The protocol randomly selects ‘K’ dis-
tinct slots among the total ‘n’ possible slots (equal length
intervals) during the lifetime of a message and the message
is always repeated a fixed ‘K’ number of times.

Now we describe the communication sequence that takes
place between vehicles in a single iteration. In the pro-
cedure described below, (i)Initiator refers to the vehicle
which initiates communication, i.e., the vehicle that reaches
the magnetic belt, (ii)Computing Noderefers to the node
which executes the algorithm using the data communicated
to it. In HoL, the Initiator itself is the computing node,
while in case of AFS it is the Road-side Infrastructure node.

1. Initiator sendsMergeInitiatemessage.
2. Depending upon the algorithm being used, specified

vehicles send their profiles to the computing node.
HoL : The head vehicle on the other lane sends its pro-
file.
AFS: All vehicles inZ2 whose behavior has not been
decided send their profiles.

3. Computing node uses this information to compute the
profile of specified vehicles.
HoL: Profile of the winner among the two head vehi-
cles is computed.
AFS: Profiles of the specified vehicles inZ2 as de-
scribed in 4.2 are computed.



4. The computed profile(s) are sent to the specified vehi-
cle(s) using AFR-CS protocol.

5. Computing node sends aMergeStopmessage to tem-
porarily terminate the algorithm till another vehicle
whose profile has not been decided reaches the mag-
netic belt.
HoL: Above procedure is repeated till the initiator gets
inserted into the merge sequence.

6. Experimental Setup

This section describes the implementation details of both
hardware and software setup used to demonstrate the con-
cepts. Java was used to simulate HoL and AFS algorithms
along with their communication protocol. The low-level de-
sign of the system was implemented on a robotic vehicular
platform built in our lab.

We implemented both algorithms to operate in dual-
state, triple-zone system along with the DSRC based AFR-
CS protocol for inter-vehicle communication in Java.

The parameter settings for the Java based simulations
were as follows: (i) Environmental settings: safe separa-
tion distance was set to5m, radii ofZ3, Z2 andZ1 from the
merge region were set to400m, 200m and150m respec-
tively (ii) Vehicles’ behavior: initial velocity of vehicles
was uniformly distributed between17 and20m/s, VMAX ,
AMAX andAMIN were set to30m/s, 4m/s2 and−4m/s2

respectively. Vehicle generation rate per lane was varied
from 0.2 − 1.9 vehicle/s. (iii) Communication protocol
settings: the packet size was set to100bytes and its lifetime
was set to0.02s, the transmission rate was set to20Mbps,
and finally number of retransmission slots for every vehicle
was varied between1 to 20. Note that the length ofZ2 is
50m and with5m as the separation distance, at any moment
atmost20 vehicles will lie inZ2. AFS algorithm can easily
handle such number of vehicles using low-end infrastruc-
ture node without compromising on the safety of vehicles.

The robotic platforms were used to demonstrate the dual
mode, two-level data repository concept. The vehicular
platforms used for conducting experiments are shown in
Figure 5 and Figure 6 and had following features:

• Obstacle detection range:30cm.
• Maximum speed:50cm/s(Dexter),10cm/s(Firebird).
• Wireless radio module.
• Maintains path through white-line following.
• Closed-loop controller(s).

The robot in Figure 5 named Dexter was controlled by a PC
running onRTLinux3.2-pre1platform. The PC performed
all the computations and issued commands to the robot. We
implemented the scheduling algorithm discussed in [3, 5]
for providing offline guarantee to both periodic and sporadic
tasks in our system. The robot in Figure 6 named FireBird

was used to implement the AMC algorithms developed by
us in addition to the algorithm discussed in [6].

Figure 5. Experimental Vehicular Platform -
Dexter

Figure 6. Experimental Vehicular Platform -
FireBird

The partial task structure and data items from our im-
plementation is shown in Figure 7. The DoS is kept as the
criterion for changing the mode. The periodicity of the tasks
in NC mode is set to twice that in SC mode, i.e.,0.2s in SC
and0.4s in NC mode. We observed the invocation pattern
of DistT, an on-demand update task, which derives the sepa-
ration distance of leading vehicle. Its minimum inter-arrival
time was set to0.2s in SC and0.4s in NC mode and it gets
invoked only when the raw data representing the separation
distance of leading vehicle varies by a threshold which is
equivalent to1cm.
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Figure 7. Task and data structure in real-time
repository implementation

7. Results and Observations

In this section, we describe the results obtained from the
AMC experiments and observations that were made in the
dual mode two-level data repository approach.



