Distributed Real-Time Embedded Applications
using Off-the-shelf Components:
Experiences Building a Flight Simulator

Sundeep Kapila, Krithi Ramamritham, K. Sudhakar

Abstract— Flight simulators are motivated primarily by fi-
nancial and physical constraints in using the actual system
for pilot training. They are excellent examples of resource
intensive distributed embedded applications. They are also
highly demanding in their timing requirements. This pa-
per reports on the design, implementation, and evaluation
of a research flight simulator developed using off-the-shelf
components: operating system, flight dynamics software, as
well as networking and communication software and hard-
ware. While our overall experience was quite positive, we
discuss how we overcame some of the difficulties we encoun-
tered in the communications area as well as in measuring
pilot-input-to-response times.

Keywords— Real-time systems, flight simulator, Real-Time
Linux, COTS.

1. INTRODUCTION

Flight Simulators are excellent examples of resource in-
tensive embedded applications. They are desktop applica-
tions, but come as an embedded package, as for example,
video games, and are often made up of distributed com-
ponents. Future flight simulators are expected to be pack
as much of the cockpit as possible into lower-cost flight
training devices [5]. These will use software to drive the
virtual reality displays and offer the necessary functions
without having the actual flight hardware. While the most
cost effective way to achieve all this in a timely fashion is to
use commercially available off-the-shelf software, hardware,
and system components, a major challenge lies in satisfying
the stringent timing constraints attached to flight simula-
tor functions.

This paper reports on the design, implementation, and
evaluation of a research flight simulator developed using
off-the-shelf components: operating system, flight dynam-
ics software, as well as networking and communication soft-
ware and hardware. We report on the challenges faced and
the solutions adopted to meet them. The design of the sys-
tem has been validated by simulating numerous scenarios
and shown to meet the performance requirements of the
system.

This paper is organized as follows. Section 2 gives a
brief overview of flight simulators and their performance
requirements. It also explains the issues, including timing
issues, that arise in the design of the system and elaborates
on a possible design of the system. Section 3 focuses on

Sundeep Kapila and Krithi Ramamritham are with the De-
partment of Computer Science and Engineering, K. Sudhakar is
with the Department of Aerospace Engineering, Indian Institute
of Technology, Bombay, India. (email: sundeepkapila@yahoo.com,
krithi@cse.iitb.ac.in, sudhakar@aero.iitb.ac.in)

Pilot Inputs
Poll I nt.er rupt
Driven Driven
AV
Feedback
HW
in
Loop Flight Dynamics
Other
Feedback

Fig. 1. Architecture of a Flight Simulator

implementation details as they pertain to (a) the use of
RTLinux and (b) communication between nodes. Some
challenges in, and solutions for, timing measurements, are
detailed here. Section 4 discusses the experimental setup
and analyses the results. Finally, Section 5 summarizes our
experiences and lessons learned.

2. FLIGHT SIMULATOR

Flight simulators are motivated primarily by financial
and physical constraints in using the actual system for pi-
lot training [3], [4]. Besides training, flight simulators are
also used for research purposes to test the authenticity of
various flight dynamic and control models used for model-
ing aircraft motion.

2.1 Architecture of the System

The basic components [see Figure 1] of a flight simulator
are -

o Pilot Inputs - This is responsible for taking input from
the pilot. There are primarily two types of inputs, continu-
ous inputs, like joystick inputs and interrupt driven inputs,
like inputs from toggle switches.

e Flight Dynamics Engine - This is responsible for taking
the current state of the system and the pilot inputs and
evaluating the new state of the system. This typically in-
volves solving a system of ordinary differential equations of

order twelve. This can also involve interacting with hard-
ware.

o Feedback System - This includes the audio and visual
feedback (A/V feedback) given to the pilot as per the cur-
rent state of the system. This might also involve feedback
to other devices like the motion platform.

In a typical flight simulator, the components would be on
different nodes forming a distributed system. These com-
ponents communicate with each other by different means
including network, com port and Data Acquisition Cards
(DAQ cards), for example, the latter is used for joystick
input via the game port.

The motivation behind having a distributed architecture
is the ability to independently develop the modules, each
of which requires different specialization. Such an architec-
ture also facilitates extending this system to multiple user
and aircraft simulations.

