
ReDAL: Request Distribution for the Application Layer

Debra VanderMeer
Chutney Technologies

Atlanta, GA
deb@chutneytech.com

Helen Thomas
Carnegie Mellon University

Pittsburgh, PA
hthomas@andrew.cmu.edu

Kaushik Dutta
Florida International University

Miami, FL
kaushik.dutta@fiu.edu

Anindya Datta
Chutney Technologies

Atlanta, GA
adatta@chutneytech.com

Krithi Ramamritham
IIT-Mumbai

Mumbai, India
krithi@cse.iitb.ac.in

Abstract

Modern application infrastructures are based on
clustered, multi-tiered architectures, where request dis-
tribution occurs in two sequential stages: over a clus-
ter of web servers, and over a cluster of application
servers. Much work has focused on strategies for dis-
tributing requests across a web server cluster in order
to improve overall throughput across the cluster. The
strategies applied at the application layer are the same
as those at the web server layer, because it is assumed
that they transfer directly.

In this paper, we argue that the problem of distribut-
ing requests across an application server cluster is fun-
damentally different from the web server request dis-
tribution problem, due to core differences in request
processing in web and application servers.

We devise an approach for distributing requests
across a cluster of application servers such that over-
all system throughput is enhanced, and load across the
application servers is balanced. We compare the perfor-
mance of our approach–with widely used industrial and
recently proposed techniques from the literature– experi-
mentally in terms of throughput and response time per-
formance, as well as resource utilization. Our experi-
mental results show a significant improvement of up to
nearly 80% in both throughput and response time, with
a very low additional cost in terms of CPU overheads,
0.7% to 1.5%, on the web server, and virtually no im-
pact on CPU overheads on the application server.

Data−
base

Legacy
System

Back End
Systems

...

App Server
Cluster

...

Web Server
Cluster

Switch
WebF

ire
w

al
l

Web Application Infrastructure

Requests

Responses

Figure 1. Typical Multi-Tiered Web Applica-
tion Architecture

1 Introduction

Request distribution in clustered environments is an
important problem that has been studied in a number
of different contexts. In this paper, we are interested
in developing effective techniques for distributing re-
quests to a cluster of application runtimes, such as the
Java Virtual Machine (JVM) for J2EE applications and
the Common Language Runtime (CLR) for Microsoft
.NET applications.

Modern application infrastructures are based on
clustered, multi-tiered architectures. Figure 1 shows
a typical such architecture for a web-based applica-
tion. In Figure 1 there are two significant request dis-
tribution points. First, the web switch must distrib-
ute incoming requests across a cluster of web servers
for HTTP processing. Subsequently, these requests
must be distributed across the application server clus-
ter for execution of application logic. To distinguish
between these two steps, we will refer to them as the



Web Server Request Distribution (WSRD) problem and
the Application Server Request Distribution (ASRD)
problem, respectively. In this paper, we develop an
effective ASRD technique for session-intensive applica-
tions. ASRD and WSRD differ greatly in the dynam-
ics of work involved in serving a request (as described
in [8]); serving application requests requires much more
dynamic decision making than that required for web
server requests.

Extensive literature dealing with the WSRD prob-
lem exists and significant commercial value has been
realized from this work. WSRD approaches span both
content-blind policies such as random, round-robin
(RR), as well as content-aware policies such as IP
Address Routing [2], Least Loaded (based on a metric
called server load index) [2], Least Connections [3, 6],
Client Affinity [7, 10], and Session Affinity [2]. Com-
mercial Products such as Cisco’s LocalDirector [3] and
F5 Network’s BIG/IP [6] are based on some of these
approaches. Nearly all of the above-mentioned ap-
proaches are variants of the weighted RR (WRR) ap-
proach [10]. The only strategies, to the best of our
knowledge, that are not WRR variants are the Locality-
Aware Request Distribution (LARD) algorithm [13] and
the Client/Session Affinity schemes, all of which are
based on some form of locality with respect to the
servers. The LARD strategy attempts to route tasks to
exploit the locality among the working sets of received
requests (e.g., cache sets on different web servers),
while the affinity based schemes distribute requests to
exploit the locality of session or state data.

The bulk of ASRD in practice is based on a combina-
tion of RR and Session Affinity routing schemes drawn
directly from WSRD techniques (e.g., [1, 14, 12]). More
specifically, the initial requests of sessions (e.g., the lo-
gin request at an airline web site) are distributed in a
RR fashion, while all subsequent requests are handled
through Session Affinity based schemes, which route
all requests in a particular session to the same appli-
cation server. Session state, which stores information
relevant to the interaction between the end user and
the web site (e.g., user profiles or a shopping cart), is
usually stored in the process memory of the application
server that served the initial request in the session, and
remains there while the session is active. By routing
requests to the application server “owning” the session,
Client/Session Affinity routing schemes can avoid the
overhead of repeated creation and destruction of ses-
sion objects.

