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Abstract

On-line decision making often involves query process-
ing over time-varying data which arrives in the form of
data streams from distributed locations. In such environ-
ments typically, a user application is interested in the value
of some function defined over the data items. For exam-
ple, the traffic management system can make control deci-
sions based on the observed traffic at major intersections;
stock investors can manage their investments based on the
value of their portfolios. In this paper we present a system
that supports pull based data refresh and query process-
ing techniques where such queries access data from multi-
ple distributed sources. Key challenges in supporting such
Continuous Multi-Data Incoherency Bounded Queries lie in
minimizing network and source overheads, without loss of
fidelity in the query responses provided to users. We ad-
dress these challenges by using mathematically sound ap-
proaches based on Gradient Descent and Constraint Op-
timization which allow us to adapt the refresh frequencies
of the dynamically changing data and adjust the quality of
service provided to different users.

1. Introduction

An increasing fraction of data on the web is time-varying
and is presented in the form of data streams. Examples
of time-varying data include financial information such as
stock prices and currency exchange rates, real-time traffic
and data from process control applications. Such data is fre-
quently used for online decision making, and in many sce-
narios the decision making involves multiple time-varying
data items, from multiple distributed sources (data streams).
Examples include a user tracking a portfolio of stocks and
making decisions based on the net value of the portfolio.
Users are generally not interested in the exact value of the
portfolio and are content with knowing the value accurately
within some fixed accuracy bound. Observe that comput-
ing the overall value of the portfolio at any instant requires

up-to-date values of stocks in the portfolio. If the user is
interested in knowing the estimated value of the stock port-
folio (accurate say, within some incoherency bound/query
accuracy bound), then the aggregator/proxy needs to refresh
the value of each stock price intelligently so as to ensure
that these user-specified query accuracy bounds are not vio-
lated. Such queries are a special form of continuous queries
and are referred to as Continuous Multi-Data Incoherency
Bounded Queries (COMIQ) [6]. In this paper we consider
COMIQs which are a weighted aggregation of the value of a
number of data items.

Much of the prior work on continuous queries (see Sec.
6) has assumed that queries are handled directly by the
server (data source) so that the source pushes changes to
the data aggregator (DA). Such an approach requires spe-
cial support at the source and within the dissemination in-
frastructure [10], as push based techniques cannot be used
with the standard pull based HTTP protocol. In this paper
we focus on avoiding the need for any changes in the source
or in the existing internet infrastructure. Our DA based ap-
proach raises new research challenges. The key challenge
is to ensure that the results of the queries are no different
from the case where the queries are handled by an idealized
DA which has the current version of the data available all
the time. In this paper, we develop (i) a suite of data refresh
algorithms that try to minimize the messages between the
sources and DAs, and show (ii) how these algorithms can
be integrated for efficient processing of COMIQs. In the rest
of this section, we provide a precise definition of COMIQs
and then outline the research contributions of this paper.

1.1 COMIQs: An Introduction
A COMIQ Q(M,N , T ) operates on N data items m1,

. . . , mN ∈ M with n1, n2, . . ., nN ∈ N as the weights
attached to these data items and ensures that the value of
the COMIQ at the source is no different than the value
of the COMIQ at the DA by more than T (Incoherency
bound/Query accuracy bound). In this paper, we focus on
Sum Based Queries where the user should have the correct
knowledge of the total value of a COMIQ within a margin of
T . This can be stated as



∀t |
N∑

i=1

(si(t) · ni) −
N∑

i=1

(pi(t) · ni)| ≤ T (1)

In the above formula, si(t) and pi(t) denote the value of the
data item mi at time t at the source and DA respectively.

1.2 Comparison Metrics
Fidelity Loss: This quantifies the accuracy of a COMIQ ex-
ecuted by a DA with respect to that of an idealized one i.e.,
a DA which has current data available all the time. Fidelity
Loss is defined as the percentage of total time for which Eq.
(1) is violated.
Network Overhead: We define the network overhead as
the number of messages exchanged between the source and
the DA for every 100 data values at the source.

