DELite: Database Support for Embedded Lightweight
Devices

Krithi Ramamritham and Rajkumar Sen
Indian Institute of Technology, Bombay
Mumbai-400016, India
{krithi@iitb.ac.in

Categories and Subject Descriptors:

H. Information Systems H.2 DATABASE MANAGEMENT
H.2.2 Physical Design Subjects: Access methods

H.2.4 Systems Subjects: Query processing

Terms:
Database Management System

Computation platforms have extended to small intelligent devices
like cellphones, sensors, smartcards, PDAs, etc. As new function-
alities and features are being added to these devices, increasing
number of applications are being developed, many of them dealing
with significant amounts of data leading to the need of embedded
database support on these devices [1]. The queries go beyond sim-
ple Select-Project-Join queries but still have to be locally executed
on the device [4]. Most of the modern day cellphones are being
equipped with increasing memory which means more data centric
applications are being developed for them. Sensor networks are
also proliferating and these collect data from the environment and
subject them to various queries. Most of these queries need to be
executed on the device itself to reduce communication costs. Ap-
plications for PDAs execute complicated join and aggregate queries
on the device resident data. Thus, there is an increasing need to
facilitate the execution of complex queries locally on a variety of
lightweight computing devices.

However, scaling down the database footprint poses challenges
since these lightweight devices come with very limited computing
resources. While the amount of main memory and stable storage
available in such devices is relatively small, the devices are not uni-
formly endowed with resources. For example, the computing capa-
bility and main memory of a cellphone differs from that of a PDA.
It is essential that the available resources be utilized optimally for
a database system that is developed for such devices. The already
limited stable storage has to accommodate the operating system as
well as the database system code, which means even less storage is
available to store the data.

Storage Models designed for such database systems should re-
duce storage cost to a minimum to be able to store more data. Lim-
ited stable storage usually precludes the creation and use of any ad-
ditional index structures, hence the storage models should try to in-
corporate some index information in the data model itself. Ideally,
index structures which can speed up query processing at no addi-
tional storage cost should be maintained. Different storage models
have different storage and update costs. The selection of the best

Copyright is held by the author/owner.
EMSOFT’04, September 27-29, 2004, Pisa, Italy.
ACM 1-58113-860-1/04/0009.

storage model for a data attribute in a relation depends on the size
of the relation, selectivity and length of the attribute, frequency of
updates, and the nature of queries.

As far as the choice of query processing techniques is concerned,
RAM is perhaps the most critical resource in these devices. Exist-
ing approaches use minimum memory algorithms for every opera-
tor. This can lead to poor performance for complex queries involv-
ing several joins and aggregates. Query execution time for complex
queries can be reduced by using operator algorithms which build in-
memory indices and save the aggregate values. Query plans should
be generated in such a way that they make effective use of the avail-
able memory. Optimal memory allocation among the database op-
erators is a must if we need to ensure the best usage of memory.
Another factor that influences query execution is the storage model
used to store the relations. Each storage scheme entails a differ-
ent cost for selecting and projecting a tuple, hence the cost of a
query execution plan will vary across storage schemes. Thus, the
selection of a query execution plan for a handheld device should be
governed by (i) the amount of memory available, and (ii) the under-
lying storage model. Memory and storage model cognizant query
plan generation is hence essential. Also, the query optimizer itself
should not be too complex to be executed on the handheld device.

Data Ch: teristi
Query Set (¢ 1o of ata Characteristics
—_—= _——
Storage Model

Storage Model

Query g |Selection of
Query Execution
Plan

Query Execution Plan

Memory Available
for Query Execution

Figure 1: Selection of storage scheme and query execution plan

Figure 1 characterizes the requirements of the database system.
The system should select the storage model based on data char-
acteristics and the expected type of queries. For any query g, de-
pending on the storage model and amount of available memory, the
optimal query processing technique should be determined.

Lightweight versions of some of the popular DBMSs like Ora-
cle Lite, Sybase Adaptive Server Anywhere, IBM DB2 EveryPlace,
and Microsoft SQL Server for Windows CE have been developed
with a reduced code footprint by stripping down database features.
IBM DB2 EveryPlace organizes data in a flat way; records are
stored sequentially and column values are stored contiguously in



the record. The query optimizer does not generate and examine
different evaluation plans for a query. Only nested loop algorithm
is used to evaluate joins.