There is scant treatment of ASRD in the research
literature. Approaching load balancing as a variant of
the dynamic scheduling problem, techniques from the
scheduling field (e.g., [11, 5] ) may be applicable here.

While this is true at a high level (our technique will
use a variant of the shortest-queue-first approach), a
straightforward application is difficult. Virtually all
dynamic scheduling techniques [15] presuppose some
knowledge of either the task (e.g., duration, weight)
or the resource (queue sizes, service times) or both.
This assumption really does not work in our case, be-
cause both the tasks and the resources are highly dy-
namic. Moreoever, the scalability requirements of an
ASRD are such that any technique usable in practice
must have only negligible overheads. The most direct
work comparable to ours, that we were able to discover
is [8], in which the authors show that system resouce
usage is not a good indicator of load on an application.
The authors suggest that a better basis for determining
load might be the number of active requests on an ap-
plication, and propose a load balancing technique for
application requests based on a “least-active-requests”
routing policy. We refer to this as the HJ technique
throughout the remainder of the paper. While the
authors make a strong point in showing that system
resource usage is not a strong basis for an ASRD tech-
nique, their load balancing technique has a significant
limitation in that it is not applicable to stateful appli-
cations. Stateful session-based interactive applications
form a large class of applications, e.g., a login-based
web application is interactive, and therefore stateful.
Our approach considers the stateful case. To summa-
rize, ASRD techniques in practice virtually always uti-
lize WSRD policies, and there doesn’t appear to be a
good candidate for use in ASRD scenarios in the re-
search literature.

1.1 Issues in Applying WSRD strategies
to the Application Layer

It is important to understand why WSRD strate-
gies at the ASRD layer are sub-optimal, and in
many cases ineffective. The key reason for this is
that web servers and application servers are fundamen-
tally different entities and therefore, the same notions
of what constitutes a “loaded” server do not apply, as
demonstrated in [8]. We highlight three key differences
here to illustrate the reasons for this.

First, the biggest difference is in the determinism
of the work performed. Web servers do very well
defined and quantifiable work, e.g., processing HTTP
headers in packets and serving up static content. Ap-
plication servers, on the other hand, run multi-layer
ad-hoc programs which might be dependent on data
obtained from outside the application layer infrastruc-
ture. Thus, serving a request to an application server
is significantly more complex than at the web server



layer, evidenced by the fact that the application server
cluster saturates well before the web server cluster in
most dynamic applications.

Second, another significant issue is the degree to
which observing the system yields insights into
its load level. System observation is a key component
of most effective WSRD policies, such as WRR policies.
Consider, for instance, the fact that a web server that
is running at 30% CPU would be considered “lightly
loaded” (compared to one running, say at 50%) by most
WSRD policies. While such a judgment is quite accu-
rate in the case of a web server, it often breaks down
when applied to an application server. For instance, an
application server running at 30% CPU might be expe-
riencing low CPU utilization simply because a bulk of
its active threads are “blocked”. In contrast, another
application server in the same cluster running at 50%
CPU may actually be less loaded, as it might possess
a greater number of free threads. Note that while we
used CPU utilization as the discussion metric in the
above example, our arguments apply to any WSRD
metric.

Third, since it is difficult, if not impossible, to de-
termine the work required for a request based on the
characteristics of the request or system resource utiliza-
tion, most WSRD techniques that rely on such informa-
tion simply will not work when applied to ASRD. For
this reason, most ASRD techniques use simple RR to
distribute requests representing new sessions. There-
after, requests for existing sessions are distributed to
the application server instance where the session’s data
resides. Clearly, Session Affinity schemes provide cer-
tain distinct advantages (such as state locality) iden-
tified previously. However, these policies often result
in severe load imbalances across the application
cluster, due primarily to the phenomenon of the con-
vergence of long-running or high-resource jobs in the
same servers.

The problem of load imbalance due to session affin-
ity is well known among practitioners, and has re-
ceived wide treatment in the literature (e.g., [16, 4]).
We illustrate this problem with the following exam-
ple. Consider an application cluster having two ap-
plication servers, A1 and A2, configured identically.
Consider a sequence of sessions arriving at the cluster,
such that sessions are of two types: a long session S,
whichs last 3 minutes; or a short session, which lasts
1 minute. Suppose that the following sequence s of
10 sessions arrive to the cluster and are distributed to
A1 and A2 according to the session affinity-RR policy
(where new sessions are distributed according to RR,
and all requests for an individual session are dispatched
to the same server): s1, s2, S3, s4, s5, S6, s7, S8, S9, s10,

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

N
um

be
r 

of
 A

ct
iv

e 
S

es
si

on
s

Time (minutes)

Figure 2. Load Distribution for App Server #1

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

N
um

be
r 

of
 A

ct
iv

e 
S

es
si

on
s

Time (minutes)

Figure 3. Load Distribution for App Server #2

where the interarrival time between new sessions is one
minute. This policy results in the load distributions for
A1 and A2 shown in Figures 2 and 3, respectively.