1.3 Contributions of this paper
In this paper, we present efficient techniques to evaluate

COMIQs at a DA so as to minimize the network overhead
and fidelity loss. A user is interested only in the accuracy of
a COMIQ’s results and not the exact values of the data items.
Hence as long as a DA is correctly informed about the value
of the COMIQ within the specified query accuracy bound,
even if an individual data item is changing very rapidly there
may be no need to track these changes frequently. This key
observation is exploited by our algorithm which allows us
to reduce the network overhead.

The Constraint Optimization Based COMIQs Execution
Approach (CoCEA), outlined in Sec. 2, models the prob-
lem as a Constraint Optimization problem. This approach
results in some fidelity loss but has low network overhead.
The problem of fidelity loss is avoided by our Gradient De-
scent Based COMIQs Execution Approach (GdCEA), out-
lined in Sec. 3. The GdCEA makes use of the Gradient
Descent algorithm which results in lower fidelity loss at
the expense of higher network overhead. We also present
a high performance Hybrid COMIQs Execution Approach
(HyCEA) in Sec. 4, that intelligently uses both the Gra-
dient Descent and the Constraint Optimization based ap-
proaches. We demonstrate that refreshing frequently when
there is a violation in data accuracy requirement leads to an
increase in the network overhead, but does not always lead
to a reduction in fidelity loss. This surprising result is used
by the HyCEA algorithm, so as to improve its performance
vis-a-vis CoCEA and GdCEA.

The algorithms presented in this paper are superior al-
ternatives to the techniques proposed in [6]. The ap-
proach presented in [6] is heuristics based and has draw-
backs which are avoided by our solution (further details in
Section 4.2). We provide details of our approaches and
experimentally evaluate their performance using COMIQs
defined over real-world streams of dynamically chang-
ing data (specifically, stock prices) in Sec. 2 through 5.
These streams were constructed through repeated polling
of http://finance.yahoo.com. All algorithms were evaluated

using a prototype source/DA that employed trace replay.
Sec. 5 presents a technique to extend HyCEA to handle
multiple COMIQs. Related work is summarized in Sec. 6
and Sec. 7 concludes the paper.

2 The Constraint Optimization Based
COMIQs Execution Approach (CoCEA)

CoCEA attempts to minimize the network overhead
without loss in fidelity by constructing and solving an in-
equality constrained minimization problem. The algorithm
dynamically computes the data accuracy requirement for
each data item, taking into account the changes in the value
of the data item vis-a-vis the changes in other data items
constituting the COMIQ. The data accuracy requirement (c)
of a data item denotes the maximum permissible deviation
in the data item value cached at the DA from its value at the
source. The data accuracy requirement needs to satisfy the
following equation:

c1 × n1 + c2 × n2 + . . . + cN × nN = T (2)

The parameter ci is the data accuracy requirement of the
ith data item. Intuitively, if each data item (mi) changes by
an amount ci, the value of the COMIQ changes by T . The
challenge then is to determine an appropriate ci for each
data item such that Eq. (2) is satisfied. Once the values of
c have been calculated, the next challenge is to determine
the refresh interval or Time to refresh (TTR) for each of
the data items such that the network overhead is minimized
without loss in fidelity. We first present a solution to the
TTR problem and then address the question of finding the
data accuracy requirement for each data item.

2.1 Determining TTRs

If we are able to estimate the expected rate of change
(di) in the value of each data item in the future, then the
TTR can be computed as follows:

TTRi =
ci

|di|
(3)

The challenge now is to determine the value of di for each
data item. To do so, we have extended the core idea of Asset
Pricing Model for Stocks [12]. It tries to model the behav-
ior of a dynamically changing data item by decomposing its
changes into drift component, which is the expected change
in its value (based on the history of its behavior) and a dif-
fusion component (changes caused by processes outside the
system). Our technique is based on the Black Scholes Dif-
ferential Equation [12] and is given by:

d = µ × dT + σ × dX where (4)

d is the estimated rate of change in the value of the data
item during time dT , µ is the mean of change in the value
of the data item per unit time, σ is the volatility in the value
of the data item and dX is the measure of external factors.
We fix dT as 1 so as to calculate the estimated change in
data value over the next time unit. Every time a data item



is refreshed, we compute its rate of change and use an ex-
ponentially smoothed value to find µ. The value of σ is cal-
culated using the standard formula for volatility [11]. The
next task is to estimate the value of dX :

dX =
L × (d′ − µlt)

