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ABSTRACT 
Continuous queries are used to monitor changes to time varying 
data and to provide results useful for online decision making. 
Typically a user desires to obtain the value of some aggregation 
function over distributed data items, for example, to know (a) the 
average of temperatures sensed by a set of sensors (b) the value of 
index of mid-cap stocks. In these queries a client specifies a 
coherency requirement as part of the query. In this paper we 
present a low-cost, scalable technique to answer continuous 
aggregation queries using a content distribution network of 
dynamic data items. In such a network of data aggregators, each 
data aggregator serves a set of data items at specific coherencies. 
Just as various fragments of a dynamic web-page are served by 
one or more nodes of a content distribution network, our 
technique involves decomposing a client query into sub-queries 
and executing sub-queries on judiciously chosen data aggregators 
with their individual sub-query incoherency bounds. We provide a 
technique of getting the optimal query plan (i.e., set of sub-
queries and their chosen data aggregators) which satisfies client 
query’s coherency requirement with least cost, measured in terms 
of the number of refresh messages sent from aggregators to the 
client. For estimating query execution cost, we build a continuous 
query cost model which can be used to estimate the number of 
messages required to satisfy the client specified incoherency 
bound. Performance results using real-world traces show that our 
cost based query planning leads to queries being executed using 
less than one third the number of messages required by existing 
schemes. 

Categories and Subject Descriptors 
H.3.5 [Online Information Services]: Web Based Services 

General Terms 
Algorithms, Management, Measurement, Performance, Design. 

Keywords 
Content distribution networks, Dynamic data, continuous 
aggregation queries, data coherency, query dissemination cost. 

1. INTRODUCTION 
Many data intensive applications delivered over the Web suffer 
from performance and scalability issues. Content distribution 
networks (CDNs) solved the problem for static content using 

caches at the edge nodes of the networks. CDNs continue to evolve 
to serve more and more dynamic applications [1, 2].  A dynamically 
generated web page is usually assembled using a number of static or 
dynamically generated fragments. The static fragments are served 
from the local caches whereas dynamic fragments are created either 
by using the cached data or by fetching the data items from the 
origin data sources.  One important question for satisfying client 
requests through a network of nodes is how to select the best 
node(s) to satisfy the request. For static pages content requested, 
proximity to the client and load on the nodes are the parameters 
generally used to select the appropriate node [3, 4]. In dynamic 
CDNs, while selecting the node(s) to satisfy the client request, the 
central site (top-level CDN node) has to ensure that page/data served 
meets client’s coherency requirements also. Techniques to 
efficiently serve fast changing data items with guaranteed 
incoherency bounds have been proposed in the literature [5, 6]. 
Such dynamic data dissemination networks can be used to 
disseminate data such as stock quotes, temperature data from 
sensors, traffic information, and network monitoring data. In this 
paper we propose a method to efficiently answer aggregation queries 
involving such data items. 

In data dissemination schemes proposed in literature [5, 6], a 
hierarchical network of data aggregators is employed such that 
each data aggregator serves the data item at some guaranteed 
incoherency bound. Incoherency of a data item at a given node is 
defined as the difference in value of the data item at the data 
source and the value at that node. Although CDNs use page-
purge [8] based coherency management, we assume that in 
dynamic data dissemination networks, these messages carry the 
new data values thereby an invalidation message becomes a 
refresh message. For maintaining a certain incoherency bound, a 
data aggregator gets data updates from the data source or some 
higher level data aggregator so that the data incoherency is not 
more than the data incoherency bound. In a hierarchical data 
dissemination network a higher level aggregator guarantees a 
tighter incoherency bound compared to a lower level aggregator. 
Thus data refreshes are pushed from the data sources to the clients 
through the network of aggregators. Dissemination networks for 
various data items (possibly from different data sources) can be 
overlaid over a single network of data aggregators as shown in 
Figure 1. Thus, from a data dissemination capability point of 
view, each data aggregator (DA) is characterized by a set of (si, ci) 
pairs, where si is the data item which the DA can disseminate at an 
incoherency bound ci.  

Example 1: In a network of data aggregators managing data items 
S1-S4, various aggregators can be characterized as- 

D1: {(S1, 0.5), (S3, 0.2)} 

D2: {(S1, 1.0), (S2, 0.1), (S4, 0.2)} 
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Aggregator D1 can serve values of S1 with an incoherency bound 
greater than or equal to 0.5 whereas D2 can disseminate the same 
data item at a looser incoherency bound of 1.0 or more. Usually, 
client is interested in an aggregation of these dynamic data items 
at a certain incoherency bound. These continuous queries are used 
to monitor changes in dynamic data and provide results useful for 
online decision making. For generating the result of a query,   data 
from multiple sources is required. As a result, the query has to be 
evaluated either at data aggregators [9] or at the client. In this 
paper we assume existence of data dissemination network of 
multiple data items to answer a class of queries termed, 
continuous incoherency bounded weighted aggregation queries, 
which are formally defined next.  

1.1 Continuous Incoherency-Bounded 
Weighted Aggregation Queries 
A continuous weighted aggregation query can be formally written 
as:  
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Vs
q is the value of a client query q involving nq data items with the 

weight of the ith data item being wq
i, 1�i� nq. si(t) is the value of 

the ith data item at the data source at time t. Such a query 
encompasses SQL aggregation operators SUM and AVG besides 
general weighted aggregation queries such as portfolio queries, 
involving aggregation of stock prices, weighted with number of 
shares of stocks in the portfolio. Due to space limitations we are 
not presenting execution schemes for other aggregation queries 
such as MIN/MAX. Interested readers are referred to [10] for the 
extended version of this paper. 