Both figures show load, in terms of the number of
active sessions assigned, vs. time (in minutes). For ex-
ample, during the time interval spanning (0,1), A1 has
1 active session assigned (Figure 2) while A2 has no ac-
tive sessions assigned (Figure 3). The most interesting
aspect of this example is the load imbalance created
by Session Affinity. For example, during the time in-
terval spanning (4,5), A1 reaches maximum capacity
(2 active sessions), while A2 remains idle. A similar
situation occurs during the (7,8) time interval, when
A2 reaches maximum capacity and A1 remains idle.
As this simple example illustrates, a combined RR and
Client/Session Affinity strategy can easily create load
imbalances across the cluster.

Load imbalance is not the only issue inherent in a
session affinity scheme. There is also the issue of the
the lack of session failover. This problem occurs be-
cause a session object resides on only one application
server. When an application server fails, all of its ses-
sion objects are lost, unless a session failover scheme
is in place. The two main session failover schemes
used are session replication, in which session objects
are replicated to one or more application servers in the
cluster, and centralized session persistence, in which
session objects are stored in a centralized repository



(e.g., a DBMS).
Effectively, these session failover mechanisms “virtu-

alize” a session’s data, making it available to any ap-
plication server instance in the cluster, thus enabling
any server in the cluster to service any incoming re-
quest. However, there is a cost associated with moving
a session object from one server process to another, so
it is beneficial to serve a request on the server instance
where the session’s data already resides. The ReDAL
approach attempts to optimize this tradeoff by
servicing a request on the server instance where
the session data resides unless a significant load
imbalance situation is detected, in which case
workload may be transferred off a highly-loaded
server to a server experiencing lower load. We
show the benefits of our approach experimentally in
this paper.

The remainder of this paper is organized as follows.
In Section 2, we present our ASRD approach. We then
evaluate the performance of our proposed approach and
compare it with that of existing ASRD policies exper-
imentally, in Section 3. Finally, we conclude in Sec-
tion 4.

2 The ReDAL Approach

In the Request Distribution for the Application Layer
(ReDAL) approach, we characterize an application
server as being in one of two states: (a) lightly-loaded,
or (b) heavily loaded. We explain these characteri-
zations using Figure 4 (adapted from [9]), the upper
portion of which shows a typical throughput curve for
an application server as load is increased. Section A
represents a lightly loaded application server, for which
throughput increases almost linearly with the number
of requests. This behavior is due to the fact that there
is very little congestion within the application server
system resource queues at such light loads. Section
B represents a heavily loaded application server, for
which throughput remains relatively constant as load
increases. However, the response time increases pro-
portionally to the user load due to increased queue
lengths in the application server. Thus, as soon as this
peak throughput point or saturation point is reached,
application server performance degrades. We refer to
the load level corresponding to this throughput point
as the peak load.

In order to determine the peak load at runtime, we
do not need to find the exact peak throughput point,
we need only determine where the rate of change of
throughput with load reaches zero by looking at the first
derivative of the throughput curve. We can generate
an approximation of the throughput curve at runtime

L 1 L 2

Throughput Peak or
Saturation Point

Peak
Load

Load: x

T
ra

ns
ac

ti
on

s 
pe

r 
se

co
nd

: 
f(

x)

Load: x

Section A Section B

d 
f(

x)
/d

x

Figure 4. Typical Throughput Curve for an
Application Server and its First Derivative

by gathering transactions per second data at a config-
urable interval. The lower portion of Figure 4 shows
an approximation of the first derivative df(x)

dx of the
throughput curve f(x) shown in the upper part of Fig-
ure 4. Here, df(x)

dx is roughly linear in the early stages
of Section A, where the server is very lightly loaded.
As the server begins to experience congestion in the
later stages of Section A, the slope of f(x) begins to
drop as load approaches its peak. In this stage, df(x)

dx
drops toward 0 as f(x) approaches peak load. When
f(x) reaches peak load, df(x)

dx reaches 0. With this, we
can designate a server to be lightly loaded if df(x)

dx is
positive, and heavily loaded if df(x)

dx is 0 or negative.
With respect to Figure 4, we characterize a given

application server as either dispatchable or non-
dispatchable. A dispatchable application server cor-
responds to a lightly loaded server, while a non-
dispatchable application server corresponds to a heavily
loaded application server.