2.2 Our Basic Design

Our basic infrastructure involves two nodes, known
henceforth as Client and Server, besides components that
correspond to the hardware in the loop, and the devices
for input and output. The Client represents the node
from /through which the pilots inputs are read and the A/V
feedback is given to the pilot. The Server is the Flight
Dynamics module, which evolves the time history of the
aircraft based on pilot inputs.

lJoyinck
Game Port
i Joystick : |
| Reader Writer |
NCI Networ k
Reader

A/V Module

Fig. 2. Client Architecture

There are essentially two threads running on the Client
[See Figure 2].
o A thread that reads pilot inputs like joystick inputs (from
the “Game Port” buffer) and transmits the input stored in
the buffer over the network to the Server. (So, the “Joystick
Reader” and “Writer” are implemented as a single thread.)
o A thread that polls the network card interface (NCI)
and uses the received data to display the new state of the
aircraft through the A/V module.

There are five threads on the Server [See Figure 3].

FLight DAQ—>
Nework v Dynamics Card| i in
- Loop
\ sz /
Writer Writer
S, = Shared Memary

Fig. 3. Server Architecture

o One thread each for reading data regularly from (a) the
H/W in the loop and (b) the network card and writing it
to a shared memory location (S1).

o One thread each for regularly reading data from a shared
memory location (S2) and sending it through to (a) the
network and (b) to the H/W in the loop.

o A thread for reading input from S1 and computing the
new state of the system and writing it to S2. This is the
Flight Dynamics module of the system.

2.8 Timing Issues

In this section, we examine the application specific tim-
ing constraints and also state how they translate to timing
requirements on the component (threads).

The timing requirements imposed by the application on
the system are -

« Response to a given pilot input should occur within less
than 150ms for commercial aircrafts and 100ms for fighter
aircrafts[2].

« Continuous pilot inputs like joystick should be polled at
rates greater than once every 16ms [6].

o The state of the aircraft (as calculated by the code which
solves the equation of motion of the aircraft) is to be ad-
vanced at 12.5ms time steps.

As we shall see, the time periods of the different threads
are chosen to meet the above timing requirements of the
Flight Simulator.

o The Flight Dynamics thread has a time period of 12.5ms.
This thread involves floating point operations for solving
differential equations. Hence, the execution time of the
thread depends on the nature of pilot inputs. However, the
new state calculated is made available only at the beginning
of the next time period after 12.5ms as per requirements.
o The reader and writer threads on the Server should ide-
ally run at high rates so as to minimize the response time.
However, very small time periods lead to overload (as ex-
plained later), hence a time period of 4ms was used for
them.

e The same reasoning as above holds for choosing the time

period of the reader thread on the Client. The rate at which
the A/V module needs to receive data was also taken into
account while choosing the value of 4ms.

e The period of the writer on the Client relates to the rate
at which the joystick is polled for pilot input. The value of
this time period, as per requirements, should be less than
16ms. We keep this period as a variable for evaluation
purposes and test with values from 4 to 16 ms and study
the effect on the overall pilot-input-to-response latency.

The above choice of time periods, ignoring scheduling
and interrupt latencies (which are shown to be small given
our implementation), ensures that

e The continuous pilot inputs like joystick are polled at
rates greater than 16ms [6].
e The state of the aircraft, as calculated by the thread
which solves the equation of motion of the aircraft, is ad-
vanced at 12.5ms time step.

The other timing requirement of bounded pilot-input-to-
response latency needs to be ensured. We now present an
analytical value for this bound.