Let the value of ith data item, in Equation (1), known to the 
client/DA be di(t).  Then the data incoherency is given by |si(t)-
di(t)|. For a data item which needs to be disseminated at an 
incoherency bound C the data refresh is sent to the client or lower 
level DA, if the |si(t)-di(t)| is more than C. If user specified 
incoherency bound for the query q is Cq, then the dissemination 
network has to ensure that: 
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Whenever data values at sources change such that query 
incoherency bound is violated, the updated value(s) is 
disseminated to the client. If the network of aggregators can 
ensure that the ith data item has incoherency bound Ci then the 
following condition ensures that the query incoherency bound Cq 

is satisfied: 
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A client specified query incoherency bound needs to be translated 
into incoherency bounds for individual data items or sub-queries 
such that Equation (3) is satisfied. It should be noted that 
Equation (3) is sufficient condition for satisfying the query 
incoherency bound but not the necessary. This way of translating 
the query incoherency bound into the sub-query incoherency 
bounds is required if data is transferred between various nodes 
using only push based mechanism. Such a translation is not 
required in either a pull based mechanism as shown in our earlier 
paper [9] or combinations of push and pull. In this paper we 

consider only push based data dissemination among servers, DAs 
and clients. Next we present the summary of our approach 
towards executing the continuous multi-data weighted additive 
aggregation query with the objective of minimization of number 
of refreshes from data aggregators to the client. Our technique can 
be used for various popular applications where different clients 
require aggregation of multiple data items at their individual 
incoherency bounds. Monitoring stock portfolios is one such 
popular application which we use for performance measurements. 

 

1.2 Summary of Approach and Contributions 
Consider a client query Q1=50 S1 + 200 S2 + 150 S3 with a 
required incoherency bound of 80 (in a stock portfolio S1, S2, S3 
can be different stocks and incoherency bound can be $80).We 
want to execute this query over data aggregators given in 
Example1 minimizing number of refreshes. There are various 
options for the client to get the data items: 

• The client may get the data items S1, S2 and S3 separately. The 
query incoherency bounds can be divided among data items in 
various ways while satisfying Equation 3. In this paper, we 
show that getting data items independently is a costly option. 
This strategy ignores facts that the client is interested only in 
the aggregated value of the data items and various aggregators 
can disseminate more than one data item.  

• If a single DA can disseminate all three data items required to 
answer the client query, the DA can construct a composite 
data item corresponding to the client query (Sq=50 S1 + 200 S2 
+ 150 S3 ) and disseminate the result to the client so that the 
query incoherency bound is not violated. It is obvious that if 
we get the query result from a single DA, the number of 
refreshes will be minimum (as in this case data item updates 
may cancel out each other, thereby keeping the query result 
within the incoherency bound). As different data aggregators 
disseminate different subsets of data items, no data aggregator 
may have all the data items required to execute the client 
query which is indeed the case in Example1. Further, even if 
an aggregator can disseminate all the data items, it may not be 
able to satisfy the query coherency requirements. In such 
cases the query has to be executed with data from multiple 
aggregators. 

• Another option is to divide the query into a number of sub-
queries and get their values from individual DAs. In that case, 
the client query result is obtained by combining the results of 
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Figure 1: Data dissemination network for multiple 
data items 



more than one sub-query. For the DAs given in Example1, the 
query Q1 can be divided in two alternative ways: 

plan1: D1 {50 S1 + 150 S3}; D2 {S2} 

plan2: D1 {S3}; D2 {50 S1, + 200 S2} 

i.e., in plan1 result of sub-query 50 S1 + 150 S3 is 
disseminated by D1 and that of S2 (or 200 S2) by D2. Combining 
them at the client gives the query result.  

• Selecting the optimal plan among various options is not-trivial. 
As a thumb-rule, we should be selecting the plan with lesser 
number of sub-queries. But that is not guaranteed to be the 
plan with the least number of messages. Further, we should 
select the sub-queries such that updates to various data items 
appearing in a sub-query have more chances of canceling each 
other as that will reduce the need for refresh to the client 
(Equation 2). In the above example, if updates to S1 and S3 are 
such that when S1 increases, S3 decreases, and vice-versa, then 
selecting plan1 may be beneficial. We give an algorithm to 
select the query plan based on these observations. 

• While solving the above problem of selecting the optimal plan 
we ensure that each data item for a client query is 
disseminated by one and only one data aggregator. Although a 
query can be divided in such a way that a single data item is 
served by multiple DAs (e.g., 50 S1 + 200 S2 + 150 S3 is 
divided into two sub-queries 50 S1 + 130 S2 and 70 S2 + 150 
S3); but in doing so the same data item needs to be processed 
at multiple aggregators, increasing the unnecessary processing 
load. By dividing the client query into disjoint sub-queries we 
ensure that a data item update is processed only once for each 
query (For example, in case of paid data subscriptions it is not 
prudent to get the same data item from the multiple sources). 

• The query incoherency bound needs to be divided among sub-
query incoherency bounds such that, besides satisfying the 
client coherency requirements, the chosen DA (where the sub-
query is to be executed) is capable of satisfying the allocated 
sub-query incoherency bound. For example, in plan1 
allocated incoherency bound to the sub-query 50S1 + 150S3 
should be greater than 55 (=50*0.5+150*0.2) as that is the 
tightest incoherency bound which the aggregator D1 can 
satisfy. We prove that the number of refreshes depends on the 
division of the query incoherency bounds among sub-query 
incoherency bounds. Similar result was proved for data 
incoherency bounds in [11]. 