Instead of having a statically defined storage scheme and query
processing technique independent of the database application and
the device resources, we need to have a dynamic approach where
we choose the storage model and query processing schemes de-
pending on the application characteristics and the resources present
in the device. There has been some work to this effect. For ex-
ample, [4] proposes a new storage model called Ring Storage for
smartcards that combines data and index storage in a single struc-
ture. Their use of ring indices produces a negative side effect on
query execution since selections become costly. The query process-
ing techniques proposed are quite specific to the smartcard platform
where the amount of memory available is extremely small. The op-
timizations suggested for aggregate queries rely on the underlying
storage and index model.

We need to design algorithms that can cater to the needs and con-
straints of various type of devices. The non-uniformity of resources
across handheld devices can however result in a need for a special
purpose database system for each type of device, e.g. smartcards,
cellphones, PDAs. An approach that can cater to the needs of dif-
ferent types of lightweight computing devices is needed:

1. In order to reduce the storage cost new storage techniques
may be needed and the best storage scheme should be se-
lected based on data characteristics and nature of queries.

2. The query processing engine should optimally allocate the
available memory among the operators. It should choose the
minimum cost query plan for a given handheld device de-
pending on the amount of available memory and the under-
lying storage scheme.

The DELite project at IIT Bombay is aimed at addressing these
issues and makes the following contributions:

e We have utilized a novel storage model, ID based Storage,
which is an improvement over the existing Domain Storage
Model [3]. For many data intensive small device applica-
tions, ID Storage wins over Domain Storage and thus re-
duces storage costs considerably. It also provides a unidirec-
tional Join Index between a foreign key-primary key pair thus
speeding up joins. We examine the suitability of this scheme
vis-a-vis existing storage schemes and depending on the data
and query characteristics, select the best storage scheme for
an attribute.

e Given the need for optimal allocation of memory among the
database operators based on the cost function of the operator
algorithms, we have shown that the exact memory allocation
algorithm proposed in [5] can be modified to be used in our
context. However, since the time and space complexity of
the exact algorithm can prevent it from being used in some
devices, we have also developed a heuristic solution with a
reduced complexity based on the benefit of an operator per
unit memory allocation.

We have implemented our techniques on the Simputer [2], a
handheld device, and our experience with this implementation indi-
cates that (a) ID based Storage can lead to lower storage cost for the
dataset used in [4] and (b) Our query processing techniques based
on the memory allocation algorithms always select the query plan
with minimum cost and so, memory and storage model cognizant
query optimization is both feasible and essential.

Our approach [6] is essentially one that composes a DBMS- its
storage schemes and query processing techniques- in a device and
DBMS application conscious fashion rather than in a single-size-
fits-all manner. To take this approach forward, in ongoing work, we
are building a modular DBMS toolkit for handheld devices. Mod-
ules from this toolkit can be plugged into a system depending on
the type of the application and resources of the device.

Biography

Prof. Krithi Ramamritham received the Ph.D. in Computer Sci-
ence from the University of Utah and then joined the University of
Massachusetts. He is currently at the Indian Institute of Technol-
ogy Bombay as the Vijay and Sita Vashee Chair Professor in the
Department of Computer Science and Engineering.

Ramamritham’s interests span the areas of real-time systems,
database systems, and real-time databases systems. He is applying
concepts from these areas to solve problems in embedded systems,
mobile computing, intelligent internet, and the Web.

Ramamritham is a Fellow of the IEEE and a Fellow of the ACM.

Rajkumar is a Masters student of Computer Science at the Indian
Institute of Technology Bombay.

1. REFERENCES

[1] Small Databases are Beautiful, Database Trends and
Applications, August 2003. http://www.dbta.com.

[2] The Simputer. http://www.simputer.org.

[3] A. Ammann, M. Hanrahan, and R. Krishnamurthy. Design of
a Memory Resident DBMS. In /IEEE COMPCON, 1985.

[4] C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez.
PicoDBMS: Scaling down Database Techniques for the
Smartcard. In VLDB, 2000.

[5] A. Hulgeri, S. Sudarshan, and S. Seshadri. Memory Cognizant
Query Optimization. In COMAD, 2000.

[6] Rajkumar Sen and Krithi Ramamritham. Efficient data
management on lightweight computing devices. June 2004.
http://www.cse.iitb.ac.in/ krithi/papers/DElite.pdf.