σ
+ (1 − L) × dXlt (5)

In this equation, d′ is the actual rate of change in the data
item value during the last refresh interval. Thus, we find the
value of d′−µlt

σ (µlt is the value of µ during last refresh),
which (as per Eq. 4) is the actual value of dX operational
during the last refresh interval. Hence this gives us a mea-
sure of the actual unexpected changes that occurred during
the last refresh interval. We use an exponential smoothed
value of this parameter (using smoothing constant L) to
come up with an estimate of the external forces likely to
be active during the next refresh interval. If we now look
back at Eq. (4), the first term µ × dT helps us to estimate
the drift and the second term σ × dX helps us in estimating
the diffusion.
2.2 Determining Data Accuracy Require-

ments

In this section, we first formulate the problem of deter-
mining the data accuracy requirements as an inequality con-
strained minimization problem and then show how standard
techniques need to be modified to find the optimal solution.
Assuming that the value of di is accurate, if the value of
data accuracy requirement is computed such that it satisfies
Eq. (2), then there won’t be any fidelity loss. Thus we need
to compute the value of data accuracy requirement for each
data item such that Eq. (2) is not violated. Using Eq. (3),
the number of messages per second can be calculated as:

Messages Per Second =

N∑
i=1

(
|di|
ci

)
(6)

Our aim of minimizing the fidelity loss and network over-
head can be achieved by finding ci values such that (a) Eq.
(6) is minimized and (b) Eq. (2) is not violated. This can
be done using convex optimization techniques (notice that
Eq. (6) can be trivially proved to be convex for ci > 0).
However, when the changes in data items in the COMIQ are
in opposite directions, the use of absolute value of di can
lead to a lot of unnecessary network overhead even if, over-
all there is no change in the value of the COMIQ. Due to this
problem, standard minimization techniques cannot be used
directly for minimizing Eq. 6. We tackle this problem in the
later part of this section. Let us for the time being use Eq.
(6) as is. Thus, in this problem we have to minimize Eq. (6)
under the following constraints:

N∑
i=1

(ci × ni) − T ≤ 0 (7)

∀i : ci > 0 (8)

Notice that for achieving low fidelity loss we need not sat-
isfy Eq. (2). Eq. (2) represents the boundary condition and

hence the equality sign can be replaced by an inequality as
is done in Eq. (7). Thus this turns out to be an inequality
constrained minimization problem which can be solved by
using Interior Point methods such as Barrier method [13].
The idea is to approximate the inequality constrained min-
imization problem using an equality constrained minimiza-
tion problem to which methods such as Newton’s method
[3] can be applied. This is done by making the inequality
constraints implicit in the objective function using a loga-
rithmic Indicator function (Logarithmic Barrier). Using this
our new objective function is:

O =

N∑
i=1

(
|di|
ci

)
−1

t
×

(
log(T −

N∑
i=1

(ci × ni)) +

N∑
i=1

log(ci)

)
(9)

The parameter t in the above equation governs the slope
of the logarithmic barrier (more on this later). Note that
if any of the constraints given by Eq. (7) and (8) are vio-
lated, the value of the objective function becomes ∞. Thus
the solution (which consists of ci values) given by standard
techniques like the Damped Newton method ensures that
the constraints are not violated and the objective function is
minimized. As the constraints are not violated, the fidelity
loss is minimized.

Coming back to the parameter t, it can be seen that with
an increase in the value of t, the indicator function approxi-
mates the ideal function in a better manner. However, if we
increase the value of t arbitrarily, it is difficult to minimize
the objective function. This problem can be circumvented
as follows: We start with a small value of t and optimize Eq.
(9) using the Damped Newton method. We then increase
the value of t and optimize the modified objective function,
starting with the optimal value of ci calculated during the
previous iteration. This continues till a stopping criterion
such as number of iterations is met.