Thus, what we need is a method of (a) optimally dividing client 
query into sub-queries and (b) assigning incoherency bounds to 
them; such that (c) selected sub-queries can be executed at chosen 
DAs and (d) total query execution cost, in terms of number of 
refreshes, is minimized. We prove that the problem of choosing 
sub-queries while minimizing query execution cost is an NP-
hard problem. We give efficient approximation algorithms to 
choose the set of sub-queries and their corresponding 
incoherency bounds for a given client query. In contrast, all 
related work in this area [11, 12] propose getting individual data 
items from the aggregators which, as we show in this paper, leads 
to large number of refreshes.  For solving the above problem of 
optimally dividing the client query into sub-queries, we first need 
a method to estimate query execution cost for various alternative 
options. A method for estimating the query execution cost is 
another important contribution of this paper. As we divide the 
client query into sub-queries such that each sub-query gets 

executed at different aggregator nodes, the query execution cost 
(i.e., number of refreshes) is the sum of the execution costs of its 
constituent sub-queries. We model the sub-query execution cost 
as a function of following parameters: 

(a) Dissemination costs of the individual data items involved. The 
data dissemination cost is dependent on data dynamics and 
incoherency bound associated with the data. We model the data 
dynamics using a data synopsis model, and the effect of the 
incoherency bound using an incoherency bound model. These two 
models are combined to get the estimate of the data dissemination 
cost. 

 (b) A correlation measure of data dynamics, quantifying the 
chance that the updates of two data items will cancel each other 
out such that a sub-query of their sum will incur less refreshes 
than disseminating the individual data changes. We use cosine 
similarity between data items for this purpose. This parameter is 
widely used in information retrieval domain [20]. 

Through extensive simulations we show that: 

• Our method of dividing query into sub-queries and executing 
them at individual DAs requires less than one third of the 
number of refreshes required in the existing schemes. 

• For efficient execution, more dynamic data item should be part 
of sub-query involving larger number of data items.  

Our method of executing queries over dynamic data 
dissemination network is practical since it can be implemented 
using a mechanism similar to URL-rewriting [4] in CDNs. Just 
like in a CDN, the client sends its query to the central site.  For 
getting appropriate aggregators (edge nodes) to answer the client 
query (web page), the central site has to first determine which data 
aggregators have the data items required for the client query. If 
the client query can not be answered by a single data aggregator, 
the query is divided into sub-queries (fragments) and each sub-
query is assigned to a single data aggregator. In case of a CDN, 
web page’s division into fragments is a page design issue, 
whereas, for continuous aggregation queries, this issue has to be 
handled on per-query basis by considering data dissemination 
capabilities of data aggregators as represented in Example 1.  

1.3 Outline of the Paper 
We give a formal mathematical definition of the query plan 
selection problem in Section 2. Query cost model for a multi-data 
incoherency bounded aggregation query is developed in Section 
3. The query cost model uses the data dissemination model 
presented in Section 3.1 and cosine similarity measure which is 
explained in Section 3.2. In Section 4, we first prove that the 
optimization problem presented in Section 2 is NP-hard then we 
give approximate algorithms for the problem. In Section 5, 
performance evaluation done using real-world traces is presented 
to show that our sub-query based query evaluation scheme 
executes the client query at less than one third cost compared to 
other known schemes. Related work is presented in Section 6 and 
the paper concludes in Section 7. 

2.   QUERY PLAN SELECTION PROBLEM 
In this section, we give a formal definition of the optimization 
problem described in the previous section. We are given a set D of 
data aggregators, set S of data items and one-to-many mapping  f: 
D�(S, C)  where C�� is a sub-set of real number representing 
incoherency bounds for various data items (in the set S ) at 



aggregators in D. Each incoming client query q over the data 
items set Sq � S has corresponding weights given as a set Wq. 
Thus the query can be represented as set of tuples of �data_item, 
weight�, i.e., q= {�sq, wq�} with the query incoherency bound Cq. 
We need to perform the following two tasks such that the number 
of refreshes to the client is minimum: 

Task1: Divide the client query q= {�sq, wq�} into sub-queries qk= 

{� q
k

q
k ws , �} so that � qk = q i.e., although different sub-queries 

may be executed at different aggregators, combining their results 
gives the value of the client query. 

 Task2: Allocate each sub-query qk, with its incoherency bound 

kC ,  to data aggregators. 

While fulfilling the following conditions: 

 Condition1: Query incoherency bound is satisfied, i.e., 

� ≤
k

q
k CC .  

The sub-query qk should be assigned to a data aggregator di �D 
iff: 

Condition2: The chosen aggregator should have all the data items 
appearing in the sub-query i.e. ∏∏ ⊆ S iS k dfq ))(()( . Here � 
indicates project operator in relational algebra.  

Condition3: Data incoherency bounds at the selected data 
aggregator ∏ == ))((( )( ijssCj dfc q

k
σ  should be such that 

kk XC ≥  where sk
q(j) is the jth data item appearing in the sub-

query qk and Xk is the tightest incoherency bound the aggregator 
can ensure for the given sub-query. Xk can be calculated as: 

�= q
jjk wcX . Here � indicates select operator in relational 

algebra. 

3. QUERY COST MODEL 
Before developing the query cost model we first summarize the 
model to estimate the number of refreshes required to disseminate 
a data item at certain incoherency bound. For simulation 
experiments we use data items from sensor network and stock data 
domains as explained in our previous work [9]. Stock traces of 45 
stocks were obtained by periodically polling 
http://finance.yahoo.com. Sensor network data used were 
temperature and wind sensor data from Georges Bank Cruises 
Albatross Shipboard [13]. Due to paucity of space we present 
results using stock data only but similar results were obtained for 
sensor data as well [14]. For detailed analysis and simulation 
results, readers can refer to the extended version of the paper [10]. 

3.1 Data Dissemination Cost  
Cost of disseminating a data item at a certain given incoherency 
bound C can be estimated by combining two models: 

• Incoherency bound model is used for estimating dependency of 
data dissemination cost over the desired incoherency bound. 
As per this model, we have shown in [10] that the number of 
data refreshes is inversely proportional to the square of the 
incoherency bound (1/C2). Similar result was earlier reported 
in [5] where the data dynamics was modeled as a random-
walk process. 