The input data read and transmitted by the Client’s
writer thread flows through different threads in the follow-
ing sequence - reader on the Server, flight dynamics thread
on the Server, writer on the Server and then finally the
reader on the Client. Each of the threads performs three
actions - read data from a shared location or buffer, process
it and then write it to a shared location. The maximum
delay between data written in a shared location and same
data being read, processed and passed on to another thread
is equal to the time period of the thread and its execution
time, except for the flight dynamics thread in which pro-
cessed data is written at the beginning of the next cycle.
Hence, the maximum delay for the flight dynamics thread
is twice its time period. Hence the total maximum delay
A encountered by data that leaves the Client end until the
Server’s response is ready for delivery to the A/V module
is

A <time period of reader on server
+ 2xtime period of flight dynamics thread
+ time period of writer on server
+ time period of reader on client
+ execution times of reader and writer on Server
+ network delays

Since the execution times (of the readers and writers) and
the network delays are ensured to be small — through care-
ful implementation — compared to the time periods (they
are of the order of 10’s of usecs in our system), we obtain,
based on our chosen values for time periods,

A < 37ms

Hence, we have a bound on the value of the latency experi-
enced by an input generated by a Client until it is ready for
delivery to the A/V unit. This is used in the next section
to determine the overall end-to-end delay.

Linux Processes

Real-Time FIFOs

Linux Real-Time

Tasks

Software I nterrupts

Real-Time Kernel

Hardware I nterrupts

Interrupt Control Hardware

Fig. 4. Architecture of RTLinux

3. SYSTEM SUPPORT

It is clear that in order to execute the operations of the
flight simulator predictably, it is important that the over-
heads involved in the interactions among the flight simula-
tor components are bounded in order to achieve the timing
requirements of the Flight Simulator. During communica-
tion between the two nodes, besides the unpredictability
due to transmission delays, there are other reasons for un-
predictability:

o Unpredictability in interrupt latency of the network in-
terrupt.

o Unpredictability in delays caused in the kernel due to the
movement of a packet through the protocol stack.

o The delays in the Com Port and DAQ Card interactions
can be unpredictable because of scheduling or interrupt
latencies caused by the system.

Choosing the operating system and communication in-
frastructure that minimizes, if not eliminates, the above
sources of unpredictability is an important issue in the de-
sign of system support for modern flight simulators.

In this section, we discuss how RTLinux was used to
provide system support, in particular, to reduce interrupt
latencies. Hence, this choice necessitated developing a de-
vice driver for the network interface card we had. The
principles underlying the design of this device driver are
then described. Finally, we discuss how we enhanced the
timing measurement capability to cover events that span
both the real-time and non real-time spaces.

3.1 Use of RTLinux for OS Support

It is well known that common-off-the-shelf (COTS) op-
erating systems are not desirable platforms to run hard
real-time tasks. However, using a familiar environment for
development which has all the other functionalities of a
COTS operating system is desirable. Hence, we decided to
use RTLinux [1], as the operating system on which to build
our application. It provides all the functionality of linux
and also provides hard real-time support.

In RTLinux, the normal linux kernel [See Figure 4] is
run as the lowest priority process. The real time processes
get priority over the linux kernel and can preempt it. The
RTLinux kernel layer lies between the hardware and the

linux kernel. It receives all the interrupts from the hard-
ware and checks whether there is any real-time process
waiting for the interrupt. If there is such a process, then
it schedules it immediately, else it transfers the control of
execution to the linux kernel. The real-time processes run
in memory space which is reserved and isolated from the
non-real time processes’ memory space. Hence, context
switching from non real-time mode to real-time mode is
fast and predictable since no state has to be saved. Inter-
rupt latencies in RTLinux are typically of the order of 10
microseconds. Real-time schedulers are supported as ker-
nel modules. RTLinux is an open source operating system
and provides a familiar threads programming environment.

The basic philosophy behind the design of RTLinux is
that any real-time application can be segmented into two
types of processes - small (in memory and resource usage)
hard real-time processes and larger (in memory and re-
source usage) soft real-time processes. Applications de-
signed in RTLinux have two components - real-time and
non real-time. Real-time and non real-time processes com-
municate via real-time fifos which are implemented as
character devices. For each fifo, one can associate a han-
dler which is run as a real-time process and is activated
whenever something is written to a fifo. Non real-time
processes access the real-time fifos like files.

Another important aspect of the application develop-
ment environment, of RTLinux is the fact that the memory
space allocated for real-time processes is fixed and there is
no dynamic allocation of memory in the real-time space.

3.2 Supporting Communication between Components

Com Port and Data Acquisition (DAQ) Card interac-
tions can be bounded since they involve reading data from
particular ports. This can be done in real-time space by
periodic threads. Moreover, there are real-time drivers
for serial ports available with the standard distribution of
RTLinux.