2.2.1 Modifying Barrier Method

As noted earlier, Eq. (6) might be incorrect if the data items
in the COMIQ change in opposite directions. We tackle this
inadequacy by increasing the value of the query accuracy
bound T , so that all the data items can be assumed to move
in one direction.

During each refresh, we compute the sum of the
weighted rate of change (ROC = |di| × ni) of those data
items (minority data items) which are changing in the direc-
tion opposite to the direction of change in the COMIQ value.
In order to invert the direction of change of the minority data
items, the quantity 2 × ROC × TTR is added to the query
accuracy bound T . We have to add twice the ROC value
to T in order to ensure that the total time required by the
COMIQ to exceed the query accuracy bound with the mod-
ified T and absolute di values (i.e., T +2×ROC×TTR∑

(|di|×ni)
) is no

different than the time required with the original T and the
original di values (i.e., T∑

(di×ni)
). With the modified query



accuracy bound, all data items can be assumed to change in
the positive direction, thereby ensuring correctness of Eq.
(6). The TTR that is used above is the one that we are about
to calculate. Thus in order to find the exact value of T to
be used in the objective function, we need to know the fu-
ture TTR’s. But we need the objective function to compute
the future TTR’s. Hence this is a chicken and egg problem.
The solution lies in the fact that our technique for minimiz-
ing Eq. (9) involves solution to a sequence of problems
(one for each value of t). The algorithm (modified Barrier
method) that we use is given below:

• Given: Objective function O (Eq. 9), ν > 1, ROC, c′ (initial
guess for c), t

• Repeat

• Centering Step: Use Damped Newton method to find the op-
timal value of O starting at c′.

• Update: c′ = c∗ (optimal value computed in centering step)

• Stopping criterion: Quit if solution is sufficiently accurate.

• Increase T : Using c′ in Eq. (3), find minimum TTRmin. Set
T = T ′ + 2 × TTRmin × ROC in the objective function
(T ′ = original T ).

• Increase t: Set t = ν × t

In this algorithm during each iteration, we slowly in-
crease the value of t using the parameter ν thereby increas-
ing the accuracy of the logarithmic indicator function. Dur-
ing our experimental evaluations, we noticed that this algo-
rithm converges very rapidly and it takes a few milliseconds
to find the optimal value of the data accuracy requirement.
In summary, the CoCEA algorithm involves the following
steps: (i) It uses the formula given in Eq. (3) to compute the
TTR for each data item. (ii) The expected rate of change
(di) in the data item value is computed using the modi-
fied Black Scholes differential equation (Eq. 4) and (iii)
The data accuracy requirement value is computed using the
modified Barrier method. This formulation ensures that the
c values do not violate Eq. (7) and Eq. (8). At the same
time it also ensures that Eq. (6) is minimized. Hence the
network overhead is optimized with minimal fidelity loss.

2.2.2 Relation of c and d

The CoCEA algorithm does not assign the largest c value to
the fastest changing data item. This contradicts the result
presented in [9] which suggests that the largest data accu-
racy requirement should be given to the fastest changing
data item. This contradiction is due to the fact that the tech-
nique presented in [9] is push based whereas we use a pull
based technique. A pull based technique has to be inher-
ently pessimistic as there is no way to predict the change in
a dynamic data value with 100% accuracy. Hence, an im-
portant conclusion of our work is that in a pull based tech-
nique, in order to achieved the desired fidelity loss, a fast
changing data item should not have the largest data accu-
racy requirement.

2.3 Performance of CoCEA

As mentioned earlier, we used stock traces as our data
streams. Trace for each stock consisted of 10,000 data val-
ues. The COMIQs were formed by selecting data items uni-
formly at random from the 150 stock traces and assigning
random weights to each of the data items. In our exper-
imentation, the TTR value was not allowed to go beyond
TTRmax = 60 so as to limit the staleness of the data at the
DA. The value of ν was set to 2 and the initial value of t
was taken to be 1.