Data dissemination cost  1/C2  (4) 

• Data Synopsis Model is used for estimating the effect of data 
dynamics on number of data refreshes. We define a data 
dynamics measure called, sumdiff, to obtain a synopsis of the 
data for predicting the dissemination cost. The number of 
update messages for a data item is likely to be higher if the 
data item changes more in a given time window. Thus we 
hypothesize that cost of data dissemination for a data item will 
be proportional to sumdiff, defined as: 

� −= −
i
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where si and si-1 are the sampled values of the data item at ith and 
(i-1)th time instances (consecutive ticks).  In [10] we corroborate 
the above hypothesis using simulation over a large number of data 
items. Pearson product moment correlation coefficient (PPMCC) 
[19] values, used for quantifying linearity between data sumdiff 
and number of refreshes required to maintain a fixed incoherency 
bound, were found to be between 0.90 and 0.96 for various values 
of incoherency bounds. Sumdiff value for a data item can be 
calculated at the data source by taking running average of 
difference between data values at the consecutive ticks. A data 
aggregator can also estimate the sumdiff value by interpolating the 
disseminated values.  

Thus, the estimated dissemination cost for data item S, 
disseminated with an incoherency bound C, is proportional to 
Rs/C

2.  Next we use this result for developing the query cost 
model.  

3.2 Query Dissemination Cost 
Consider a case where a query consists of two data items P and Q 
with weights wp and wq respectively; and we want to estimate its 
dissemination cost. If data items are disseminated separately, the 
query sumdiff will be: 

|||| 11 −− � −+� −=+= iiqiipqqppdata qqwppwRwRwR (6) 

Instead, if the aggregator uses the information that client is 
interested in a query over P and Q (rather than their individual 
values), it makes a composite data item wpp+wqq and 
disseminates that data item then the query sumdiff  will be: 

� −− −+−= |)()(| 11 iiqiipquery qqwppwR
    (7) 

Rquery is clearly less than or equal compared to Rdata. Thus we need 
to estimate the sumdiff of an aggregation query (i.e., Rquery) given 
the sumdiff values of individual data items (i.e., Rp and Rq). Only 
data aggregators are in position to calculate Rquery as different data 
items may be from different sources. We develop the query 
dissemination model in two stages. 

3.2.1 Quantifying correlation between dynamics of 
data  
From Equations (6) and (7) we can see that if two data items are 
correlated such that if value of one data item increases, that of the 
other data item also increases, then Rquery will be closer to Rdata 
whereas if the data items are inversely correlated then Rquery will 
be less compared to Rdata. Thus, intuitively, we can represent the 
relationship between Rquery and sumdiff values of the individual 
data items using a correlation measure associated with the pair of 
data items. Specifically, if � is the correlation measure then Rquery 

can be written as: 

 )2( 22222
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 The correlation measure is defined such that –1� �� +1, so, Rquery 
will always be less than |wpRp+wqRq| (as explained earlier) and 
always be more than |wpRp–wqRq|. The correlation measure � can 
be interpreted as cosine similarity [20] between two streams 
represented by data items P and Q. Cosine similarity is a widely 
used measure in information retrieval domain where documents 
are represented using a vector-space model and document 
similarity is measured using cosine of angle between two 
document representations. For data streams P and Q, � can be 
calculated as:  
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3.2.2 Query normalization 
Suppose we want to compare the cost of two queries: a SUM 
query involving two data items and an AVG query involving the 
same data items. Let the query incoherency bound for the SUM 
and the AVG queries be C1=2C and C2=C, respectively. From 
Equation (8), sumdiff of the SUM query will be double that of the 
AVG query (as the weight of each data item in the SUM query is 
double of that in the AVG query). Hence, query evaluation cost (as 
per Ri/Ci

2) of the SUM query will be half that of the AVG query (as 
SUM query incoherency bound is double). But, intuitively, 
disseminating the SUM of two data items, at double the 
incoherency bound should require the same number of messages 
as their AVG. Thus, there is a need to normalize query costs.  
From a query execution cost point of view, a query with weights 
wi and incoherency bound C is same as query with weights � wi 
and incoherency bound �.C. So, while normalizing we need to 
ensure that both, query weights and incoherency bounds, are 
multiplied by the same factor. Normalized query sumdiff is given 
by: 
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i.e., the value of the normalizing factor should be  

qppp wwww ρ2/1 22 ++ . The value of the incoherency bound 

has to be adjusted by the same factor. Normalization ensures that 
queries with arbitrary values of weights can be compared for 
execution cost estimates. From Equations (9 and 10) the value of 
query sumdiff can be estimated at a data aggregator node if it has 
all the required data items disseminated to it. An aggregator can 
use interpolated values of data items to estimate � as it is not 
(always) likely to have all the data updates.  In the extended 
version of the paper [10] we present an efficient method (using 
[21]) to calculate � which can also be used when the 
corresponding data items are not being disseminated by the same 
data aggregator. Equation (10) can be extended to get query 
sumdiff for any general weighted aggregation query given by 
Equation (1) as: 
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3.2.3 Validating the query cost model 
To validate the query cost model we performed simulations by 
constructing more than 50 weighted aggregation queries using the 
stock data with each query consisting of 3-7 data items with data 
weights uniformly distributed between 1 and 10. For each query 
the number of refreshes was counted for various normalized 
incoherency bounds between 0.01 and 0.5. Figure 2 shows that 
the number of messages is proportional to the normalized query 
sumdiff as calculated using Equation (11) if their normalized 
incoherency bounds are same. In this case PPMCC value is found 
to be 95%. Similarly, Figure 3 shows the dependence of the 
number of refreshes on 1/C2 to prove that the relationship that 
holds between them for single data item also holds for a query 
with multiple data items. The query cost model can be used in 
various applications of query assignment, load balancing, optimal 
order of processing, etc. In the next section, we use this query cost 
model for our query plan problem to optimally divide a client 
query into sub-queries and execute it over a network of data 
aggregators so that the number of refreshes can be minimized 