The goal of the ReDAL approach, intuitively, is to
keep all application servers under its control under “ac-
ceptable” throughput thresholds, i.e., the goal here
is not to “balance” load per se, but rather to
keep the cluster in a stable state as long as pos-
sible – balancing load is an ancillary effect. Here,
“balanced” load refers to the distribution of requests
across an application server cluster such that the load
on each application server is approximately equal. The
mechanism the algorithm follows to achieve the goal of
enhancing performance is as follows: at decision times,



i.e., when a request needs dispatching, it attempts to
send the request to an affined dispatchable server (i.e.,
the server where the immediately prior request in the
session was served), failing which it attempts to send
the request to the “least loaded” dispatchable server,
and finally, if the above two conditions cannot be met,
sends it to the “least loaded” server overall. Clearly,
the meat of the procedure lies in figuring out the load
levels of servers, which is then mapped to dispatchabil-
ity.

ReDAL follows a capacity reservation procedure to
judge loading levels. As an example, consider an ap-
plication server Ak processing y sessions. Assume that
it is desired to keep the server under a throughput of
T . Further, it takes h seconds, on average, between
consecutive requests inside a session (this is referred
to as think time) and that the system, at any given
time, considers the state of this application server G
seconds into the future. Given this information, for
tractability, let us partition the lookahead period G
into C distinct time slices of duration d. Such parti-
tioning allows us to make judgments effectively – given
that we are attempting to compute a decision metric
(throughput in this case), it is easier and more reliable
to monitor this metric over discrete periods of time,
rather than performing continuous dynamic monitor-
ing at every instant.

In terms of the capacity reservation procedure, given
y sessions in the current time slice, we assume that each
of these sessions will submit at least one more request.
Clearly, these requests are expected to arrive in a time
slice h units of time away from the current slice, in
time slice is ch. This prompts us to reserve capacity
for the expected request in this application server in
ch. More accurately, when a request r arrives at an
app server Ak at time t, assuming that this request
belongs to a session S, we reserve a unit of capacity on
Ak for the time slice containing the time instant t + h.
Note that this reflects our desire to preserve affinity –
we assume that all requests for session S will, ideally,
be routed to Ak. Such rolling reservations provide a
basis for judging expected capacity at an application
server. To dispatch a request, assuming dispatching
the request to the affined server is not possible, we
check the different application servers in the cluster to
see which ones have the property that the amount of
reserved capacity in the current time slice is under the
desired maximum throughput T , and choose the least
loaded server among them.

This is of course a very simplistic view. In reality,
we have to account for various other issues, e.g., the
fact that the current request may actually be the last
request in a session (in which case the reservation we

have made is actually an overestimation of the capacity
required), as well as the fact that we may have mis-
estimated think time for a particular request. The full
ReDAL algorithm takes care of these practical issues.

2.1 System Architecture

The architecture of our proposed approach is sim-
ilar to that shown in Figure 1. Our ReDAL request
distribution system consists of a software component
that runs within the web server (similar to the circles
in Figure 1). Our system consists of two main logical
modules: (i) the Application Analyzer, and (ii) the
Request Dispatcher.

The Application Analyzer is responsible for char-
acterizing the behavior of an application server as dis-
patchable or non-dispatchable. This module monitors
each application server’s throughput to generate a close
approximation of the server’s throughput curve f(x),
and designates a server as dispatchable if df(x)

dx is posi-
tive, and non-dispatchable if df(x)

dx is zero or negative.
The Request Dispatcher is responsible for the

runtime routing of requests to a set of application
servers according to our proposed request routing pol-
icy. To accomplish this, the Request Dispatcher
monitors expected and actual load on each application
server. Upon receiving a request, the Request Dis-
patcher first determines whether the request is part
of an existing session. If so, it will direct the request
to the application server owning the session, as long as
the affined server is in a dispatchable state. Otherwise,
it will send the request to the application server hav-
ing the lowest expected load. Requests that initiate a
new session are also routed to the least loaded applica-
tion server. Though not shown in Figure 1, we assume
that there is a session virtualization mechanism (as de-
scribed in Section 1) in place to enable session failover.1

2.2 Technical Details

We consider a set of application servers A =
{A1, A2, . . . , An} configured as a cluster, where a clus-
ter is a set of application servers configured with the
same code base, and sharing runtime operational in-
formation (e.g., user sessions and EJBs). For the sake
of simplicity, we assume that each application server
Ak (k = 1, . . . , n) is identical, though our approach
also applies in the case of heterogeneous application
servers. A request r is a specific task to be executed
by an application server. We assume that each request

1Such mechanisms are provided with virtually every commer-
cial application server, either as a native feature, or through the
use of a DBMS. Third party solutions are also available.



Current Time

Time Slice

Figure 5. Cycle of Time Slices

is part of a session, S, where a session is defined as
a sequence of requests from the same user or client.
In other words, S =< r1,S , r2,S , . . . , rs,S >, and rj,S
denotes the jth request in S. A set of web servers
W = {W1,W2, . . . , Wn} dispatch application requests
to the application servers in A. Based on this founda-
tion, let us define some notions that will be used in our
algorithmic description.

Think time (h) is defined as the time between two
consecutive requests rj,S and rj+1,S , measured in sec-
onds. Think time is computed as a moving average of
the time between consecutive requests from the same
session arriving at the cluster. The moving average
considers the last g requests arriving at the cluster,
where g represents the window for the moving average
and is a configurable parameter.

