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Abstract. We examine the problem of tracking dynamic boundaries oc-
curring in natural phenomena using range sensors. Two main challenges
of the boundary tracking problem are energy-efficient boundary estima-
tions from noisy observations and continuous tracking of the boundary.
We propose a novel approach which uses a regression-based spatial es-
timation technique to determine discrete points on the boundary and
estimates a confidence band around the entire boundary. In addition, a
Kalman Filter-based temporal estimation technique is used to selectively
refresh the estimated boundary to meet the accuracy requirements. Our
algorithm for dynamic boundary tracking (DBTR) combines temporal es-
timation with an aperiodically updated spatial estimation and provides a
low overhead solution to track boundaries without requiring prior knowl-
edge about the dynamics of the boundary. Experimental results demon-
strate the effectiveness of our algorithm and estimated confidence bands
achieve loss of coverage of less than 2 − 5% for a variety of boundaries
with different spatial characteristics.

1 Introduction

Large scale sensor networks are being deployed for real-time monitoring applica-
tions, such as detecting leakage of hazardous material, tracking forest fires and
environmental phenomena. Consider a poisonous gas or plume monitoring ap-
plication [1], tracking a spreading plume requires continuous updates regarding
extent of the plume, its direction and its distance from habitats. The plume can
be considered to be delineated by a boundary such that tracking the movement
of the plume involves estimating a dynamically changing boundary. Strategically
deployed range sensors can coordinate to track boundaries associated with such
natural phenomena.

The solution space for boundary estimation using a sensor network can be ex-
amined along four orthogonal dimensions: (i) the characteristic of sensors - static
[2], [3] or mobile [4]; (ii) sensing capabilities - in-situ sensing or range/remote sens-
ing; (iii) the accuracy of estimation; and (iv) the nature of the boundary - static or

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 125–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



126 S. Duttagupta et al.

Fig. 1. Issues related to tracking dynamic boundaries. (Solid boxes indicate problems
addressed in this paper).

dynamic. In this paper, we address the problem of estimating dynamic boundaries
using static sensors with range/remote sensing capabilities. Previous techniques
to estimate boundaries have employed in-situ [2] static or mobile sensors. In appli-
cations like tracking a plume, or predicting trajectory of weather parameters [5],
in-situ sensing is not feasible due to difficulty in remote access or requirement of a
large-scale deployment of sensors. In such situations, techniques based on range or
remote sensing using radar or laser pulses are better suited. The basic difference
between in-situ and range sensing is that, in the former approach a sensormeasures
the value of the field at its current location whereas in the latter approach a sensor
finds approximate distance to a remote location where the field value equals some
specific threshold. Radars used in [5] scan an angular area by swiping upto 360
degrees and gather reflectivity and wind velocity information. Lidars (LIght De-
tection and Ranging) are being used for detecting forest fires [6], [7] in the last few
years. Lidars detect fire by analysing the energy back-scattered from smoke parti-
cles resulting from fire and measure the distance between lidar sensor and a point
on the target(smoke) using simple principle of light. While today lidars are not ca-
pable of wireless communication, we envision in near future low power, inexpensive
sensors with radar/lidar distance sensing and wireless/optical communication ca-
pability will be available. In the rest of the paper, we assume such sensors are used
to detect boundaries occurring in natural phenomena.

Figure 1 is a pictorial representation of the issues involved in tracking a dy-
namic boundary. The two main issues are estimating the boundary and updating
the estimates as the boundary moves. There are two broad techniques to estimate
boundaries, (i) Functional estimation and (ii) Point-wise estimation. Unlike a
functional estimation technique, a point-wise estimation technique assumes that
boundaries consist of discrete points and individual points are estimated with-
out reference to any specific functional form. The effectiveness of this technique
depends on the number and locations of boundary estimation points. Our pro-
posed point-wise technique exploits spatial variations to determine locations of
estimation points and minimizes the number of estimation points.
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Error in range estimation due to inherent inaccuracy of sensors introduces
error in estimating points on the boundary. The challenge is to estimate an
accurate boundary in the presence of noisy observations. In this paper, we use a
kernel smoothing technique that exploits spatial correlation between proximate
sensors so as to reduce the effect of range sensing errors. Further, a centralized
technique for estimating boundaries suffers from high communication overheads.
We explore a decentralized solution that utilizes local computation capability and
performs in-network aggregation at sensors within the network to significantly
reduce the communication overhead for boundary estimation.

In order to track a dynamic boundary, the boundary estimates need to be up-
dated periodically. The ability to use the temporal characteristics of the bound-
ary to update its estimate only when required is another challenge we address
in this paper. The instances when a boundary estimate is updated depend on
the dynamics of the boundary. But, unless there is clairvoyance, optimal choice
of periodicity at each point is not possible in real-time tracking scenarios. Our
approach uses a Kalman Filter based mechanism to predict the movement of the
boundary and updates estimates only when error in the current estimate exceeds
a pre-defined threshold.