In case of network interactions, one can impose bounds
on interrupt latencies by developing a real-time network
driver. In order to bound the protocol stack delays, the
interactions can be made at the ethernet protocol level and
avoid the TCP/IP stack. Hence, we developed a real-time
network card driver which allows communication at the
ethernet level for a certain class of identified packets and
normal communication for the rest.

The RTLinux kernel interacts with the hardware devices.
The linux drivers run as non real-time interrupt handlers
and hence are subject to latencies as detailed previously. If
an application desires to access a particular device in real-
time mode, then a real-time driver for RTLinux for that de-
vice is required. Network interaction is an important part
of the implementation as detailed above. Hence, we need
to access the network cards in real-time mode. Whereas
drivers for tulip and 3com network cards for RTLinux are
available, real-time drivers are not available for Real Tek
network cards, the cards we had access to, even though they
are widely used. So we developed the driver for RTLinux
for Real Tek 8139 network cards.

- Hardware
$Zsk <> RedTimeDriver | INterrupt Nework Card
Interact
Through
API Calls
Soft Interrupt Write E Read E E Contral - Interact
Fifo = Fifo E E Al Thoough
- FIFOs
Non RT Task for RT
Non Real Time Packets
Standard Driver | %
API Calls
for Non RT
Packets

Fig. 5. Network Card Driver Architecture

The implementation of the driver required the design of
a protocol for timely data transmission. In this protocol,
a bit in the ethernet header is set or cleared to indicate
whether the packet to be transmitted is a real-time packet
or not. This bit is checked at the receiver to identify real-
time packets. The architecture of the driver design is as
shown in Figure 5. As seen in the figure, two drivers, one
real-time and another non real-time coexist in the system.
The interrupts from hardware are received by the real-time
driver. Real-time packets are directly and immediately pro-
cessed by the real-time driver while non real-time packets
are initially buffered in ring-buffers and later processed by
the non real-time driver when the linux kernel gets sched-
uled.

The interaction of the real-time driver with real-time
tasks is through a set of API calls defined by the driver.

The interaction of the real-time driver with non real-time
tasks is through a set of three fifos - namely, the read
fifo, the write fifo and the control fifo. The control
fifo is used to exchange control words between the appli-
cation and the driver. These control words - “change des-
tination address”, “write data” and “read data” are used
to interpret the data being written on the other two fifos.
The applications open these three fifos as files and write
and read data with the use of control words using these
three fifos.

Non real-time tasks use the non real-time driver with
the API as in linux kernel for receiving and sending non
real-time packets.

Besides the network card driver, a real-time driver for
accessing the joystick resources was also developed.

3.3 Enhanced Techniques for Timing Measurements

In the previous section we showed how some of the pe-
riods were chosen in order to meet various timing require-
ments expected of flight simulators. The pilot-input-to-
response needs to be experimentally verified. In this case,
we need to measure the elapsed time between time in-
stances, one each in real-time and non real-time space. In
RTLinux, times can be measured quite accurately as long
as processes lie within the Real-Time space, but not oth-
erwise.

During our measurements, we realized that there is an
offset between the time returned by the gethrtime() call
of RTLinux and the linux system time. If one could mea-
sure the value of this offset, then the round trip time as
seen by a user (in non-real-time space) could be estimated.
We devised a mechanism to measure the offset and used
it to take the measurements. The detailed mechanism is
explained below since we believe this could be useful in
general.

First, we would like to discuss the cause of the offset. In
RTLinux, time is measured using the gethrtime() call. The
time measured is high resolution in nanoseconds. On Intel
processors (that we used) it measures time from the time-
stamp counter. The time-stamp counter keeps an accurate
count of every cycle that occurs on the processor. The
Intel time-stamp counter is a 64-bit MSR, (model specific
register) that is incremented every clock cycle. On reset,
the time-stamp counter is set to zero.

The time measured in normal linux is the number of
jiffies (10ms) since system start up, i.e., since the loading
of the linux kernel.