4. EXCEUCTING QUERIES USING SUB-
QUERIES 
For executing an incoherency bounded continuous query, a query 
plan is required which includes the set of sub-queries, their 
individual incoherency bounds and data aggregators which can 
execute these sub-queries. We need to find the optimal query 
execution plan which satisfies client coherency requirement with 
the least number of refreshes. As explained in Section 1, what we 
need is a mechanism to: 

Task 1: Divide the aggregation query into sub-queries; and  

 
Figure 2: Variation of query cost with query sumdiff 

(Normalized C=0.3) 

 
Figure 3: Number of refreshes for varying query 

incoherency bounds 



Task 2: Allocate the query incoherency bound among them. 

 while satisfying the following conditions identified in Section 2:  

condition 1. Query incoherency bound is satisfied. 

condition 2. The chosen DA should be able to provide all 
the data items appearing in the sub-query assigned to it. 

condition 3. Data incoherency bounds at the chosen DA 
should be such that the sub-query incoherency bound can 
be satisfied at the chosen DA. 

Objective : Number of refreshes should be minimized.   

Let the client query be divided into N sub-queries {qk: 1�k�N}; 
with Rk being sumdiff of kth sub-query and Ck being incoherency 
bound assigned to it. As given is Section 3, the dissemination cost 
of a sub-query is estimated to be proportional to Rk/Ck

2. Thus 
query cost estimate is given by: 
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While allocating sub-query incoherency bounds we need to ensure 
that the query coherency requirement C is satisfied (condition1); 
i.e., 
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For satisfying condition2, sub-queries should be such that all its 
data items can be disseminated by the chosen DA. Let Xk be the 
tightest incoherency bound (defined in Section 2) the chosen DA 
can satisfy for qk. For the condition3, we have to ensure that Ck � 
Xk for each sub-query qk and its assigned data aggregator. Z needs 
to be minimized for minimizing the number of refreshes as per the 
objective. 

Before attempting the hard problem of optimizing Z, let us first 
consider a simpler problem where values of Ck are given.  In this 
simpler problem we divide the client query into sub-queries to 
minimize the estimated execution cost (Z) without considering the 
optimal division of the query incoherency bound into sub-query 
incoherency bounds. Besides working as a step towards a solution 
for the whole problem this case can also be used where allocation 
of incoherency bounds to sub-queries is done independent of the 
data dynamics. For example, it may be pre-decided that 
incoherency bounds for all data items will be the same. Thus, for a 
given query and its incoherency bounds, the sub-query 
incoherency bounds can be obtained. Next we prove that this 
simpler version of the problem is NP-hard.  

4.1 Finding Optimal Query Plan is NP-hard 
For proving that the problem is NP-hard, we use reduction from 
3-dimensional matching (3DM) problem. For a given client 
query and DA, let us first define maximal sub-query as the largest 
part of the query which can be disseminated by the DA (i.e., the 
maximal sub-query has all the query data items which the DA can 
disseminate at the required incoherency bound). For example, for 
a client query 20S1 +25S2+35S3 with incoherency bound 80; let 
the pre-decided incoherency bound for each data item be 1. For 
the data aggregators D1 and D2 given in Example 1, the maximal 
sub-query for D1 will be q1=20S1 +35S3, whereas for D2 it will be 
q2=20 S1 + 25S2. 

3DM Problem: Given three sets X, Y and Z, each with N 
elements, and a set M � X � Y� Z, is there a subset M1�M such 
that |M1|=N and no two elements of M1 agree in any coordinate?  

We use a slightly different (decision) version of the optimization 
problem to reduce the 3DM problem. To solve the 3DM problem 
we reduce it to a SUM query of 3N items: 

� The SUM query: � ++
=

N

i
iii zyx

1
)( for xi � X, yi � Y, zi � Z.  

� We assume that all the data items have the same sumdiff 
values of 1; cosine similarity between all the data items is 0; 
and all data items are allocated an incoherency bound of 1.  

� For each element (xi, yj, zk)  � M, we assume the existence of 
a data aggregator disseminating these three data items only. 

� In the decision version of optimal plan problem we ask 
whether there exists a query plan with query cost estimate 
value N/3. 

If a query plan with cost estimate value N/3 exists; it implies that 
the query plan has N queries with 3 items each (that will lead to 
query cost value of 1/3 per sub-query as per Equation (11) 
whereas any other combination of sub-queries will lead to more 
cost). Three data items from each chosen data aggregators form a 
triplet for the set M1 which solves 3DM. Because of space 
constraints we are not giving the complete proof of NP-
hardness of the original problem. In general, there is no known 
approximate algorithm for such a problem. It should be noted that 
performing Task1 for achieving the objective is NP-hard, so we 
give two greedy heuristics in next two sub-sections; whereas 
Task2 can be performed optimally with conditions1-3 while 
achieving the objective.  In our approach, we first try to perform 
Task1, while satisfying as many conditions as possible, and then 
optimally perform Task2 while satisfying all the conditions. 

4.2 Minimum Cost Heuristic 
Figure 4 shows the outline of greedy heuristics where different 
criteria (�) can be used to select sub-queries. In this section we 
describe the case where the estimate of query execution cost is 
minimized in each step of the algorithm (min-cost) whereas in the 
next section we present the case where gain due to executing a 
query using sub-queries is maximized (max-gain).  

