Tracking Dynamics Using Sensor Networks:
Some Recurring Themes

Krithi Ramamritham

Dept of Computer Science & Engineering
Indian Institute of Technology Bombay

Abstract. Much of the data consumed today is dynamic, typically gath-
ered from distributed sources including sensors, and used in real-time
monitoring and decision making applications. Large scale sensor net-
works are being deployed for applications such as detecting leakage of
hazardous material, tracking forest fires or environmental monitoring.
Many of these “natural” phenomena require estimation of their future
states, based on the observed dynamics. Strategically deployed sensors
can operate unattended (minimizing risk to human life) and provide the
ability to continuously monitor the phenomena and help respond to the
changes in a timely manner. In this paper, we show that in-network
aggregation, in-network prediction, and asynchronous information dis-
semination form sound building blocks for addressing the challenges
in developing low overhead solutions to monitor changes without re-
quiring prior knowledge about the (dynamics of) the phenomena being
monitored.

1 Introduction

More and more of the information we consume is dynamic and comes from sen-
sors. Networks made up of sensor nodes are being increasingly deployed for ob-
serving continuously changing data. Numerous interconnected sensors are being
used to build

— smart buildings that make efficient use of energy,

— smart vehicles that improve efficiency, assist drivers and help in navigation,
— robots to monitor water bodies, for better pollution control, and

— systems to track weather patterns.

These cyber-physical systems blend sensing, actuation, computation, networking,
and physical processes. In these systems, there is a need to process enormous
amounts of changing, time-sensitive data and to continuously update query re-
sults (energy) efficiently, adaptably, i.e., continuously evolve to changing condi-
tions, and resiliently — to message/sensor losses.

Continuous queries are appropriate for such monitoring applications since
a user is updated as and when source data changes. But this continuous up-
dating is a challenging requirement because sensing devices are often battery
powered, making energy efficiency in processing sensor data and updating users

V. Garg, R. Wattenhofer, and K. Kothapalli (Eds.): ICDCN 2009, LNCS 5408, pp. 1{7] 2009.
© Springer-Verlag Berlin Heidelberg 2009

2 K. Ramamritham

a primary design consideration; since energy expended for communication is
significantly higher than that for local computations, data dissemination and
query-processing techniques should minimize the amount of communication so
as to increase the lifetime of the network.

This paper outlines some simple techniques to address these challenges in the
context of aggregate query processing. We show that in-network aggregation,
in-network prediction, and asynchronous information dissemination form sound
building blocks for addressing the challenges in developing low overhead solutions
to track changes without requiring prior knowledge about the (dynamics of) the
phenomena.

2 Data Dissemination in Sensor Networks

A canonical sensor network application involves sensors wirelessly interacting
through multi-hop protocols with their neighbours. Queries are posed typically
at a base station and hence results are also expected to be produced at the base
station. A very simple model for processing sensor data is to push all data to
the base station and compute at base station. This simple technique floods the
data through the network. It strains sensor nodes near the base, draining their
batteries and disconnecting network. An alternative is to pull only the relevant
data to the base station and compute at the base station. Here the query needs
to be flooded. But, it begs the question: “which of the (new) sensor data is
relevant to a given query?”.

Only new data that is required to meet user specified accuracy or
coherency requirements, e.g., 2 degree temperature, 10m distance,
etc. need be deemed to be relevant. This exploitation of user speci-
fied coherency requirements reduces the number of updates in sensor
networks.

This implies that we require a query to request the value of an aggregate
with an associated coherency, c. This denotes the accuracy of the results de-
livered to the query node relative to that at the sources, and thus, constitutes
the user-specified requirement. For example, a query injected for building mon-
itoring is: “Report the average temperature of the southern wall of the building
whenever it changes by more than 2 degrees”. Thus, any change in the average
temperature value that is within two degrees of what the query node knows
need not be reported and the current value known to the query node is consid-
ered accurate enough. The resulting reduction in the number of update messages
improves both fidelity of query results (by reducing the probability of message
losses due to collisions) and lifetime (by reducing communication-related energy
needs).

