
Efficient Real-Time Support for Automotive Applications: A Case Study

Gurulingesh R., Neera Sharma, Krithi Ramamritham and Sachitanand Malewar
Indian Institute of Technology Bombay

Email: {guru, sachit}@it.iitb.ac.in;{neeras, krithi}@cse.iitb.ac.in

Abstract

The number of computer-controlled functions in an
automobile is increasing at a rapid rate and so is the
number of microprocessors implementing and controlling
these functionalities. Therefore, there is a need to mini-
mize the computing power provided without affecting the
performance and safety of the applications. The latter is
especially important since intelligent automotive applica-
tions deal with critical data and involve deadline bound
computations on data gathered from the automobiles’
environment. These applications have stringent require-
ments on the freshness of data items and completion time
of the tasks. Our work studies one such safety-critical
application, namely Adaptive Cruise Control (ACC). We
take a task+data centric approach for designing and
implementing this application.

As our contributions we have (i) identified the data and
task characteristics of ACC and shown how to map them
on a real-world (robotic) platform, (ii) facilitated a real-
time approach towards designing ACC by the application
of mode-change and real-time data repository concepts for
reducing CPU capacity requirements and (iii) provided the
scheduling strategies to meet the timing requirements of
the tasks. Experiments demonstrate that the CPU capacity
requirement can be reduced without compromising the
real-time guarantees for safety-critical applications.

I. Introduction
Computer-controlled functions in a car are increasing

at a rapid rate and today’s high-end vehicles have up
to 80-100 microprocessors implementing and controlling
various parts of the functionalities [1]. Some of the features
currently controlled by microprocessors include electronic
door control, cruise control, anti-lock braking system,
etc. Sophisticated features like collision-avoidance, lane-
keeping and by-wire systems are on the verge of becoming
a reality. The practice of implementing each feature as an
independentblack-boxexcludes any possibility of sharing
the applications among the microprocessors. Increasing
the microprocessors in relation to individual features will
be a difficult proposition both in terms of cost and inte-
gration complexity. Hence, the microprocessors must be

effectively used to progress in this area to makefully
electronically controlled vehiclea reality. Features like
Collision Avoidance or Adaptive Cruise Controlare safety-
critical, having stringent timing requirements apart from
having specific functional behavior. Hence, it is necessary
to provide real-time guarantees for such features.

Minimizing the number of microprocessors in an au-
tomobile by effectively using them and providing real-
time guarantees to the safety-critical applications is our
goal. Three important requirements for such high integrity
applications are:

• Functional and timing correctness
• Efficient utilization of resources
• Stability and performance analysis of the controller

The focus of this paper is on efficient utilization of
resources without affecting the performance and safety
of such applications. To this end, we discover efficient
methods to allow sharing of multiple functions among
the processors and at the same time guarantee real-time
responses. This would be a critical need, for the cost-
effective development offully electronically controlled
vehiclein the future and, in this paper, we have attempted
to address this need. The stability analysis of the designed
controller is planned in the future work. We have chosen
ACC, a safety-critical application as the case-study for our
approach.

The rest of the paper is structured as follows. Sec-
tion II introduces ACC and the current practice followed
to develop this application. The issues that need to be
addressed to provide computational support for the ACC
features are described in Section III. The mainstay of our
approach, namely, a two-level real-time data repository
and mode-change design, are detailed in Section IV and
V, respectively. The experimental setup is described in
Section VI and the results of the evaluations from the
prototype model are shown under Section VII. Section VIII
presents the related work followed by conclusions and
future work.

II. Adaptive Cruise Control: An Overview
ACC is an intelligent feature that automatically adjusts

vehicle speed tomaintain the safe distancefrom the vehi-
cle moving ahead in the same lane (a.k.a.leading vehicle).
When there is no vehicle ahead, it tries tomaintain the safe

speedset by the driver. The safeDistance of Separation
(DoS)that needs to be maintained from the leading vehicle
is a function ofhost vehicle velocityand a driver specified
parameter,timegap(a.k.a. time separation) and it is given
by [2]:

Vh ∗ Tg + δ (1)

whereVh is the host vehicle speed andTg is the timegap
andδ is the separation distance when the leading vehicle is
at standstill. This ensures that safety distance requirement
is not violated under the extreme stopping condition where
the leading vehicle can come to a halt instantaneously.