4.2.1 Query Plan with Pre-decided Incoherency 
Bound Allocation 
For the given client query (q) and mapping between data 
aggregators and the corresponding {data-item, data incoherency 
bound} pairs (f: D�(S, C)) maximal sub-queries can be obtained 
for each data aggregator. Let A be the set of such maximal sub-
queries. In this set, each query a � A can be disseminated by a 
designated data aggregator at the assigned incoherency bound. For 
each sub-query a � A, its Sumdiff Ra is calculated using Equation 
11. Using the set A and sub-query sumdiffs, we use the algorithm 
outlined in Figure 4 to get the set of sub-queries minimizing the 
query cost. In this Figure each sub-query a � A is represented by 
the set of data items covered by it. As we need to minimize the 
query cost, a sub-query with minimum cost per data item is 
chosen in each iteration of the algorithm i.e., criteria � 	 
minimize (Ra/Ca

2|a|). All data items covered by the selected sub-
query are removed from all the remaining sub-queries in A before 
performing the next iteration.  



 

4.2.2 Optimizing query execution cost 
Now we consider the overall problem to select the optimal set of 
sub-queries while simultaneously dividing the query incoherency 
bound among them. In this case we get the set of maximal queries 
(A) without considering the minimum incoherency bounds that the 
data aggregators can satisfy (i.e., condition3). In this algorithm we 
first get the optimal set of sub-quires without considering the 
condition3 and then allocate incoherency bound among them 
using condition1 (Equation (13)) and condition3. Lagrange 
multiplier scheme can be used to solve for incoherency bounds 
(from Equations 12 & 13) so that Z is minimized: 
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i.e., without the constraints of condition3, sub-query incoherency 

bounds should be allocated in proportion to 3/1
kR . Using 

Equations (12) and (14) we get: 

�=
=

N

k
kR

C
Z

1

3/1
3/2

3/1 1
                      (15) 

From Equation (15), it is clear that for minimizing the query 
execution cost we should select the set of sub-queries so that 

�
3/1

kR  is minimized. We can do that by using criteria � 	 

minimize ( 3/1
aR /|a|) in the algorithm described in Figure 4. Once 

we get the optimal set of sub-queries we can use the Equation (13) 
and condition3 (Ck � Xk ) to optimally allocate the query 
incoherency bound among them. This allocation problem can be 
solved by various convex optimization techniques available in the 
literature such as gradient descent method, barrier method etc. We 
used gradient descent method (fmincon function in MATLAB) to 
solve this non-linear optimization problem to get the values of 
individual sub-query incoherency bounds. But this method of first 
selecting sub-queries and then allocating the incoherency bounds 
has a problem which is described next.  

4.2.3 Satisfiability of Condition 3 
In the solution described in the previous section, we select the set 
of sub-queries (and corresponding DAs) and then allocate the 
query incoherency bound among them using convex optimization 
techniques. But the problem of incoherency bound allocation 
among chosen DAs may not have any feasible solution. There 
may be situations where, although the data dissemination network 
is able to satisfy the query coherency requirements but once the 

set of sub-queries (and corresponding DAs) is selected the 
incoherency bound allocation is not possible.  

Example 2: Consider a client query 50S1 + 200S2 + 150S3 with the 
incoherency bound of 80 and data dissemination network 
consisting of two aggregators D1 and D2 as given in Example 1. 
There are (at-least) two possible query plans to answer the above 
query: 

Plan1: D1 (50S1 + 150 S3); D2 (S2) 

Plan2: D1 (S3); D2 (50S1 + 200 S2) 

In Section 4.2.2 we are selecting sub-queries having 

minimum�
3/1

kR , thus based on data dynamics it is possible that 
we select plan2 as the optimal plan. But from the data 
incoherency bounds that aggregators D1 and D2 can ensure, we 
see that it is not possible for plan2 to satisfy the client specified 
incoherency bound as minimum incoherency bound that can be 
satisfied by the selected aggregators (X=50*1 +200*0.1 +150*0.2 
=100) is greater than the query incoherency bound (=80). Thus 
although there exists a plan (plan1) which can satisfy the client 
query incoherency bound, while minimizing the query execution 
cost the above method cannot ensure that such a plan will be 
selected. 

What we need is a compromise between the query satisfiability 
and performance. In Section 4.2.2 we are selecting the sub-queries 
without considering the data incoherency bounds for the selected 
data aggregators. We correct that by selecting sub-queries using 

� + )( 3/1
3/1

a
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a
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as substitute objective function instead of 

�
3/1

aR . The second term ensures that while selecting the optimal 
plan we prefer the data aggregators having tighter data 
incoherency bounds (lower values of Xa) thus higher chances of 
satisfying the query. The tuning parameter (�) can used to balance 
the objectives of minimizing query execution cost through sub-
queries selection and meeting the query coherency requirements. 

We use 3/1/ aa CRX in the second term as, according to Equation 
(14), optimal incoherency bound allocation is likely to be done 

proportional to 3/1
aCR . In Section 5.2, we measure effects of the 

tuning parameter � on the query satisfiability. 

4.3 Maximum Gain Heuristic 
In this section we present an algorithm which, instead of 
minimizing the estimated query execution cost, maximizes the 
estimated gains of executing client query using sub-queries. In 
this algorithm, for each sub-query, we calculate the relative gain 
of executing it by finding the sumdiff difference between cases 
when each data item is obtained separately and when all the data 
items are aggregated as a single sub-query. Thus, the relative gain 
for a sub-query wpp+wqq can be written as: 
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This algorithm can be implemented by using criteria � 	 
maximize (Gquery/|a|) to get the set of sub-queries and 
corresponding DAs. Then we use the convex optimization method 
outlined in Section 4.2 to allocate incoherency bounds among 
sub-queries. To tackle the query satisfiability issue the query gain 
Equation (16) is modified to: 

Result � � 
while A � � 
    choose a sub-query a� A with criteria � 
    Result � Result � a 
    A� A-{a} 
    for each data element e � a 
        for each b� A 
            b� b-{e} 
            if b =  � 
                A� A-{b} 
          else  
                calculate sumdiff for modified b 
return Result 

Figure 4: Greedy algorithm for query plan selection 
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where Xp is minimum incoherency bound that can be satisfied for 
the data item P; C is query incoherency bound and Rquery is the 

query sumdiff (= )2( 2222
qpqpqqpp RRwwRwRw ρ++ ). Reasons 

for selecting the particular substitute objective function are same 
as ones outlined in Section 4.2.3. In the next Section, through 
performance results, we show that this algorithm performs better 
than the min-cost heuristic. 