A Time slice (ci) is defined to be a discrete time
period of duration d (in seconds, where d is greater
than the time required to serve an application request)
over which we record measurements for throughput on
each application server. We consider a finite number of
such time slices, C = {c0, c1, . . . , cC−1}, where c0 rep-
resents the current time slice, each ci (i = 0, . . . , C−1)
represents the ith time slice, and C allows sufficient
time slices for reservations h seconds in the future, i.e.,
C = dh

d e. The C time slices are organized in a cycle of
time slices for each application server, as shown in Fig-
ure 5. Each time slice will have an associated set of two
load metrics, actual load and expected load, which are
updated as new requests arrive and existing requests
are served.

The Actual load (ltk) of an application server Ak

at time t is defined as the number of requests arriving
at Ak within a time slice ci, such that t ∈ ci. (We drop
the t superscripts when t is implicit from the context.)

The Predicted time slice. Consider a request rj of
a session S arriving at time tp. The predicted time slice
cq of the subsequent request in the session, i.e., rj+1,
is the time slice containing the time instant tp +h such
that the request rj+1 is predicted to arrive at the time
instant tp + h.

The Expected load (ek
i ) of an application server

Ak for the time slice ci is defined as the number of

t1 t2

r2r1

c0 c1 c2

think time (h)

e1 e2e0

d

time

Figure 6. Load Metrics

requests expected to be served by Ak during the time
slice ci. Expected load is determined by accumulating
the number of requests that a given application server
should receive during ci based on the predicted time
slices for future requests for each active session associ-
ated with Ak.

Figure 6 helps to illustrate how expected load is de-
termined. The figure shows a linear view of a partial
cycle of time slices. Each time slice has an expected
load counter. For instance, consider the cycle for Ak.
Here, ek

0 represents the expected load counter for the
current time slice (c0), ek

1 the expected load counter
for time slice c1, and so on. Suppose that request r1

in a particular session occurred at time t1, as shown in
the figure. From the think time (h), we can determine
the time slice in which request r2 is expected to arrive.
Suppose that, based on the think time, it is determined
that request r2 will arrive at time t2, which occurs in
time slice c2 (refer to Figure 6). Then ek

2 , the expected
load for time slice c2, is incremented by one. This effec-
tively reserves capacity for this request on Ak during
c2.

Since predicted time slices are not guaranteed to be
correct, we may need to adjust the expected load to
account for incorrect predictions. An incorrectly pre-
dicted request may arrive either (a) in a time slice prior
to its predicted time slice, or (b) in a time slice sub-
sequent to its predicted time slice. In the former case,
we simply decrement the expected load counter for the
predicted time slice upon observing the arrival of the
request in the current time slice. For example, refer-
ring to Figure 6, suppose that request r2 actually ar-
rives during the current time slice (c0). In this case,
the actual load, l, for the current time slice is incre-
mented, while the expected load, ek

2 , for time slice c2 is
decremented. This effectively cancels the reservation
for this request on the application server during the
future time slice.

In the case where a request arrives subsequent to its
predicted time slice, we have no way of knowing about
this error until we reach the end of the predicted time
slice. We can only estimate that this type of error will
occur with a certain frequency. We account for this



type of error in our modified load metric, mk, for
application server Ak, defined as mk = ltk +αek

0 , where
α (0 < α ≤ 1) is an expected load factor which adjusts
for requests that arrive after their predicted time slices.

We briefly summarize the above-described load met-
rics. For a given application server, we maintain an
expected load counter for each time slice. For the cur-
rent time slice, we record the actual load by observing
the number of requests served by the application server.
We then compute the modified load for the current time
slice by summing the actual load and the adjusted ex-
pected load (adjusted to account for prediction errors).

The preceding discussion focused on the load met-
rics maintained by a single web server. In a multi-web
server environment, since each web server runs its own
instance of the Request Dispatcher, we must ensure
that each Request Dispatcher accesses the same global
view of load metrics. To accomplish this, each Request
Dispatcher maintains a synchronized copy of the global
view of load metrics. This global view is updated via
a multicast synchronization scheme, in which each Re-
quest Dispatcher periodically multicasts its changes to
all other Request Dispatcher instances. This data shar-
ing scheme allows all Request Dispatcher instances to
operate from the same global view of load on the appli-
cation servers, and yet allows each instance to act au-
tonomously. Another issue that arises in a multi-web
server environment is computing think time given that
consecutive requests from the same session may be sent
to a different web server. To address this issue, each
web server, upon sending an HTTP response, records
the time that the response is sent in a cookie. Thus, if
a subsequent request from this session is sent to a dif-
ferent web server, the new web server can retrieve the
time of the last response and use it to compute think
time.