ACC continuously monitors the host vehicle’s speed,
status of cruise control, driver’s inputs, and leading ve-
hicle’s speed and distance. Using all these data, ACC
determines the desired acceleration of the host vehicle
and achieves the safe DoS. The controller is typically
designed in a hierarchical manner consisting of anupper-
level controllerand alower-level controller[3]. The upper-
level controller computes the desired acceleration and the
lower-level controller achieves the desired accelerationby
manipulating brake and engine outputs.

The various components of the ACC system are shown
in Figure 1. We description of each of these components
is skipped due to space constraint and can be found in [4].

Lower−Level

CONTROL

UNIT

FUSION
SENSOR

T
A

R
G

E
T

D
E

T
E

C
T

T
R

A
C

K
RADAR ACTUATOR

BRAKE

CONTROLLER

THROTTLE
ACTUATOR

CONTROLLER

THROTTLE
ACTUATOR

BRAKE
ACTUATOR

SENSORS
WHEEL

DRIVER
CONSOLE

Upper−Level

Lower−Level

Fig. 1. Block diagram of ACC components

Real-Time Issues in ACC

One of the challenges faced when trying to maintain
safe distance is that both the vehicles in the environment
are moving. The task of the control system installed in the
host vehicle is to continuously track the leading vehicle and
adapt its velocity accordingly. The tracking rate should be
fast enough to have accurate information about the leading
vehicle and slow enough to ensure that the system is not
overloaded with redundant operations, i.e., operations that
do not lead to any change of control actions. The goal
is to achieve correct functionality and meet timing re-
quirements, while using the resources optimally. However,
there are several factors which can make it very difficult to
achieve these requirements. These include the rate at which
vehicles are approaching or separating, vehicles cutting in
from adjacent lanes to the host cars lane, and weather
conditions.

In current ACC systems, all the sensors sense the data
periodically. Also, these sensors provide theraw data

which should be processed to convert them to application
specific data known asderived data. The raw items reflect
the external environment and the derived items are derived
from raw items and/or other derived items i.e., each derived
item ’d’ has a read set denoted R(d) that can have members
from both the raw and the derived set [5]. For instance, host
velocity is derived from the angular velocity of the wheels
obtained from four wheel sensors. The tasks which process
raw data to get derived items are also run periodically in
the existing systems. The periodicities of all the tasks in
the system are set to handle the worst-case scenario.

III. Our Goals and Our Approach

Our goal is to develop solutions that address the fol-
lowing issues:

Effective tracking of dynamically varying data. A
data item reflects the status of an entity only for a limited
amount of time. When this time expires, the data item
is considered to be stale and not valid anymore. This
validity interval of a data item is not necessarily fixed
during the execution of the system. For instance, consider
a leading vehicle that accelerates for a certain amount of
time and then travels with uniform velocity. The validity
interval (and hence the sampling period) for the data item
leading distancewill be small when the leading vehicle is
accelerating and it can be large when it is moving with
a uniform velocity. To have a fixed sampling time as in
existing systems requires a worse-case design, leading to
over-sampled data and ineffective use of the processor.

Timely updates of derived data.The data derivation
should be complete before the derived item’s read set
becomes invalid. The derived item needs to be updated
only when one or more data items from its read set
changes more than a threshold value. For example, the
host velocity is derived only when the angular velocity
of wheels changes more than the threshold value. In ex-
isting systems, the derived values are updated periodically
causing unnecessary updates, leading to over sampling and
hence inefficient use of the processing power.

Handling mode specific task sets.ACC system per-
forms different tasks while following a close vehicle when
compared to following a vehicle which is far away. For
instance, we can have a task that determines how much
time is left before the safety criteria are violated when
the DoS is small. Similarly, we can have a task that can
adjust the driver-set parameters - safe speed and timegap
depending on the weather and road conditions when the
DoS is large. The task characteristics like periodicity may
also vary in different modes. Such changes in the modes
of operation affect the task timing requirements, their
dependencies, and execution times. In current approaches,
all the tasks are executed at all the times. This leads to
poor CPU utilization and scheduling overhead.