Hence, the offset between the two times is equal to the
difference in the time since the system came up (the ma-
chine was reset), and the time when the kernel was loaded.
This will vary with every boot sequence (for e.g., it will
depend on time taken at the lilo prompt also). Once
booted, this offset remains constant.

At anytime after boot up, when the system is running,
executing the following steps will give us a measure of the
offset.

o Measure the value of the time stamp counter using the
Intel rtdsc instruction.

e Convert the number of cycles measured as above to a
measure of time, say hwt.

o Measure the jiffies since system startup. Jiffiesis a global
variable in the linux kernel and can be accessed in a kernel
module.

e of fset = hwt — jiffies

In the linux kernel, we implemented the above algorithm
as a module, which reads the current time-stamp counter
and the number of jiffies at a given time. This information
is given back to the client through a device file.

The driver for the above device file is added as a kernel
module. A client in user mode, reads the hardware time
and the number of jiffies from the device file. This is re-
peated a number of times and the offset is measured by the
client as detailed above.

4. EXPERIMENTAL RESULTS

From what we have said so far, the only requirement
that remains to be experimentally verified is the require-
ment for a bound on the time delay from pilot input to
response (to that input). This could be affected by large
scheduling or interrupt latencies or execution delays. How-
ever, using real-time threads and a real-time network card
driver, eliminates these latencies and ensures predictability
as shall be corroborated by the results.

We can identify two types of response times given our
design. Both start at the Client writer thread polling for
the pilot input, but one ends in the real-time space at the
Client reader thread, while the other ends in the non real-
time space with the A/V module displaying the response.
The former round trip time is entirely in the real-time space
and we have an analytical bound on its value, namely (A
+ period of the Client Reader thread). But in practice,
the data has to reach the A/V Module which is a non
real-time module. Therefore, the latter round trip is the
relevant measure, but is affected by the unpredictabilty in-
troduced in the system because of the non real-time com-
ponent. Measurements for both the values are described
below.

4.1 Response Time — Reaction to Pilot Inputs

In this set of experiments, we varied the time period of
the writer thread and measured the response time (Note:
the hardware in the loop is not part of the round trip de-
lay.).

In the interest of space we show the results for T' = 4ms
case only, even though we varied the period upto 16ms and
found the results to be similar.

=ar -

32 o e

30 -

25

26 -

2z -

20 ko -

1s

o 100 zoo 300 aoco 500 600 700 s00 200 1000

Fig. 6. Response Time(ms) for Different Inputs, Client Writer Period
= 4ms

From figure 6, we observe that
o the Response Times fall into groups which are separated
by 4ms, the time period of the reader thread. Since all the
threads in the system are periodic, the time instance at
which the reader on the client receives the response can be
t+ 6t + 4 xn, where t is the time instance when pilot input
is sent from the writer thread on the client, dt is the offset
(within the period) between the reader and writer threads
on the client, and n is an integer. Hence, the possible values

of Response times are t + 4 xn. Depending on factors like
network delays, processing delays on the Server, the value
of n will be different, but they will be grouped together in
bands separated by 4ms, since 6t is constant, as observed.
o On zooming into each of the bands, we find that the
values within each of the bands are scattered within a 10us
range, validating our assumption that scheduling latencies
are of the order of microseconds.

e The maximum value of the Response time is less than
32ms. This value is less than the analytical bound and
meets the requirements of the pilot-input-to-response for
the flight simulator system.

The round trip time as calculated in the above cases is
the time the writer at the Client gets the joystick input
to the time the Server’s response is ready for delivery by
the reader at the Client. However, this data has to be
delivered to the A/V module which runs in the non real-
time mode. We next transferred the data received by the
Client’s Reader to a non real-time A/V process through
fifos and measured the end-to-end response time. The
results are shown in figure 7.

“filel6nout -

o0 .

s0

7o - .

6o [.

s0 - -+ - - -

ao e .

s00 200 1000

Fig. 7. Response Times (ms) Observed by A/V Module

We notice that while the response time overall is less than
the allowable worst case of 150ms, we have a fair amount
of unpredictability when the end-to-end response time is
measured at the A/V module end. It should be pointed
out that the preceivable “jump” observed close to the 700"
observation is an artifact of this specific run. Similar scat-
tered response times were observed for other runs also, but,
“jump”s (if any) occurred at different points in time. Nev-
ertheless in all cases, unless a very large non-real-time load
was imposed, the end-to-end delays were lower than the
required 150ms. In the present design, making the A/V
module more predictable may involve PCI bus locking and
interfacing with the graphics card. We are looking into this
currently.