Essentially, we relax strong coherency by adopting the notion of A, - co-
herency: The difference in the data values at the source and the base bounded is
by A, at all times. For example, if we are only interested in temperature changes
larger than 2 degrees, A, = 2.

Tracking Dynamics Using Sensor Networks: Some Recurring Themes 3
3 Routing Relevant Data to Base

Typically, an overlay network is constructed to route messages from a set of
source nodes to the base station. Many ways to realize the overlay tree have
been proposed in the literature. Even those which incur nontrivial overheads
can be justified since the overlay tree construction costs can be amortized over
the monitoring period, that is the period over which the continuous query will
execute. Tree construction, i.e., choosing the node to which a node with an
update sends the update can depend on how many hops away it is from the
source, the length of expected time that the node can serve, etc.

Also, to ensure that single node failures do not lead to failure of the network
as a whole, there is a need to adjust the overlay tree after such failures. In [3]
we propose a tree construction algorithm that has the following features:

1. It does take into account the coherency requirements associated
with the query, the remaining energy at the sensors, and the com-
munication and the message processing delays, thereby contributing
to higher lifetime and fidelity of query results.

2. It is able to exploit the presence of common sources across multiple queries.
This leads to further increase in fidelity and lifetime.

3. It incorporates optimizations to efficiently handle complex aggregate queries
with group by clauses.

4. Upon the death of a node, the dissemination tree can be locally adjusted
allowing query results to be provided. This increases lifetime.

4 Asynchronous In-Network Aggregation and Prediction

For many types of aggregate queries, the number of message transmissions can
be reduced significantly by computing partial aggregates wherever possible while
the messages are being routed towards the query node. Overlay network allows
in-network partial aggregation. For example, consider computing the max of a set
of sensed values. When each node in the overlay tree hears from its children, it can
compute the max of the received values and send it to its parent. This technique
called in-network aggregation has been exploited to increase the lifetime of the
sensor network. The nodes at which this is done are called aggregator nodes.
Existing approaches to answering coherency based aggregate queries perform in-
network aggregation by synchronizing transmissions of nodes level-by-level on
an aggregation tree [5]. Any message that is received by an aggregator node
is delayed for a certain amount of time before it can be propagated up the
tree. This leads to a definite loss in fidelity. Moreover, these approaches do not
address the issues of energy efficiency and timeliness of query results in their tree
construction mechanisms. In [3] we present an asynchronous prediction-based
approach for answering aggregate queries. In it, each node in the tree computes
a partial aggregate of the values sensed by the source nodes which belong to
the subtree rooted at that node. The computed value of the partial aggregate

4 K. Ramamritham

is pushed by a node to its parent node in the aggregation tree. It incorporates
several novel ingredients:

It makes use of asynchronous in-network aggregation wherein an aggregator
node computes a partial aggregate asynchronously, i.e., whenever an update that
may affect the current partial aggregate is received from one of its serving nodes
in the aggregation tree. Thus, every received message that is required to be sent
to the query node should be pushed up the tree as soon as possible, i.e., change
in values sensed at the sources must be propagated to the query node as
soon as possible. In contrast, existing approaches compute aggregates synchro-
nously, often delaying propagation of the effect of received partial aggregates.

Suppose node B receives a partial aggregate from node E. In order to compute
a new partial aggregate, B needs the current value of the partial aggregate
computed by node F'. Since this value is unknown to B, what value should B
use for the current value at node F'? When an aggregator node receives a partial
aggregate from a serving node and computes a new partial aggregate, what values
should it assume for all other serving nodes? In our approach, the aggregator
node predicts the missing values from the previously received values
using a computationally efficient prediction mechanism. This prediction-
based approach is in contrast to existing last-value-based approaches that use the
last received values for this purpose.

If each partial aggregate computed as above were to be disseminated towards
the source, would it not lead to significant energy consumption? This is where
the idea of in-network prediction proves to be useful again. When an aggregator
node computes a partial aggregate asynchronously, it also calculates the value
of the partial aggregate as would be predicted by the receiving node. If the
difference between the previous value and the new value is within a
specified fraction of the coherency associated with the partial aggre-
gate (derived from user specified coherency on the aggregate), it does
not send the computed value, thus saving energy in transmissions.