Our approach to address the above mentioned issues
exploits two well known design techniques from real-
time system domain: mode-change protocol and real-time
data update protocols. Both the approaches help to design
the application that leads to effective utilization of the
CPU capacity by understanding the needs of the system’s
task and data characteristics. The mode-change protocol
is a task-centric approach that allows the designer to
vary the task sets and characteristics over a period of
time. At any point of time the system will have and
schedule only the necessary tasks without wasting the
CPU capacity on unnecessary tasks. The real-time data-
repository model is adata-centricapproach that decides
the task characteristics from the freshness requirements of
base and derived data items. Certain periodic tasks from
the mode-change approach are made aperiodic to facilitate
the on-demand updates to data items.

IV. Specifics of the Dual Mode System

A mode change will typically lead to either:

• adding/deleting a task or
• increasing/decreasing the execution time of a task or
• increasing/decreasing the frequency of execution of a

task

For instance, ACC performs different tasks whilefollowing
a close leading vehicle compared to one that isfar. In
different modes, we can have the sensing tasks execute at
different frequencies to deal with dynamically varying data
and we can have different set of tasks active in different
modes. Hence, we do not need to have all the tasks active
at all the times. The design of ACC application with this
approach requires answers to the following questions: (i)
How many modes, should the design have? (ii) What
condition/event should trigger mode change in the system?
(iii) When can we switch modes and how much time can
mode change operation take? and (iv) How should the
tasks be scheduled to meet their timing requirements? We
have explained below how these issues are handled while
designing ACC application.
(i)Two mutually exclusive phases of operation for ACC.
Non-Critical Mode (NC Mode): In this mode, the envi-
ronment status does not change rapidly. For instance, when
the host vehicle is following a leading vehicle at uniform
velocity, the parameters like DoS, leading vehicle velocity
do not change rapidly. The rate at which the parameters
of the system change decides the periodicity of the tasks.
The sensor tasks in this mode can execute less frequently.
Safety-Critical Mode (SC Mode): In contrast to NC
mode, here the system parameters vary rapidly. For exam-
ple, consider the case when the leading vehicle is applying
maximum brake (say4.9m/s2) and host vehicle under
ACC is decelerating (say2m/s2). In this case the DoS
between the two vehicles is reducing at a rapid rate. Hence,

the radar task which senses this separation should begin to
execute more frequently to give the controller fresh data,
helping it to determine the right decision at the right time.
The system is classified into these two modes of operation
based on following parameters:

• Distance between the two vehicles (can take the
values FAR, NEAR, FOLLOW).

• Rate of change of Distance - RoD (can take the values
Incr-Fast, Incr-Slow, Decr-Fast, Decr-Slow).

Task sets in different modes are shown in Table I. All
these tasks areperiodic in nature. The tasks in NC-mode
perform non-critical operations whereas the tasks in SC-
mode carry out certain critical operations. The details of
task sets are skipped here due to space constraint and can
be found in [4].

The regions FAR, FOLLOW and NEAR are character-
ized in Figure 2 and their description can be found in [4].

−

Safe_Dist+

Radar
Range
Limit

Foll_Dist

HOST VEH

NEAR FAR

FOLLOW

Foll_DistSafe_Dist +Foll_Dist

Fig. 2. Environment partitioned into regions

Mode Task Set
NC Only WeatherT, FrictionT, AdaptT, EDrT
SC only TimeLeftT, SuggestT, AdjLaneT

Both Modes WheelT, SpeedT, CruiseT, AccT, RadarT, LeadVelT,
DistT, DriverT, BrakeT, ThrottleT, SwitchT, ExceptionT

TABLE I. Task sets in different modes of ACC
system

(ii) Details of the modes.The decision on the current
mode of the system is taken based on two parameters
DoS and the RoD and change in their values triggers
the mode-change phenomenon. Since the controller should
have fresh information about the environment, considering
only the DoS for switching modes will not yield good
results e.g., when the leading vehicle is in the FAR region
and decelerating fast. To tackle this case, we also consider
RoD as one of the parameters while deciding mode switch
condition. The FOLLOW region is used as hysteresis to
avoid thechatteringphenomenon. Table II shows all the
possible situations for the system to operate in each of
the modes. The details of the conditions to be met by the
system in each of the modes are described in [4].
(iii) Switching modes. A mode change request is gen-
erated from either the radar task, when DoS parameter
satisfies the condition for mode change or another periodic