3 Experimental Results

In this section, we show the runtime performance
of the ReDAL algorithm with a set of experimental
results, comparing it to a widely used existing tech-
nique, specifically a commercial implementation of the
RR scheme, and the HJ load balancing scheme. We
consider two cases for the ReDAL algorithm with
two different settings for the α parameter: ReDAL-
ALPHA=0.9 and ReDAL-ALPHA=0.5 to show
the impact of varying α2; here, higher values of
α take greater advantage of ReDAL’s reservation

2We have found that α = 1 is effective only in the case where
there is no error in think time prediction in capacity reservation.
This is not a realistic scenario; thus, we consider values of α up
to 0.9 in these experiments.

scheme than lower values. In this, we are interested
in five particular questions: (1) How does throughput
performance compare across the RR, HJ ReDAL-
ALPHA=0.5, and ReDAL-ALPHA=0.9 algo-
rithms?, (2) How does response time performance com-
pare across the RR, HJ, ReDAL-ALPHA=0.5,
and ReDAL-ALPHA=0.9 algorithms?, (3) How do
each of these policies impact CPU resource utilization
on the web server?, (4) Does ReDal impact CPU on the
application server? and (5) How is application server
scaling affected by ReDal?

3.1 Experimental Architecture

Our experiments were run using the general archi-
tecture described in Figure 1, with the addition of a
load generation tool to simulate user requests, and a
session clustering mechanism. This experimental envi-
ronment consists of a load generator, LoadRunner v6
(www.mercuryinteractive.com), which simulates client
requests; a single web server instance, the Apache
HTTP Server v2.0 (www.apache.org); and ten appli-
cation server instances, running WebLogic Server v7.1
(www.bea.com). In order to ensure session objects are
available from every application server, our architec-
ture requires some mechanism for clustering sessions
(as discussed in Section 1). For this, our experimental
architecture uses a relational database, running Oracle
v8 (www.oracle.com); sessions are stored and retrieved
from it through an implementation of the HttpSession
object that connects to the database.

We have implemented the ReDAL algorithm as
an Apache Web Server plug-in module, written in
C++. For the RR algorithm, we use the WebLogic
Apache plug-in module, which implements a round-
robin dispatching policy. We have implemented HJ as
an Apache plugin, adding statefulness (not addressed
in [8]) through calls to an external session object repos-
itory.

The application servers support two types of re-
quests, high.jsp and low.jsp, which generate high and
low load levels, respectively. These scripts are in-
spired by a simple human resources information sys-
tem. High.jsp invokes a servlet that accesses an em-
ployee id in the stored session object, and queries a
database for the employee’s salary, insurance, and va-
cation benefits. This operation is a multi-way join in
the database. Low.jsp accesses the session object for
the employee id and returns the employee’s name. This
operation is a simple projection on a single table. On
an unloaded (i.e., no other active requests) application
instance, high.jsp returns a response in approximately
500 ms, while low.jsp returns a response in about 100



ms.
Sessions are stored to the external session repository

as well as in the application server’s memory space. If
a request arrives at an application server for a locally-
stored session object, read speed is dramatically re-
duced over the external retrieval case. If a request up-
dates a session object that resides on another applica-
tion server, an invalidation message is sent to the server
where the object resides to remove the object. The load
generator is configured to simulate a varying number
of simultaneous user sessions, with each session sub-
mitting a stream of requests to the web server. Each
request is chosen from a uniform distribution across
high.jsp and low.jsp.

The load generator, web server, application server
instances, and external session repository all run on
separate hardware. All machines are configured with a
single-CPU (900 MHz), 1 GB RAM, and 20 GB disk,
and run Windows 2000 Advanced Server (SP 3). All
communication takes place on a local area network.

In these experiments, we measure three perfor-
mance metrics: (1) Average Throughput per Applica-
tion Server (ATAS) refers to the average number of
transactions per second an application server in the
cluster provides. We obtain this value by dividing the
overall throughput rate provided by the cluster by the
number of application servers in that cluster. (2) Aver-
age Response Time (ART) refers to the average request
response time that the ten application servers can pro-
vide. Throughput of the cluster and Average Response
Time are measured from the perspective of the end
user. (3) Web Server CPU Utilization (WSCU) refers
to the percentage CPU utilization on the web server,
as measured by O/S utilities.

3.2 Throughput Performance

For our throughput experiments, Figure 7 shows
how ATAS varies for ReDAL-ALPHA=0.9,
ReDAL-ALPHA=0.5, HJ, and RR as the number
of simultaneous sessions increases from 5 to 100.

For all approaches, ATAS shows an inverted “U”
shape, i.e., ATAS rises initially, peaks, and then falls.
Throughput rises initially, as the arrival rate of re-
quests increases, then peaks when a resource on the
server reaches maximum utilization (e.g., CPU reaches
100%). Once a resource reaches its maximum usage,
queuing for that resource begins, causing throughput
to drop.