Figure 1 compares the network overhead and the loss in
fidelity of CoCEA with two other algorithms which are
introduced in Sec. 3 and 4. We discuss their relative perfor-
mance in the respective sections. The figure shows that the
network overhead offered by COCEA is very low, which
shows that the algorithm is successful in minimizing the ob-
jective function. The graphs show that as the value of the
query accuracy bound decreases (i.e., the query accuracy
bound becomes tighter) there is a gradual increase in the fi-
delity loss and network overhead. The CoCEA increases the
refresh frequency with the tightening of the query accuracy
bound which manages to salvage the loss in fidelity to some
extent, but it might not still be acceptable for applications
with high fidelity requirements. The reason for this loss in
fidelity is not hard to fathom. Eq. (7) ensures that there is
no loss in fidelity provided the value of di is correct. Due to
the unpredictable nature of stock quotes, as the query accu-
racy bound becomes very tight, the tolerable margin of error
in the di values becomes very small. Hence, the value of ci

might be too large to detect any unpredictable changes in the
value of the data item. This suggests that we need to be a bit
more conservative in calculating the value of the data accu-
racy requirement so that we are able to handle unexpected
changes in the value of the data items. Such a technique,
which uses the Gradient Descent algorithm, is proposed in
the next section.

3 Gradient Descent Based COMIQs Execu-
tion Approach (GdCEA)

Gradient Descent is a convex optimization technique in
which the design variable is changed along the direction of
the steepest descent in the objective function. In this sec-
tion we explore the use of Gradient Descent to minimize
the network overhead as well as fidelity loss. As our goals
are the same as in the previous algorithm, the basic opti-
mization problem is unchanged and is given by Eq. (6).
In order to ensure that the fidelity requirements are met,
the constraints given by Eq. (7) and (8) need to be incor-
porated in the optimization function. The constraints can
be handled in the Gradient Descent technique by adding a
“performance penalty” to the optimization function. The
performance penalties related to Eq. (7), EC

1 , and Eq. (8),
EC

2 , for a COMIQ C are given as:
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Figure 1. Performance of CoCEA, GdCEA and HyCEA

EC
1 =

{
1
2
(
∑N

i=1
(cini) − T )2 if

∑N

i=1
(cini) > T

0 otherwise
(10)

EC
2 =

{
1
2
c2
i if ci < 0

0 otherwise
(11)

In this equation, the ci value calculated during the previous
run of the Gradient Descent algorithm is used. In order to
ensure the correctness of Eq. (6) (due to the use of the ab-
solute value of di), we use the same strategy as used in the
CoCEA algorithm. The Gradient Descent algorithm min-
imizes an objective function which is the weighted sum of
the objective function given by Eq. (6) and the performance
penalty.
O = (WTP × Messages Per Second) + (WTE × E) (12)

where E is the total performance penalty obtained by
adding Eq. (10) and (11). WTP is the weight given to the
number of messages and WTE is the weight given to the
error term.

We have to find the ci values such that the above objec-
tive function is minimized. The Gradient Descent technique
changes the c vector in the direction that produces the steep-
est descent along the surface of the objective function. The
direction of the steepest descent is given by the negative of
the gradient (derivative) of the objective function O with
respect to each of the c’s. Hence after each refresh, ci is
recomputed as:

�c = �c − η ×�O(�c) (13)

The parameter η (η < 1) is called as the learning rate.
Without loss of generality, it can be assumed that this para-
meter is incorporated in the weights WTP and WTE of the
objective function. After calculating the partial derivatives
of the objective function, the final formula for c is given by:

ci = ci − WTP × PD1 − WTE × PD2 where

PD1 = −1 × |di|
c2

i

and

PD2 = ni × (
∑N

j=1
(cjnj) − T ) + ci

(14)
When the constraints given by Eq. (10) and (11) are satis-

fied, the factor PD2 is set to zero and the c is changed only
due to the factor PD1. Thus, in such a case the c is changed
based on the relative weight and the rate of change of the
data item. The data accuracy requirement generally goes on

changing till the time that the constraint gets violated. At
that point, the performance penalty causes a decrease in the
value of c until we are again in the space where the con-
straints are satisfied.