LeadDist RoD mode
FAR Decr-Fast SC
FAR Incr-Fast NC
FAR Decr-Slow NC
FAR Incr-Slow NC

NEAR — SC
FOLLOW — Retain Mode

TABLE II. The state of the system in different
modes

task, which tracks the RoD to satisfy the condition. Once
the mode-switch condition is satisfied, the mode change
process involves deleting the tasks in the current mode and
creating the new tasks ensuring schedulability at any given
point of time throughout this process. The periodic task
SwitchTperforms these operations in our implementation.
The mode-switch operation is initiated upon the termina-
tion of the task that makes the mode switch condition true.

Mode change delay, defined as the delay between the
time at which mode-change is requested and the time at
which all the tasks that need to be deleted have been
deleted and their allocated processor capacity becomes
available, should be small. As we initiate the mode-change
operation once the current task finishes its execution, the
delay in reclaiming the processor capacity is bounded by
the period of low priority task in the system.
(iv) Scheduling tasks in different modes.The modes
in a system are characterized by number of active tasks.
The tasks and their characteristics (periodicity, WCET)
are known a priori. Hence, static priority scheduling is
the obvious choice for system with different modes. Rate
Monotonic Algorithm (RMA) is used to schedule the tasks
in our implementation.

V. Specifics of the Real-Time Data Repository
In this section we describe our real-time data repos-

itory model, which consists of two levels of data store.
The concept of two levels of data store is motivated
by: (a) the presence of raw and derived data items and
(b) the fact that a small change in raw data i.e. sensor
values might not affect the action of the ACC controller.
As we discussed in Section IV, the wheel sensor task
WheelT periodically senses the angular velocity of the
wheels which is used by another periodic taskSpeedTto
determine the linear velocity of the vehicle. We realize
that the periodic execution of the taskSpeedTmay be
skipped in some cases for instance, when the host vehicle
is following a leading vehicle moving with a uniform
velocity maintaining the safe DoS. In such cases, we
can choose to skip the execution ofspeedT, until we
observe a considerable change in the value sensed by the
task WheelT. This approach of avoiding the unnecessary
updates in the system would result in a best utilization of
CPU capacity. Our real-time data repository model is a data

centric approach, in which we explore the possibility of
making some of the periodic tasks in our task set aperiodic,
to reduce the number of unnecessary updates in the system.
In this approach we describe the temporal characteristics
of the data items in the system, which help us decide the
temporal characteristics of the updating tasks associated
with the data item.

We use two levels of data store in our approach:
Environment Data Repository (EDR)and Derived Data
Repository (DDR)as shown in Figure 2. EDR is an active
entity, storing the data pertaining to the controlled ACC
system. EDR contains base data items and the procedures
for data derivation task. The second repository DDR in
the model acts as a global database for the system. ACC
controller communicates with DDR to get the current
values of vehicle parameters.

Base

Log

data−items
Stable

separation

To Actuators

DDR
Read

update

Hierarchical ACC Controller

 (EDR) (DDR)
 Repository 1 Repository 2

From

radar
From

sensor

host_vel

lead_vel

speed

sensors

radar_data

ang_vel

data−items

Raw

Sensor paremeters

Controller constants

values
sensor

read

update
DDR

on demand

store desired
velocity

Low−level
Controller

Upper−level
Controller

Current
Status

current
status

Store

Fig. 3. Real-time data repository for ACC

1) Task Models: As shown in Figure 2, circular nodes
represent data items and arrows acting on these nodes
represent tasks operating on data items. We identify the
following classes of tasks in the system:

• Sensor Reading (SR) Tasks: Data collected from
sensors aretemporally consistent. They are valid if:

CurrentT ime − TS(di) ≤ V I(di) (2)

where, TS(di) and V I(di) denote time stamp and
validity interval of data objectdi, respectively. The
tasksWheelTand RadarT update EDR periodically.
These tasks have a known periodTi, a computation
timeCi, and a relative deadlineDi equal to its period.

• On-demand Update (OD) Tasks: The derived data
items are calculated and updated in DDR only when
one of the data items from the read set,R(d) changes
more than the threshold value,δth. The tasksSpeedT ,
DistT and LeadV elT fall under this category. The
validity condition of data itemdi in DDR can be
written as:

|vi(inEDR) − vi(inDDR)| ≤ δth (3)

wherevi is the value of the data itemdi and δth is
the threshold value.