The latter idea of Prediction based In-network Filtering implies that a child
node F need not send a new partial aggregate to B if (a) if it is not too different
from the previously sent value, or (b) B’s new prediction will not be too different
from prediction based on previous values received by B from F.

Let us make the notion of too different somewhat more concrete. Let us denote
by ¢, the user specified coherency on the aggregate query and by ¢’, the coherency
associated with the partial aggregate. ¢ and ¢’ are related as:

d=cxp

where [is a real number in the interval [0,1]. To understand (3, consider an
aggregation tree. In an aggregation tree, the number of messages exchanged
between nodes increases as we traverse from the leaf nodes in the tree towards
the root. Due to higher number of messages near the source nodes, the possibility
of messages being lost due to collisions is higher. We use coherency ¢ to suppress
the number of messages exchanged between nodes. (§ effectively controls the
number of messages suppressed and ensured that the query node receives results
at the desired accuracy.

Tracking Dynamics Using Sensor Networks: Some Recurring Themes 5

In order to ensure accurate prediction of partial aggregates, we use the notion
of NoActivityThreshold to guard against loss of messages (and thus loss of model
parameters and partial aggregate values) due to collisions. NoActivity Threshold
at a node for its dependent node is defined as the amount of time for which a
node waits before pushing the value of its partial aggregate to the dependent,
i.e. if a node has not pushed the value of the partial aggregate to its dependent
for a duration greater than NoActivityThreshold, the node pushes the value of
the partial aggregate.

We would like to point out that our asynchronous approach is in direct con-
trast with the epoch-based synchronization schemes, for example, TAG [4] and
TiNA [5]. In that approach each epoch is divided into time slots and all serving
nodes at a given level in the tree are allowed to transmit within a particular time
slot. The dependents of these nodes listen during this time slot. At the end of this
time slot, each dependent computes a partial aggregate of the data received from
its serving nodes. During the next time slot, the dependents transmit the partial
aggregates to their dependents. In synchronous computation methods, the dura-
tion of the time slot for which the message is withheld at each aggregator node
decides the amount of delay for each value that is generated at a source to reach
the query node. This delay can lead to loss in fidelity, unacceptable for scenarios
that require online decision making. Using an asynchronous approach minimizes
this delay, thus providing the potential to deliver higher fidelity. In terms of
lifetime, with the asynchronous approach it may seem that computation of an
aggregate on receiving a message from any serving node, and a subsequent push
to the dependent, if required, may lead to unnecessary transmissions and thus a
decrease in lifetime. Our approach of using in-network filtering and in-network
prediction for energy efficient aggregation ensures that this is not the case.

In [3], we show that for simple aggregates, for improved query lifetime and
correctness, overlay tree construction algorithm should be (remaining) energy-
aware, and that we should exploit in-network processing ability. The latter trans-
lates to exploiting coherency requirement, using asynchronous prediction based
aggregation, and using prediction based In-network filtering. Experimental re-
sults demonstrate that (a) the resulting scheme has only one fifteenth of the
fidelity loss along with a 40% improvement in lifetime compared to a synchro-
nous last-value-based aggregate computation method; (b) simple approaches to
predicting partial aggregates work well for real-world phenomena.

5 Aggregations While Tracking Dynamic Natural
Phenomena

As was mentioned in the introduction, time critical data sensed in-situ or re-
motely — from many mobile/stationary nodes have to be continuously aggre-
gated to track phenomena in the physical world, e.g., movement of oil slicks, gas
plumes, etc. Here we briefly show that asynchronous in-network filtering, predic-
tion & aggregation are themes that are useful even in more complex aggregation
scenarios.