We now consider each curve relative to one another.
For the ReDAL-ALPHA=0.5 curve, where through-
put/server peaks at 80 simultaneous sessions with 50
transactions per second per server. HJ and RR do not

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

A
ve

ra
ge

 T
hr

ou
gh

pu
t p

er
 A

pp
lic

at
io

n 
S

er
ve

r

Number of Simultaneous Sessions

ReDAL-Alpha=0.9
ReDAL-Alpha=0.5

HJ
RR

Figure 7. Average Throughput Per Applica-
tion Server

perform as well as ReDAL-ALPHA=0.5, peaking at
a lower simultaneous session load of 60 sessions and
providing only 32 transactions per second per server in
the RR case, and HJ peaking at 80 sessions, with 42
transactions per second. The lower throughput in the
RR case results from one or more of the application
servers in the cluster reaching a resource bottleneck
(in this case, CPU utilization reaching 100%) due to
unbalanced load, bringing down the overall through-
put on the cluster. This clearly shows the impact of
maintaining balanced load across the application server
cluster that ReDAL provides. The lower through-
put in the case of HJ stems from the fact that HJ
does not take advantage of session affinity, and needs
to retrieve the session from external storage on every
request. On the other hand, ReDAL-ALPHA=0.9
outperforms ReDAL-ALPHA=0.5, peaking at the
same number of simultaneous sessions (80), but provid-
ing higher throughput, at 57 transactions per second
per server. This shows the benefit of ReDAL’s reser-
vation planning capability, which has greater impact as
α is increased.

3.3 Response Time Performance

Our response time experimental results, shown
in Figure 8, show how ART varies for ReDAL-
ALPHA=0.5, ReDAL-ALPHA=0.9, HJ, and
RR as the number of simultaneous sessions increases
from 5 to 100.

For all approaches, the ART curves are exponential.
Here, response time is relatively flat initially, then be-
gins to increase with each successive value for simulta-
neous sessions. The points where the slopes of these
curves begin to increase sharply are closely correlated
to the peaks in the throughput curves. Specifically,
these “knee points” map exactly to the peaks in the



0

200

400

600

800

1000

1200

0 20 40 60 80 100

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(m
s)

Number of Simultaneous Sessions

ReDAL-Alpha=0.9
ReDAL-Alpha=0.5

HJ
RR

Figure 8. Average Response Time

ATAS curves. Here, as the arrival rate of requests in-
creases, response time begins to increase sharply when
a resource on the server reaches maximum utilization,
at which point queuing begins, causing rising response
times.

We now consider each curve relative to one another.
For the ReDAL-ALPHA=0.5 curve, where response
time begins to increase sharply at 80 simultaneous ses-
sions with a response time of 380 ms. RR does not per-
form as well as ReDAL-ALPHA=0.5; here, response
time begins to increase sharply at a lower simultaneous
session load of 60 sessions, and providing a response
time of 418 ms. This underscores the point made
with regard to throughput – maintaining balanced load
across the application server cluster provides signifi-
cant benefit. For the HJ case, response time is also
higher than the ReDAL-ALPHA=0.5 case, i.e., 503
ms at 80 sessions, reinforcing the points shown in
the throughput experiment – that there is significant
advantage in utilizing session affinity. On the other
hand, ReDAL-ALPHA=0.9 outperforms ReDAL-
ALPHA=0.5. While it begins to rise sharply at the
same number of simultaneous sessions (80), it also pro-
vides a lower average response time of 320 ms. This
reiterates our point regarding the benefits of ReDAL’s
reservation mechanism.

3.4 CPU Overheads on the Web Server

We show that the response time and throughput
benefits of ReDaL come at a very low computational
cost by considering the average CPU overheads on the
web server, which is where the three approaches differ.
Figure 9 shows shows how WSCU varies for ReDAL,
HJ, and RR as the number of simultaneous sessions
increases from 5 to 100. Here, we show only the results
for α = 0.9 for the ReDAL case, as the value of α does
not impact the work required for ReDAL.

For all approaches, the WSCU curves are linear with

0

2

4

6

8

10

12

14

0 20 40 60 80 100

P
er

ce
nt

ag
e 

C
P

U
 U

til
iz

at
io

n 
on

 th
e 

W
eb

 S
er

ve
r

Number of Simultaneous Sessions

ReDAL
HJ
RR

Figure 9. Average CPU Utilization on the Web
Server

a positive slope, i.e., CPU utilization increases with
increasing simultaneous sessions. The RR approach
shows the lowest overall WSCU, rising from 1.55% at
5 sessions to 10.52% at 100 sessions. The HJ case
shows slightly higher values than RR, rising from 1.6%
to 11.3%, due to the fact that it tracks more infor-
mation about the application cluster than RR, essen-
tially a count of active requests on each application
instance. ReDAL also shows slightly higher WSCU
values than RR, rising from 1.9% to 12.0%. These
values are higher than that of RR and HJ because
ReDAL not only maintains load information for ap-
plication servers, but also exchanges that data across
the web server cluster. Overall, this cost 1.5% addi-
tional CPU over RR, and 0.7% over the HJ case, a
very low cost to pay to obtain the throughput and re-
sponse time benefits shown above.