• Lower Level Controller (LC) Tasks: They give com-
mand to the mechanical system of the vehicle to
achieve the desired velocity. These tasks are per-
formed by the hardware of our prototype model.

• Other Tasks: They are the lower priority tasks such as
WeatherT and FrictionT for monitoring weather and
road conditions. These tasks are executed only when
there are no critical tasks pending in the system.

2) Scheduling of On-Demand tasks: The second
repository update task and upper level controller tasks are
modeled as on-demand aperiodic tasks. A well known con-
ceptual framework to guarantee the service on aperiodic
tasks is theaperiodic server technique. This models the be-
havior of aperiodic tasks by reserving a share of processor
bandwidth for each of the aperiodic tasks and associates
a controlling server thread to maintain each reserved
bandwidth. We use Constant Bandwidth Server (CBS) [6]
for scheduling aperiodic tasks, since it permits hard real-
time guarantees. Since we do not know the utilization
(bandwidth requirement) of on-demand aperiodic (e.g.,
SpeedT) task a priori, we implement CBS which adapts
bandwidth dynamically using feedback control which is
explained in [4].

VI. Robotic Vehicle: Experimental Setup

This section describes the implementation details of
both hardware and software used to demonstrate the con-
cept. Since our aim of this implementation is to prove the
concept, we have implemented the essential parts of the
system, abstracting out some real world factors which is
scalable to accommodate these factors. The robot on which
ACC was implemented is shown in Figure 4 which had the
following features:

• Obstacle detection range:2m.
• Maximum speed:0.50cm/s.
• Maintains path through white-line following.
• Closed-loop controller(s).

Fig. 4. Robotic Vehicle Platform

The robot was controlled by a PC running on RTLinux-
3.1 platform. The PC performed all the computations and
issued commands to the robot. The controller polled the
data values from different sensors and performed com-
putations to decide the action to be taken and drove the
actuators to carry out the appropriate actions. The sensors
were used to measure the host vehicle speed and leading

vehicle distance. The task structure and data items in real-
time repository are shown in Figure 5. The data items are
represented by rectangular boxes and the tasks by circular
boxes. In SC mode and NC mode, the tasks and data

TASKS

Raw
LeadDist

Raw
HostVel

SpeedT

Lead
VelT

DistT
LeadDist

TimeGap

LeadVel

HostVel

DesVel

APERIODIC

EDR

WheelT

RadarT

DDR

AccT
Speed

APERIODIC

PERIODIC

TASK

TASKS

Fig. 5. Task and data structure in real-time
repository implementation

items listed in Section IV exist (common tasks) along with
an additional taskSwitchT to carry out mode change
operation. The tasks shown in Table I that exist in one
of the two modes are implemented as dummy tasks with
different periodicities. In the SC mode, the common tasks
execute at double the speed as compared to NC mode.

VII. Results and Observations

Experiments were conducted in three stages. Initial
experiments were meant to observe whether the robot was
achieving the desired functionalities of the ACC system.
This basic implementation did not incorporate either the
mode-change or the real-time repository concepts. Sec-
ondly, experiments were conducted to test the behavior
of the two-level real-time data repository design. These
experiments were used to observe the reduction in the
number of update tasks executed. The second level tasks
were executed only when necessary, as opposed to periodic
execution in the initial design without the two-level repos-
itory. Finally, experiments were conducted to study the
system behavior under mode-change design. We have also
studied the effectiveness of CBS scheduling scheme used
in real-time data repository approach to schedule the tasks
in terms of bandwidth adaptation and scheduling error. Due
to space constraint we have skipped the description of these
experiments and can be found in [4].