6 K. Ramamritham

Consider tracking a dynamic boundary. A dynamic boundary has mainly two
types of variations: spatial and temporal. So, the effective tracking of dynamic
boundaries requires handling both of these variations. In [2] we describe an al-
gorithm for dynamic boundary tracking which combines a spatial estimation
technique and a temporal estimation technique to effectively track a dynamic
boundary using static range sensors that measure the distance to the bound-
ary from their current location. The first step is to estimate the boundary at
a location x using a spatial estimation technique. It uses spatial correlations
among (error-prone sensor) observations at a given time by sensors within a
small neighbourhood of z. Aggregator nodes in the overlay network perform ag-
gregation operations on sensor observations to estimate a number of boundary
points. Partial information of the boundary from aggregator nodes is then sent
to the base station where the final estimate of the boundary at z is computed. In
order to exploit in-network aggregation possibility, the aggregation is done using
kernel smoothing that is amenable to being “broken-up” into subcomputations
that can be done within the network, by the aggregator nodes. A similar ap-
proach is used to perform in-network subcomputations needed to determine the
confidence interval associated with the boundary estimated at x. A confidence
band is estimated from multiple boundary points around the entire boundary
using an interpolation scheme executed by the base station.

The second component of the overall approach is a temporal estimation tech-
nique which ensures that the estimates are updated whenever due to changes in
the boundary the confidence band does not cover the boundary with a desired
accuracy. We use a Kalman Filter based technique to predict future boundary
locations based on its model of the boundary dynamics. Once the boundary
has moved by more than a certain threshold, the spatial estimation technique is
invoked to get an accurate estimate of the boundary. As a result, boundary esti-
mates are updated based on only the local dynamics of the boundary and partial
estimates track changes in sections of the boundary. Both of these lead to reduc-
tion in communication overhead for accurate boundary estimation. Effectiveness
with respect to tracking efficiency and correctness have been demonstrated on
real contours [2].

Our current work involves applying the building blocks discussed in this pa-
per for handling aggregations of sensor observations when using mobile in-situ
sensors [I].

6 Conclusions

Given a sensor network and aggregate queries over the values sensed by subsets of
nodes in the network, how do we ensure that high quality results are served for the
maximum possible time? The issues underlying this question relate to the fidelity
of query results and lifetime of the network. To maximize both, we propose
a novel technique called asynchronous in-network prediction incorporating two
computationally efficient methods for in-network prediction of partial aggregate
values. These values are propagated via a tree whose construction is cognizant

Tracking Dynamics Using Sensor Networks: Some Recurring Themes 7

of (a) the coherency requirements associated with the queries, (b) the remaining
energy at the sensors, and (c¢) the communication and message processing delays.
Finally, we exploit in-network filtering and in-network aggregation to reduce the
energy consumption of the nodes in the network. Experimental results over real
world data used to track dynamic physical phenomena support our claim that
for aggregate queries with associated coherency requirements, a prediction based
asynchronous scheme provides higher quality results for a longer amount of time
than a synchronous scheme.

References

1. Srinivasan, S., Ramamritham, K., Kulkarni, P.: ACE in the Hole: Adaptive Con-
tour Estimation Using Collaborating Mobile Sensors. In: IPSN: ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks (IPSN 2008)
(April 2008)

2. Duttagupta, S., Ramamritham, K., Kulkarni, P., Moudgalya, K.: Tracking Dynamic
Boundary Fronts using Range Sensors. In: Verdone, R. (ed.) EWSN 2008. LNCS,
vol. 4913, pp. 125-140. Springer, Heidelberg (2008)

3. Edara, P., Limaye, A., Ramamritham, K.: Asynchronous In-network Prediction:
Efficient Aggregation in Sensor Networks. ACM Transactions on Sensor Networks
(November 2008)

4. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgre- gation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36 (2002)

5. Sharaf, M.A., Beaver, J., Labrinidis, A., Chrysanthis, P.K.: TiNA: A Scheme for
Temporal Coherency-Aware in-Network Aggregation. In: Third International ACM
Workshop on Data Engineering for Wireless and Mobile Access (MobiDE) (2003)

	Introduction
	Data Dissemination in Sensor Networks
	Routing Relevant Data to Base
	Asynchronous In-Network Aggregation and Prediction
	Aggregations While Tracking Dynamic Natural Phenomena
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