5. PERFORMANCE EVALUATION 
For performance evaluation we simulated the data dissemination 
networks of 25 stock data items over 25 aggregator nodes such 
that each aggregator can disseminate combinations of up to 10 
data items with data incoherency bounds chosen uniformly 
between $0.005 and 0.02. Then we created 500 portfolio queries 
such that each query has up to 10 randomly (uniformly) selected 
data items with weights varying between 2 and 10. These queries 
were executed with incoherency bounds between 0.3 and 1.0 (i.e., 
0.03-0.1% of the query value). In the first set of experiments, we 
kept the data incoherency bounds at the data aggregators very low 
so that query satisfiability can be ensured.  

5.1 Comparison of algorithms 
For comparison with our algorithms, presented in the previous 
section, we consider various other query plan options.  Each query 
can be executed by disseminating individual data items or by 
getting sub-query values from DAs. Set of sub-queries can be 
selected using sumdiff based approaches or any other random 
selection. Sub-query (or data) incoherency bound can either be 
pre-decided or optimally allocated. Various combinations of these 
dimensions are covered in the following algorithms: 

1. No sub-query, equal data incoherency bound (naïve): In this 
algorithm, the client query is executed with each data item being 
disseminated independent of other data items in the query. 
Incoherency bound is divided equally among the data items. This 
algorithm acts as a baseline algorithm. 

2. No sub-query, optimal incoherency bound (optc): In this 
algorithm also data items are disseminated separately but 
incoherency bound is divided among data items so that total 
number of refreshes can be minimized. This algorithm is similar 
to the one presented in [11]. Here, the incoherency bound is 
allocated dynamically using Equation (14).  

3. Random sub-query selection (random): In this case, sub-
queries are generated by randomly selecting one data aggregators 
and allocating it the maximal sub-query consisting of query data 
items which the aggregator can disseminate. Then the process is 
repeated for the remaining data items until the whole query is 
covered. This algorithm is designed to see how the sub-query 
selection based on query sumdiff (Section 4) works in comparison 
to random selection of sub-queries.  

4. Sub-query selection while minimizing sumdiff (min-cost): 
This algorithm is described in Section 4.2.  

5. Sub-query selection while maximizing gain (max-gain): This 
algorithm is described in Section 4.3. 

Figure 5 shows average number of refreshes required for query 
incoherency bounds of $0.3, $0.5 and $0.8. The naïve algorithm 
requires more than three times the number of messages compared 
to min-cost and max-gain algorithms. For incoherency bound of 
$0.8 each query requires 1024 messages if it is executed just by 
optimizing incoherency bound (optc) compared to 255 when we 
select the query plan using the max-gain algorithm. Further, 
although the optimization problem is similar to the covering a set 
of data items (query) using its sub-sets (sub-queries) for which the 
greedy min-cost algorithm is considered to be most efficient [7],  
we see  that max-gain algorithm requires 20-25% less messages 
compared to the min-cost approach. Reasons for max-gain 
algorithm performing better than other algorithms are explored in 
the next set of experiments. Although here we presented results 
for stock traces (man-made data) similar results were obtained for 
sensor traces (natural data) as well. 

 

Figure 5: Performance evaluation of algorithms 

5.2 Effect of Algorithmic Parameters 
These set of experiments were performed to get an insight into 
various characteristics of our sub-query selection method which 
lead it to perform better compared to other options. We consider 
effects of three parameters on sub-query selection and, in turn on 
query performance: data dynamics, correlation between data 
dynamics and query satisfiability parameter. 

5.2.1 Effect of data dynamics 
In this set of experiments, we wanted to see whether there is any 
definite relationship between data dynamics and sub-query size in 
which that data item appears. In this experiment with 10 data 
items, 45 DAs were simulated such that each DA can disseminate 
a different set of 2 data items. Then 100 queries were created each 
with 3 data items. In the optimal query plan, each query will be 
executed with two sub-queries: one consisting of 2 data items and 
another with single data item (plan with three one item sub-
queries will be trivially inefficient). As the query has only 3 data 
items, only 3 such query plans are possible. We simulated all 
these options to get the best query plan. Figure 6 shows variation 
of average sub-query size in which a particular data item appears 
versus sumdiff value of the data item. We can see that if a data 
item is more dynamic, in the optimal plan, it is more likely to be 
part of larger sub-query. This is an important observation as it 
indicates that for efficient query evaluation more dynamic data 
items should be part of a larger sub-query. This phenomenon can 
be explained by the fact that by executing a query as a 
combination of sub-queries will always be more efficient 
compared to getting the data items independently. By combining 



more dynamic data items we are likely to gain more. For 
comparison we also show the curve for the sub-query selection 
based on max-gain algorithm. It can be seen that sub-query 
selection using max-gain is approximately same as that selected 
by the optimal solution. By using max-gain algorithm we achieve 
our objective of disseminating more dynamic data items as part of 
larger sub-queries. For the max-gain algorithm, similar results 
were obtained for larger query sizes as well. In comparison, in the 
min-cost algorithm most dynamic data item is more likely to be 
disseminated as single item query. This happens because the 
sumdiff value of a more dynamic data item will be high thus in 
each step of the min-cost algorithm (Figure 4), there is less chance 
of selecting a sub-query with more dynamic data item.  Thus, it is 
very likely that the highly dynamic data item will be disseminated 
as a single item sub-query resulting in bad performance of the 
client query. Still the min-cost algorithm performs better 
compared to random algorithm as it tries to execute the query 
with lesser number of sub-queries. 