Thus the Gradient Descent algorithm can be summarized
as: (i) At each refresh, find the di value using the modi-
fied Black Scholes differential equation. (ii) Find the ROC
value of the COMIQ during the previous refresh. We use
the previous TTR as an estimate of the TTR in the future.
Hence using the previous TTR, change the value of T by
adding an amount TTRprevious × ROC × 2 and (iii) Use
the previous c values, the modified T value and the d values
to find the new c value using Eq. (13). Use these new c
values to find the TTR of the data item using Eq. (3). The
Gradient Descent algorithm can be used to find the final op-
timal value of c by running multiple iterations of Eq. 13.
However, our aim is to detect the unexpected changes and
hence we use only one iteration after every refresh.

3.1 Performance of GdCEA

Figure 1 compares the network overhead and the loss in
fidelity of GdCEA with that of CoCEA. In these experi-
ments, the value of WTP was set to 0.01 and that of WTE

was set to 0.1. From the figure it can be observed that, un-
like the CoCEA algorithm, there is much less increase in
fidelity loss of GdCEA with the tightening of the query ac-
curacy bound. However, the network overhead of GdCEA
is higher than that of CoCEA. The GdCEA is a con-
servative algorithm and due to the small increments in the
value of c it can handle sudden unexpected changes in the
value of the data item much more efficiently as compared to
CoCEA. Another important reason for the increase in the
network overhead of the GdCEA algorithm is the effect of
performance penalty. When any of the c values violates the
constraints, the penalty factor comes into play and reduces
the value of c. It was observed that the reduction in the value
of c was very large, due to which c was set to a very small
value.

Thus the bottom line is that the GdCEA and CoCEA
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Figure 2. Comparison of HyCEA with Max algorithm

algorithm have complementary properties in terms of loss
of fidelity and network overhead. This immediately begs
the following question: Can we combine these two tech-
niques such that we get the low loss in fidelity offered by the
GdCEA algorithm while saving on network overhead? We
explore the answer to this question in the next section.

4 A Hybrid COMIQs Execution Approach
(HyCEA)

In this section, we explore a technique to combine the
GdCEA and CoCEA algorithm in an intelligent manner.
As noted in the previous section whenever there is a viola-
tion, the performance penalty of the GdCEA algorithm re-
duces the data accuracy requirement by a value far greater
than the ideal value. This prompted us to make use of
the optimal value of the data accuracy requirement calcu-
lated using the CoCEA algorithm. This is done in the
HyCEA algorithm which predominantly uses the GdCEA
algorithm and kicks in the CoCEA algorithm only when
any of the constraints is violated. Thus this algorithm re-
laxes the data accuracy requirement when the performance
penalty comes into play. This might seem a bit counter-
intuitive as ideally one would expect to refresh very fre-
quently when the data accuracy requirement is violated.
The reason for this is that when the current data item is
refreshed, the DA gets an accurate value of the data item
from the source. Hence the DA can now relax till the time
that the COMIQ is expected to change by a value more than
T as compared to the current value at the DA. Hence if we
use the CoCEA algorithm in such a scenario, the chances
of error are minimal and we save on network overhead.

4.1 Evaluation of HyCEA

Figure 1 shows that the network overhead due to the
HyCEA algorithm is in between that of GdCEA and
CoCEA. This combined with the fact that the algorithm
provides almost the same fidelity as that of GdCEA proves
that HyCEA succeeds in saving the extra network over-
head due to the performance penalty.