7.1. Simulation Results

In the Java simulations, the algorithms were compared
with respect to average duration of external control and av-
erage DTTI. The communication behavior for AFS algo-
rithm under various traffic densities was also observed. Fig-
ure 8 plots average external control time and average DTTI
against vehicle generation rate (λ). Higher value ofλ (ve-
hicles/sec) indicates higher traffic density. The infeasible
regions of algorithms depicted in the graph indicate theλ
value beyond which the algorithms fail to ensure safe merg-
ing. HoL fails to give solutions forλ > 1, while AFS
continues to give solutions even at high values ofλ, upto
λ < 1.9. This observation confirms our intuition about
HoL as discussed in section 4.1. Asλ varies from 0.5 to 1,
AFS has greater duration of external control as compared to
HoL, which can be attributed to early determination of ve-
hicle behavior in AFS. AFS and HoL show similar results
w.r.t. DTTI. Also at lowerλ, AFS behaves similar to HoL
w.r.t. both duration of external control and DTTI, since the
number of vehicles inZ2 is small (1-2). As a result AFS
considers only 1-2 vehicles in every iteration, which is sim-
ilar to HoL.

Figure 8. HoL and AFS: DTTI and external
control duration

Communication behavior of AFS algorithm is shown
in Figure 9. Probability of Reception Failure (PRF) and
Channel Busy Time (CBT) were observed for various val-
ues of retransmission number(K) of AFR-CS protocol for
λ = 1.5, 2.5, 3.7. As we can see in the graph, since PRF
stabilizes forK ≥ 4, we choseK = 4 for performing ex-
periments since it has the least CBT. The behavioral pattern
observed is in accordance with those demonstrated in [2].
In HoL, since only two (head) vehicles communicate at any
given point of time, changing the vehicle density will not
have any impact on CBT and PRF.

7.2. Vehicular Platform Results

Here we describe the results of the experiments on the
two robotic vehicular platforms described in section 6.

Figure 9. AFS performance: CBT and PRF

7.2.1. Reduction in processing power re-
quired

An experiment was conducted on the robotic vehicu-
lar platform shown in Figure 5 to observe the reduction in
processing power requirement in dual-mode two-level data
repository approach. The velocity response of the host ve-
hicle along with the mode of operation and DistT task invo-
cation is depicted in Figure 10 where the DoS increases in
time intervals0−9s, remains constant between9−12s, de-
creases between12 − 17s, remains constant again between
17−21s, increases again between21−30s before decreas-
ing again between30 − 33s.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 0  5  10  15  20  25  30  35  40

V
el

oc
ity

(m
m

/s
)

D
is

ta
nc

e(
m

m
)

Time(sec)

Host Velocity
DoS

Desired DoS
NC Mode
SC Mode

DistT Invocation

Figure 10. Dual-mode Two-level repository
AMC system behavior: DoS maintained,
DistT task invocation, mode of operation

We can observe from the graph that the system oper-
ates in SC mode between0 − 2s and in NC mode between
2 − 14s. It again enters SC mode at14s and continues to
be in that mode till it switches back to NC mode at22s.
Since the tasks in NC mode operate at double the periodicity
compared to SC mode, it is trivial to estimate that the pro-
cessing power requirements is reduced to50%. Note that
the general practice of designing the system without mode-
change protocol would have assigned the periodicities of all



the tasks as0.2s to be able to handle the worst-case sce-
nario. We can also observe that during the time interval
9 − 13, 17 − 21 and26 − 29s when the DoS was constant,
the on-demand update task, i.e.,DistT is not invoked. Thus
the task updating the DoS in DDR executes only when nec-
essary. TheDistT task is invoked only17 times in our de-
sign whereas in generally followed design practice, it would
have been invoked periodically165 times. This significant
difference in the number of times the task is executed leads
to considerable reduction in processing power requirement.
As is observed from the graph, the DoS maintained by the
system is always greater than the desired DoS except on one
occasion, i.e., at16s, which can be attributed to the inertia
of the vehicle. This suggests that a conservative approach
should be taken while deciding the safe DoS by taking this
factor into account.

7.2.2. Implementation of AMC algorithms

The initial distance of the vehicles from the merge point
was kept at 1200 mm. The desired safe distance to be main-
tained between two vehicles at the merge point was speci-
fied as 200 mm. The graph in Figure 11 shows the compar-
ison of Distance of Separation (DoS) of AMC algorithms
(HoL and AFS) with the virtual vehicle based work in [6].
In the implementation of virtual vehicle based algorithm,
the vehicles maintained safe distance with the map of ve-
hicles present on other lane. It is observed from the graph
that AMC algorithms - HoL and AFS always maintain de-
sired safe distance when the vehicles cross the merge point,
whereas the virtual vehicle based algorithm gives inaccurate
results under the same experimental conditions. AFS starts
maintaining 200 mm distance even when the vehicles are at
600 mm from the merge point.