A. Basic Experiments

Four different tests were carried out to observe the
system behavior by logging the host velocity and DoS,
with time. The experimental vehicle was able to maintain
its speed equivalent to the set speed with tolerance of
±3cm/s in cruise control case where there was no leading
vehicle. In ACC case where leading vehicle was moving
with uniform velocity at a constant DoS, a delay of 0.5s
was observed in its velocity response to the changes in the
environment which can be attributed to its physical charac-

teristics. The results of these experiments with description
can be found in [4].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

Time (s)

D
is

ta
nc

e
(c

m
)

Lead distance
Host Velocity

Vel
(cm/s)

Fig. 6. Host Velocity: Leading vehicle with
varying velocity

The next experiment simulated a scenario, where lead-
ing vehicle exhibits varying velocity. The DoS was in-
creased gradually between time interval 1-6s, kept constant
between 6-8s, then gradually decreased from 8-12s and
again kept constant between 12-14s. Figure 6 shows the
velocity response and Figure 7 shows the time separation
maintained in this case.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

Ti
m

eG
ap

 (s
)

Desired TimeGap
Current TimeGap

Fig. 7. Timegap: Leading vehicle with varying
velocity

B. Two-level Real-Time Data Repository
Experiments

The second set of experiments tested the two-level real-
time data repository design. These experiments captured
the system behavior when the data update tasks of the two-
level repository design are executed only when necessary.
The velocity response of the host vehicle with the use
of the real-time repository where the leading distance
increases in time intervals 0-5s and 6-7s, kept constant
between 5-6s and 7-8s and then gradually reduced from
8s to 12s is shown in Figure 8.

We can observe from the graph that during the time
interval 5-6s and 7-8s when the DoS was constant, the on-
demand task is not invoked and during other time intervals,
it is invoked whenever the DoS changes by threshold
value (which was set to 5cm for this experiment). More
experimental results can be found in [4]. Table III shows

0 1 2 3 4 5 6 7 8 9 10 11 12 1314

20

40

60

80

100

Time (s)

D
is

ta
n

ce
 (

cm
)

Lead Distance
Host Velocity
DistT Task−Invocation

Vel
(cm/s)

Fig. 8. Host Velocity: Leading vehicle with
varying velocity case - on-demand updates

the DistT task’s invocation with and without two-level real-
time repository model. The periodicity of the task was
set to 0.3s in the experiments discussed in Section VII-A.
We can observe that this approach requires less processing
power compared to the conventional approach.

DistT Task Invocation
Lead Dist Time Window with 2-level without 2-level

Const 0 to 12 3 40
Incr-Decr 0 to 12 16 40

TABLE III. Number of invocations of lead-dist
updating task in the two models

C. Mode-Change Experiments

Finally, we study the effect of mode-change delay on
data freshness and safety of the system in terms of main-
taining the desired time separation. The velocity response
of the host vehicle and time separation maintained with
the mode-change implementation, when leading vehicle is
moving with varying velocity are shown in Figure 9 and 10
respectively. The DoS is kept as the criterion for changing
the mode i.e., ifleading distance≤ 65cmenter SC mode
else NC mode. The periodicity of the tasks was set to 0.3s
in SC mode and 0.6s in NC mode. We can observe from
the graph that the system is operating in NC-mode between
time interval 8-12s and then it enters SC-mode at time 13s
and again switches back to NC-mode at 19s. The desired
timegap is violated couple of times in Figure 10 which can
be attributed to the inertia of the vehicle and mode-change
delay. This suggests that a conservative approach should
be taken while deciding the safe DoS or time separation by
taking these two factors into account. In this approach too,
we can observe that half the CPU capacity is saved when
the system operates in NC-mode compared to conventional
approach.

VIII. Related Work

Adaptive Cruise Control is a well studied research topic
in control systems. The design techniques and simulation
results for ACC equipped vehicles are reported in [7]. Prior

 0

 50

 100

 150

 200

 8 10 12 14 16 18 20 22 24

cm

Time (sec)

Mode Change: Decrease-Increase Leading Distance Case

Host Velocity
Leading Distance

Fig. 9. Host Velocity: Mode-change case,
Leading vehicle with varying velocity

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

Ti
m

eG
ap

 (s
ec

)

Time (sec)