3.5 CPU Overheads on the Application
Server

Here we demonstrate how the peak CPU of ap-
plication server varies for different load distribution
schemes. For each load distribution scheme, i.e., HJ,
RR, and ReDaL, at each number of simultaneous ses-
sions, we note the peak % CPU across ten application
servers. We plot this peak % CPU vs. the number of
simultaneous sessions in figure 10. Due to highly un-
balanced load distribution, the peak CPU % is higher
in the case of RR and HJ than in the case of ReDal.
Also, for RR and HJ, the peak CPU reaches 100%
earlier than in the ReDal case. This is reflected in the
increase in ART in figure 8.



0

20

40

60

80

100

0 20 40 60 80 100

P
er

ce
nt

ag
e 

P
ea

k 
C

P
U

 U
til

iz
at

io
n 

on
 th

e 
A

pp
 S

er
ve

r

Number of Simultaneous Sessions

ReDAL-Alpha=0.9
ReDAL-Alpha=0.5

HJ
RR

Figure 10. Peak % CPU on the Application
Servers

0

2

4

6

8

10

12

14

0 20 40 60 80 100

P
er

ce
nt

ag
e 

C
P

U
 U

til
iz

at
io

n 
on

 th
e 

W
eb

 S
er

ve
r

Number of Simultaneous Sessions

#App-Server=5
#App-Server=10
#App-Server=20

Figure 11. Scaling with Application Servers

3.6 Scaling with Additional Application
Servers

Figure 11 shows CPU on the web server for simulta-
neous sessions increasing from 5 to 100, for 5, 10, and
20 application servers running behind the web server.
Each case uses ReDal, with α = 0.9, to distribute the
request load across the application servers. The curves
all increase as the number of simultaneous sessions in-
creases – each additional session increases the number
of requests that must be distributed across the appli-
cation server set. The curves for 5, 10, and 20 applica-
tion servers all show very similar CPU growth rates as
simultaneous sessions increase, with the 5-server case
showing slightly lower CPU usage than the 10-server
case, and the 20-server case showing slightly higher
CPU usage than the 10-server case. Clearly, increasing
the number of application servers results in increased
CPU usage on the web server, due to the increased
complexity in tracking the load states of more servers;
however, this increase is very small – the difference be-
tween the 10-server and 20-server cases is less than 2%.

4 Conclusion

We devise an approach for distributing requests
across a cluster of application servers such that over-
all system throughput is enhanced, and load across the
application servers is balanced. We compare the per-
formance of our approach with widely used industrial
and recently proposed techniques from the literature
experimentally, in terms of throughput and response
time performance, as well as resource utilization. Our
experimental results show a significant improvement
of up to nearly 80% in both throughput and response
time, with a very low additional CPU cost, ranging
from 0.7% to 1.5%.

References

[1] BEA. Weblogic server. www.bea.com.
[2] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu.

The state of the art in locally distributed web-server
systems. Technical Report RC22209 (W0110-048),
IBM Research Division, October 2001.

[3] Cisco. Localdirector. www.cisco.com.
[4] Cisco. The effects of distributing load randomly to

servers. Cisco White Paper, 1997.
[5] M. Colajanni, P. Yu, and D. Dias. Scheduling algo-

rithms for distributed web servers. In Proc. ICDCS’97,
pages 169–176, May 1997.

[6] F5-Networks. BIG-IP. www.f5.com.
[7] G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee.

Network dispatcher: A connection router for scalable
internet services. Computer Networks, 30(1-7):347–
357, 1998.

[8] S. Hwang and N. Jung. Dynamic scheduling of web
server cluster. In Proc of the ICPDS, 2002.

[9] IBM. Websphere application server. www.ibm.com.
[10] Linux-Virtual-Server-Project. Linux virtual server.

www.linuxvirtualserver.org.
[11] D. Menasce, D. Saha, S. da Silva Porto, V. Almeida,

and S. K. Tripathi. Static and dynamic processor
scheduling disciplines in heterogeneous parallel archi-
tecture. Journal of Parallel and Distributed Comput-
ing, 28(1):1–18, 1995.

[12] Microsoft. Internet information services (iis).
www.microsoft.com/iis.

[13] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware re-
quest distribution in cluster-based network servers. In
Proc. of the 8th ASPLOS, 1998.

[14] Sun. iplanet server. wwws.sun.com.
[15] A. Tannenbaum. Modern Operating Systems. Prentice

Hall, 2001.
[16] V. Viswanathan. Load balancing web applications.

http://www.onjava.com/pub/a/onjava/2001/09/26/
load.html?page=1, September 2001.