5. CONCLUSION AND FUTURE WORK

Flight simulators are resource intensive and highly de-
manding in their timing requirements. We have designed
and implemented a distributed simulation system. The
system as described can meet the timing requirements im-
posed on Flight Simulators.

RTLinux acted both as an aid as well as deterrent in the
implementation cycle. Instances where it was an aid are:
o The existence of the concept of hard and soft interrupts
enabled the synchronisation and hence co-existence of both
the real-time and non real-time driver for a single network
card. Most of the issues were common to both the types of
drivers.

o The real-time driver operates in the real-time space,
which is isolated from the normal linux application space.
Hence, there was no need to transfer data from the real-
time applications to the driver. Also, the fifo drivers
handled transfer of data from the linux space to real-time
space. Handling of data transfer across applications and
drivers was separated from application development.

o It provided a familiar POSIX based application devel-
opment environment. Hence, it made application develop-
ment easier.

However, there were scenarios in which RTLinux support
had to be enhanced to meet our needs:

e There appears to be no mechanism in RTLinux to com-
pare times in real-time and non real-time space. During
measurements it was observed that the gethrtime() call in
RTLinux and the system time of the linux kernel were not
the same. An offset between the RTLinux kernel time (the
hardware time) and the linux kernel system time was in-
troduced by the boot sequence and hence the times were
not the same. We devised a mechanism, details of which
were given in Section 3, to measure this offset.

o RTLinux does not support dynamic allocation of memory
in real-time space and hence, all the structures in the real-
time space are of prefixed size. This was a problem while
writing generic drivers for joystick inputs. Hence, one had
to hard code the number of buttons and axes of a joystick.
Moreover, the buffers used in the network card driver are of
fixed size and hence can result in data loss for non real-time
packets.

o Giving very small time periods like 2ms on slow (e.g.,
Pentium 150MHz) procesor for tasks, causes the system to
freeze. There is no mechanism for the user to come out of
such a situation besides rebooting the system.

During the development of the drivers for RTLinux, we
learned that the source code of the drivers written for the
same device for linux were helpful. The source code of
the driver for linux can be very useful, especially for the
device dependent parts. For example, in the network card
driver, the hardware dependent subroutines like the timers
were used from the linux driver code. Also in the joystick
driver, there is a vendor specific correction matrix to be
applied before arriving at the state of the joystick. This
matrix for the particular joystick was available from the
joystick drivers for linux.

In the elaborated design and implementation, the only
way to transmit interrupt driven inputs from the pilot to
the Flight Dynamics system is by sending it from the Client
to the Server and then at the server, polling the network
card for the input. In such a scenario, the worst case delay
in the response to the interrupt input would be dependent
on the time period of the reader thread on the Server. In

our case, it would be 4ms, which is too long a delay for
critical inputs. Hence, a mechanism to transmit interrupt
driven inputs more effectively has to be devised and im-
plemented. A way of doing this would be to implement
blocking I/O in the real-time network card driver for crit-
ical data. The processes waiting on blocking inputs would
be immediately woken up on arrival of such a packet. The
schedulability analysis of such a scheme also needs to be

studied.

REFERENCES

[1] Real-Time Linuz Homepage. http://www.rtlinux.org.

[2] Manual of Criteria for the Qualification of Flight Simulators.
Technical report, CAO: Montreal, 1995.

[3] B.B. Borys and S.S. Dussoye. Flight Simulation Facilities in Eu-
rope. Technical report, IFAC Conference on Integrated System
Engineering, September 1994.

[4] Mal Gormley. Aviation Computing Systems. McGraw Hill, 1997.

[5] Bruce D. Nordwall. AvWeek: Virtual Reality Pending As Sim-
ulators Diversify. http://www.aviationnow.com/awst.

[6] J.M. Rolfe and K. J. Staples. Flight Simulation. Cambridge

University Press, 1986.