Figure 11. Distance of Separation compari-
son

The Average Driving-Time-To-Intersection (DTTI)
comparison of the two algorithms with virtual vehicle
based algorithm is shown in Figure 12. In this experiment,
the number of vehicles in the system was increased from
1 to 4. The graph depicts that when there is one vehicle in

the system, all the three algorithms deliver same results. As
the number of vehicles increases from 1 to 4, AFS and HoL
incur lower DTTI as compared to virtual vehicle based
algorithm.

Figure 12. Average DTTI comparison

8. Related Work

The merge control application with inter-vehicle com-
munication is also studied in [6]. It uses the concept of
virtual vehicle that is used to map vehicles on one lane
onto the other lane (assuming a 2-lane merge) for ensuring
safe distance criteria. But the algorithm for determining the
merge order of vehicles is not provided. In [7], a reservation
based multi-agent (reservation manager and driver agent)
approach is proposed for designing the AMC system. We
believe the main drawback of this approach is the process of
repeated requests by the driver agent when its initial request
is not met. The intersection manager should be smarter to
make use of all the vehicles’ information available with it
and suggest an alternate space-time in the intersection in-
stead of rejecting the request and wait for that driver agent
to make another request. Also, the paper doesn’t discuss
communication support for the application.

In [8], we had given HoL algorithm along with constraint
based formulation for AMC. We have enhanced our earlier
work by extending HoL algorithm to delay the external con-
trol as long as possible, adding the handling of continuous
stream of vehicles and providing communication support
using DSRC-based protocol.

A data centric approach to the architectural design of
performance critical vehicular applications has been exam-
ined in [4]. In particular, [9] addresses the issues in the de-
sign and implementation of an active real-time database sys-
tem for Electronic Engine Control Unit software. A set of
on-demand updating algorithms: On-Demand Depth First
Traversal and On-Demand Top Bottom are presented in [4].
These algorithms optimistically skip unnecessary updates
and hence provide increased performance. Methods for the
specification and runtime treatment of mode changes are
discussed in [3]. We have tailored these approaches to suit
our AMC application.



We had looked at real-time issues in maintaining safe
distance between vehicles and had proposed two ways to
provide real-time support for designing the system for ef-
ficient resource utilization, one using the dual-mode ap-
proach and the other using two level real-time data repos-
itory protocol in [10]. In this paper, we have enhanced our
earlier work by integrating both the approaches: for achiev-
ing better resource utilization compared to both individual
approaches and for providing deadline guarantees to on-
demand update tasks by converting them to sporadic (from
aperiodic).

9. Conclusions and Future Work

Given the increased intelligence being built into, and the
resulting increase in the number of processors in modern au-
tomobiles, there is a need to minimize the computing power
required without affecting the performance and safety of the
applications. A systematic solution to the incumbent prob-
lems is important since these by-wire applications are dis-
tributed and real-time in nature and hence deal with criti-
cal functions. Our work studied one such safety-critical ap-
plication namely, Automatic Merge Control (AMC) which
ensures safe vehicle maneuver in the region where two or
more roads intersect.

We proposed two merge algorithms: Head of the Lane
(HoL) and All Feasible Sequences (AFS) and also presented
system support (both communication and computing infras-
tructure) for AMC. We also showed how DSRC-based wire-
less communication protocol can be leveraged for the devel-
opment of AMC and how mode-change and real-time repos-
itory concepts can be integrated for reducing the process-
ing power requirements. Experimental results demonstrated
that HoL works only at lower traffic density whereas AFS
continues to give solution even at higher densities while
both the algorithms gave similar performance w.r.t. DTTI.
Also, experiments demonstrated that the processing power
requirement is reduced using our design without compro-
mising the real-time guarantees.

We realize that deploying such a system is not feasible
in the current situation, as some of the required technol-
ogy is still under development. Also the millions of non-
collaborative or human-driven vehicles currently being used
will be around in the future. Thus in future even with the
development of appropriate technology and the required in-
frastructure, a sizeable fraction of vehicles would be non-
collaborative and hence a system that handles mixture of
both types of vehicles must be developed. Considering this,
we are currently planning to work on enhancing our solu-
tion to handle such mixed traffic.

In the future, we plan to complete our setup for empirical
studies involving the merge of mobile vehicles in intersec-
tions involving more than two merging lanes. Also, we will
be looking at reliability and safety issues arising from the

practical need to allow driver control within the merge re-
gion.
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