4.2 Towards Achieving Specified Fidelity

The results presented so far suggest that the algorithms
do have some amount of fidelity loss. However in practice,
users can only tolerate a specific amount of fidelity loss.
In this section we show how HyCEA can be altered so as
to limit the fidelity loss offered to the user depending on the
user’s requirements. We use a feedback based technique [6],
which adaptively changes the query accuracy bound based
on the fidelity delivered till that point of time. In this tech-
nique, the fidelity loss is periodically monitored at the DA.
If the fidelity loss is less than that desired by the user, the
query accuracy bound is reduced so that TTR’s are reduced
and the algorithm gets a chance to improve its performance.
On the other hand, if the fidelity loss is less than that desired
by the user then the query accuracy bound is increased.

[6] proposes heuristic based techniques (such as Max al-
gorithm) to handle continuous queries at data aggregators.
Figure 2 shows the performance of HyCEA algorithm with
feedback vis-a-vis the heuristic based Max algorithm pre-
sented in [6]. In these experiments, user desired fidelity loss
was set to 2%. It is evident from the figure that unlike the
Max algorithm, the HyCEA algorithm is capable of deliv-
ering the desired fidelity to users. It pays the price for this in
terms of increased network messages for tight query accu-
racy bounds. The reason for the increase in fidelity loss in
the Max algorithm is due to the use of heuristics wherein it
does not refresh all the data items constituting the COMIQ.
For tight query accuracy bounds, this might not be a wise
thing to do as any sudden jump in the data item value that is
not refreshed can violate the query accuracy bound and can
go unnoticed. Such sudden spurts in data values can turn
out to be the most interesting activities for an end user.

5 Extension of HyCEA to Multiple COMIQs

In this section we present a technique to extend the
HyCEA algorithm to cater to multiple COMIQs, where a
large number of COMIQs are being executed at the DA.
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Figure 3. Performance of HyCEA for single and multiple COMIQs

5.1 Enhanced Objective Function

In this setup, our basic objective is to minimize the net-
work overhead, which is same as that in the previous algo-
rithms. Hence the basic objective function is similar as that
given by Eq. (6).

O =

N∑
i=1

(
|di|
ci

)
(15)

The only difference is that in this case, N is the total
number of data items being handled by the DA. Similarly,
the performance penalty term for the constraint given by
Eq. (7), for a single COMIQ j is given by:

Ej
1 =

{
1
2
(
∑

i∈M(j)
(ci × ni) − T j)2 if

∑
i∈M(j)

(ci × ni) > T j

0 otherwise
(16)

In the above equation, M(j) gives the constituent data
items of the COMIQ j and T j is the modified query ac-
curacy bound of the COMIQ j. As there can be multiple
COMIQs executing at the DA the total error term due to all
the COMIQs is given by:

E1 =

Q∑
j=1

Ej
1 (17)

where Q is the total number of COMIQs executing simulta-
neously at the DA. There won’t be any change in the per-
formance penalty term given by Eq. (11). Hence the total
error due to this term is:

E2 =

N∑
i=1

∑
j∈Xi

Ei
2 (18)

In this equation, Xi is the set of all those COMIQs in which
the ith data item participates. The values given by Eq. (17)
and (18) can be substituted in Eq. (12) to get the objective
function to be minimized for the multiple COMIQ scenario.
The partial derivative of this new objective function with
respect to the individual data accuracy requirement values
is given by:

ci = ci − WTP × PD1 − WTE × PD2 where

PD1 = −1 × |di|
c2

i

and

PD2 =
∑

k∈V
ni × (

∑
i,j∈M(k)

(cjnj) − T k) + |R| × ci

(19)
V in the above equation is the set of all those COMIQs in

which data item i participates and for which the constraint
given by Eq. (7) is violated and the set R is the set of all
those COMIQs for which the value of ci is less than zero.
Using the above formula, we can now calculate the data ac-
curacy requirement for each data item handled by the DA.
As in the HyCEA algorithm, if any of the constraints are
violated, we calculate the optimal value of the data accuracy
requirement using the CoCEA algorithm, optimized with
respect to any one randomly selected COMIQ for which the
constraint got violated.