5.2.2 Effect of correlation between data dynamics 
To measure the effects of correlation between data dynamics 
(cosine similarity) on the query performance, we compared the 
query performance with the case when all the data items are 
assumed to be independent (i.e., �=0). For performing these 
experiments we constructed 10 synthetic data traces so that values 
of � for various data item pairs were distributed uniformly 
between -1 and +1. Then 45 DAs were simulated so that each DA 
can disseminate 2 data items. 100 queries were generated, each 
with 4 data items. In this case, each query will get executed with 2 
sub-queries of 2 data items each. Combination of sub-queries will 
be decided based on correlation between data items (sumdiff 
values of all the data items were the same). Table 1 compares the 

results when cosine similarity is taken into account and when 
cosine similarity is assumed to be 0 for all data item pairs. It can 
be seen that by considering cosine similarity number of refreshes 
reduce by approximately 12%. This result indicates that for sub-
query selection data dynamics may be more important factor than 
the cosine similarity between the data items. 

5.2.3 Effect of query satisfiability parameter 
To simulate the situation where selected aggregators may not be 
able to satisfy the query incoherency bounds, we modified the 
simulation set up used in Section 5.1 to set the minimum data 
incoherency bounds which DAs can satisfy to be between .015 
and 0.04. Value of � was varied between 0-20. The case �=0 
corresponds to the algorithm without dealing with the query 
satisfiability. Figure 7 shows query execution cost and number of 
unanswerable queries as the value of � is varied. As shown in the 
figure as the value of � is increased, percentage of the unsatisfied 
queries decreased for various values of query incoherency bounds.  

Due to changed data incoherency bounds of DAs, we found that 
20% of queries can not be satisfied even by the data aggregators 
with tightest data incoherency bounds. Thus, while presenting the 
results, we remove those queries. At the query incoherency bound 
of $0.8, 40% are queries can not be satisfied by the optimally 

selected data aggregators but as we increase the value of � to 10, 
only 3% queries are unanswered. Such a value can be chosen to 
balance the performance and satisfiability of queries. For 
example, a dynamic CDN may aim at query satisfiability of 95% 
for a given distribution of query incoherency bounds. If at any 
time query satisfiability is below the target, value of � can be 
increased whereas in case of over achieving the target, the value 
of � can be decreased to improve the query performance. 

5.2.4 Summary of performance results 
Following features of the query planning algorithm improve 
performance:  

� Dividing the query into sub-queries and executing them at 
specifically chosen data aggregators. 

� Deciding the query plan using data sumdiff based mechanism 
specifically by maximizing sub-query gains. 

� Including more dynamic data as part of a larger sub-query. 

We also showed that the max-gain algorithm is very close to the 
optimal algorithm in selecting sub-queries based on data 
dynamics. 

6. RELATED WORK 
Various mechanisms for efficiently maintaining incoherency 
bounded aggregation queries over continuously changing data items 
are proposed in the literature [11, 12, 16]. Our work distinguishes 
itself by being sub-query based evaluation to minimize number of 
refreshes. In [11], authors propose using data filters at the sources; 
instead we assign incoherency bounds to sub-queries which reduce 
the number of refreshes for query evaluation, as explained in Section 

 
Figure 7: Effect of � on query satisfiability 

Table1: Effect of correlation on number of refreshes 
Incoherency 

Bound 
Avg. number of msgs 
when � is considered 

Avg. number of msgs 
when � is assumed to be 0 

0.5 2301 2559 
0.8 1092 1215 
1.0 754 846 

 

 
Figure 6: Effect of data sumdiff on sub-query size 



5.  Further, we propose that more dynamic data items should be 
executed as part of larger sub-query. 

In [22], authors present technique of reorganizing a data 
dissemination network when client requirements change. Instead, 
we try to answer the client query using the existing network.  
Reorganizing aggregators is a longer term activity whereas query 
planning can be done for short as well as long running queries on 
more dynamic basis.  

Pull based data dissemination techniques, where clients or data 
aggregators pull data items such that query requirements are met, are 
described in [9,16]. For minimizing the number of pulls, both model 
the individual data items and predict data values. In comparison, we 
consider the situation where different sub-queries, involving 
multiple data items, can be evaluated at different nodes. Further, 
incoherency bound is applied over the sub-query rather than to 
individual data items, leading to efficient evaluation of the query.  
Spatial and temporal correlations between sensor data are used to 
reduce data refresh instances in [17, 18]. We also consider 
correlation in terms of cosine similarity between data items, but we 
use it for dividing client query into sub-queries. Our work can be 
extended by using temporal and spatial properties of data items for 
predicting their correlation measures. A method of assigning clients 
data queries to aggregators in a content distribution network is given 
in [12]. We do for client queries consisting of multiple data items 
what [12] does for client requiring individual data items. 

7. CONCLUSIONS 
This paper presents a cost based approach to minimize the number 
of refreshes required to execute an incoherency bounded 
continuous query.  For optimal execution we divide the query into 
sub-queries and evaluate each sub-query at a chosen aggregator. 
Performance results show that by our method the query can be 
executed using less than one third the messages required for 
existing schemes. Further we showed that by executing queries 
such that more dynamic data items are part of a larger sub-query 
we can improve performance. Our method of query execution can 
be implemented using schemes similar to that used in CDNs. Our 
query cost model can also be used for other purposes such as load 
balancing various aggregators, optimal query execution plan at an 
aggregator node, etc. Using the cost model for other applications 
and developing the cost model for more complex queries is our 
future work. 
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