Mode Change: Timegap - Decrease Increase Case

Host TimeGap
Ideal Timegap

Fig. 10. Timegap: Mode-change case, Timgap
in Leading vehicle with varying velocity

work discusses control aspects of the application not the
real-time aspects. A datacentric approach to the architec-
tural design of performance critical vehicular applications
has been examined before in [8] and [9]. In particular,
Gustafsson and Hansson [8] address the issues in the
design and implementation of an active realtime data-
base system for EECU (Electronic Engine Control Unit)
software. A set of ondemand updating algorithms: OnDe-
mand Depth First Traversal (ODDFT) and OnDemand Top
Bottom (ODTB) are presented in [5]. These algorithms
optimistically skip unnecessary updates and hence provide
increased performance. Methods for the specification and
runtime treatment of mode changes are discussed in [10].
An approach to handle mode changes in the time triggered,
strictly periodic, pre run-time scheduled system MARS,
is studied in [11]. Sha et al [12] attempt to address the
problem of analyzing a priori a single processor system,
scheduled according to the rate monotonic scheduling
policy, with tasks able to lock and unlock semaphores
according to the priority ceiling protocol.

IX. Conclusions and Further Work

In this paper, we have presented the issues involved
in developing real-time support for ACC. By using a
two-level real-time data repository model to update the
derived data only when necessary and designing ACC
with different modes, each containing different task sets
with different characteristics, we have utilized processor

capacity effectively, compared to existing approaches. We
have shown that these approaches can enable system
designers and developers to build a safe and predictable
system making effective use of the CPU capacity even if
there are demanding timing requirements to be satisfied by
the applications.

We are working on possible extensions to the research
described here. First, more analysis of the system design
is being carried out with different conditions for mode
switching, periodicity of the tasks in different modes and
conditions for triggering second level update tasks. Sec-
ond, application needs are being mapped to a distributed
platform (as it is the case in the real-world) and the real-
time communication issues between the processors are
being studied using FlexRay and CAN like communication
infrastructures. Third, the impact of mode-change and real-
time data repository design concepts on the controller’s
stability and performance from control theoretical perspec-
tive is being studied. Fourth, the stability analysis of the
designed controller is being carried out.

References

[1] H. Kopetz, “Automotive electronics,” inProceedings of the 11th
Euromicro Conference on Real-Time Systems, June 1992, pp. 132–
140.

[2] J. Zhou and H. Peng, “Range policy of adaptive cruise control
vehicles for improved flow stability and string stability,” in IEEE
Transactions on Intelligent Transportation Systems, vol. 6, June
2005, pp. 229–237.

[3] R. Rajamani and C. Zhu, “Semi-autonomous adaptive cruise control
systems,”IEEE Transactions on Vehicular Technology, pp. 1491–
1501, Sept 2002.

[4] G. Goud, N. Sharma, K. Ramamritham, and S. Malewar, “An
efficient real-time support for automotive applications: A case
study,” IIT Bombay, Tech. Rep. IITB/KReSIT/10, April 2006.

[5] T. Gustafsson and J. Hansson, “Dynamic on-demand updatingof
data in real-time database systems,” inProceedings of the ACM
Symposium on Applied computing, NY, USA, 2004, pp. 846–853.

[6] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” inRTSS ’98: Proceedings of the IEEE
Real-Time Systems Symposium, vol. 19. Washington, DC, USA:
IEEE Computer Society, 2-4 Dec. 1998, pp. 4–13.

[7] P. A. Ioannou and C.-C. Chien, “Autonomous intelligent cruise
control,” in IEEE Trans. on Vehicular Technology, June 1993, pp.
657–672.

[8] T. Gustafsson and J. Hansson, “Data management in real-time
systems: a case of on-demand updates in vehicle control systems.”
in Proceedings of the 10th IEEE RTAS, 2004, pp. 182–191.

[9] D. Nyström, A. Tesanovic, C. Norström, J. Hansson, and N.-E.
Bånkestad, “Data management issues in vehicle control systems:A
case study.” inProceedings of the 16th Euromicro Conference on
Real-Time Systems, 2002, pp. 249–256.

[10] G. Fohler, “Flexibility in statically scheduled hard real-time sys-
tems,” Ph.D. dissertation, Technische Universität Wien, Institut f̈ur
Technische Informatik, Vienna, Austria, 1994.

[11] ——, “Realizing changes of operational modes with pre run-
time scheduled hard real-time systems,” inProceedings of the
Second International Workshop on Responsive Computer Systems.
Saitama, Japan: Springer Verlag, October 1992.

[12] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham,
“Mode change protocols for priority-driven preemptive scheduling,”
Amherst, MA, USA, Tech. Rep., 1989.