5.2 Performance for Multiple COMIQs

We compared the fidelity loss and network overhead
characteristic of HyCEA applied to multiple COMIQs with
that of the HyCEA algorithm applied to a single COMIQ.
In this setup, if the DA was handling 20 COMIQs, then in
order to compare the results of this setup, we ran the 20
COMIQs individually, and averaged the results across the
20 runs to come up with the results for HyCEA applied to
a single COMIQ. The results presented in Figure 3 show a
surprising result. The network overhead and fidelity loss of
the algorithm is significantly less as compared to the single
COMIQ case. The reason for this is that the algorithm by
virtue of considering all the queries together, is able to use
the knowledge of data item distribution across queries. For
example, consider a data item that occurs in a very large
number of queries. HyCEA will give more importance to
this data item and hence will set a tighter data accuracy re-
quirement for this data item. Although, this results in higher
network overhead for this single data item, the fact of this
data item being more coherent can be used to relax the data
accuracy of several other data items that co-occur with this
data item. Thus, there is an overall decrease in network
overhead and fidelity loss. In a nutshell, the HyCEA al-



gorithm helps us to reduce the network overhead by almost
17% and it offers better fidelity loss characteristics to the
tune of 5% as compared to the single COMIQ case. This
also shows the scalable nature of our techniques.

6 Related Work

Caching of dynamic content has been studied in [7]
wherein a scheme based on push-based invalidation and de-
pendence graphs is proposed. This does not explicitly ad-
dress data accuracy maintenance for efficiently executing
queries at a DA. The concept of queries over data streams
was presented in [1]. However, this work assumed that the
streams were available in their entirety and effectively ran
the queries at the source. This is a major drawback and
might not be practical for real life scenarios. The concept
of filters is used in [9] to deal with continuous aggregate
queries. They make use of filters at the source and assume
that the source can push data values to the proxy. A similar
approach is used in [4] which tries to address the problem of
tracking approximate summaries of the complete data dis-
tribution over distributed data streams. The approach also
requires the source to push data values to the proxy. The
concept of thresholded counts is introduced in [5]. The so-
lution consists of multiple remote sites and a coordinator
site. The technique requires the remote sites to keep track
of a local threshold and push the data value to the coordi-
nator site when the threshold is exceeded. Due to the push
element, this approach cannot be used with the existing in-
ternet infrastructure. Our approach assumes no special sup-
port at the source and hence can be used with the normal
HTTP protocol. A pull based approach for achieving sto-
chastic of single data items is proposed in [2, 14]. However,
our work is for queries over multiple data items and hence
orthogonal to them.

The problem of stream querying in finance was ad-
dressed by [8]. They focus on storing the historical stream
data in an intelligent manner using which they answer
queries. Our work handles queries that do not need his-
torical information and hence our approach is orthogonal to
their work. In summary, none of these research efforts have
focused on the pull based infrastructure/algorithms neces-
sary for efficient execution of COMIQs at a DA, which is
the focus of this paper.

7 Conclusions

On-line decision making often involves processing sig-
nificant amounts of time-varying data. In such environ-
ments, decisions are typically made using an estimated
value (with bounded inaccuracy) of a continuous query over
a set of data items. In this paper, we investigated adap-
tive data refresh techniques where such Continuous Multi-
Data Incoherency Bounded Queries access data from mul-
tiple distributed sources. Key challenges in supporting such

queries lie in meeting users’ consistency requirements while
minimizing network overheads, without the loss of fidelity
in the query responses provided to users. Meeting these re-
quired us to solve two subproblems: (1) deriving the data
accuracy requirement of each of the data items used by the
DA, and (2) ensuring that the (derived) data accuracy re-
quirement associated with each data item is satisfied. To
address the former problem, we formulated it as a convex
optimization problem and solved it using Inequality Con-
strained Minimization, Gradient Descent and a combina-
tion of the two techniques. We addressed the latter problem
by modifying the Black Scholes differential equation. Our
work shows that contrary to the results of [9], for pull based
techniques having a large data accuracy requirement for fast
changing data items does not lead to good performance re-
sults. Finally we showed the scalability of our algorithms by
extending the hybrid approach to cater to multiple COMIQs.
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