We address the problem of accurate dynamic boundary estimation with ob-
servations from range sensors incurring low communication overhead. By way of
contributions,

– We propose DBTR, a novel technique that intelligently combines both spatial
and temporal estimation techniques for accurate dynamic boundary estima-
tion. Our spatial estimation scheme is designed such that it lends itself to
in-network aggregation.

– We demonstrate the effectiveness of DBTR for tracking a dynamic bound-
ary without prior knowledge about the dynamics of the boundary. The per-
formance of DBTR in terms of communication overheads and accuracy is
comparable with the best optimal periodic update scheme.

– We experimentally show that the estimated confidence band around a bound-
ary has loss of coverage (defined in Section 2) less than 2−5% for a spectrum
of boundaries with different spatial characteristics.

2 System Model and Problem Formulation

We assume n sensor nodes distributed randomly over a two dimensional field
measuring a phenomenon (e.g., viscosity or reflectivity). Further, each sensor
has directional range sensing capability to estimate the closest point whose field
value matches the definition of a boundary. An observation (xi, yi) of the ith

sensor represents the location of a boundary point. We assume that sensors can
align their sensing antennas at any angle to locate a point on the boundary.
Further, all sensors are located on one side of the boundary tracking the front of
a phenomenon. Figure 2(a) shows a typical scenario of sensors detecting various
points on the boundary. A sensor at location (xs, ys) positions its beam at an
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(a) Range sensing scenario (b) Estimated confidence band

Fig. 2. Tracking dynamic boundary using range sensing observations

angle θ 1 w.r.t. the y axis and detects a point (xi, yi) on the boundary with error
αi along the sensing direction.

Given n observations {(xi, yi)}n
i=1} with errors, we address the problem of

estimating a confidence band of a specific width δ (the distance between the es-
timated boundary and limit of the band) as shown in Figure 2(b). The confidence
band should cover the dynamic boundary at all times and with high probability.
We measure the accuracy of coverage in terms of loss of coverage (LOC), the
probability of the band not covering the actual boundary. If (xi, d(xi)) is a point
on the actual boundary, LOC over a set of n sensors is defined as:

LOC(δ) =
1
n

n∑

i=1

I(|d̂(xi) − d(xi)| > δ) (1)

where I(a) is an indicator function, i.e., I(a) = 1 if a is true, I(a) = 0 otherwise
and d(xi) is the actual distance from estimation point xi and d̂(x) is its estimate.
Minimizing LOC helps maximize accuracy of coverage.

Our model assumes that sensor nodes are equipped with wireless radios. Fur-
ther, these nodes use clustering for aggregation and multi-hop routing techniques
for communication with a base station. Finally, since sensors are energy-limited,
we aim to minimize the communication overhead at nodes to increase lifetime
of sensor networks.

3 DBTR: Dynamic Boundary Tracking Algorithm

A dynamic boundary has mainly two types of variations: spatial and temporal.
Effective tracking of dynamic boundaries requires handling both of these vari-
ations. In this section, we describe DBTR, a point-wise algorithm for dynamic
boundary tracking which combines a spatial estimation technique and a temporal
estimation technique to effectively track a dynamic boundary.
1 In this paper, we assume the antennas are aligned to the y axis i.e., θ = 0. Please

refer to [8] for a discussion on using non-zero sensing angles.
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The first step of DBTR is to estimate the boundary at a location xpj using
a spatial estimation technique. It uses spatial correlations among observations
at a given time by sensors within a small neighborhood of xpj . Cluster heads
perform aggregation operations on sensor observations to estimate a number of
boundary points. Partial information of the boundary from cluster heads is then
sent to the base station where the final estimates are computed. A confidence
band is estimated from multiple boundary points around the entire boundary
using an interpolation scheme.

The second component of DBTR is a temporal estimation technique which
ensures that the estimates are updated whenever due to changes in the boundary
the confidence band does not cover the boundary with a desired accuracy. DBTR
uses a Kalman Filter based technique to predict future boundary locations based
on its model of the boundary dynamics. Once the boundary has moved by more
than a certain threshold, DBTR invokes the spatial estimation technique to
get an accurate estimate of the boundary. As a result, boundary estimates are
updated based on only the local dynamics of the boundary and partial estimates
track changes in sections of the boundary. Both of these lead to reduction in
communication overhead for accurate boundary estimation.

3.1 Regression-Based Spatial Estimation Technique

This section briefly sketches the non-parametric regression method used by the
spatial estimation technique as discussed in [9].

For each sensor observation (xi, yi), the independent variable xi and the de-
pendent variable yi can be modeled as a non-parametric regression relation. For
n observations at the n sensors, the regression relation is stated as,

yi = d(xi) + αi, i = 1, . . . , n (2)

where d is the regression relation between xi and yi, and αi the observation
error. If the error distribution has mean zero, then the expected value of the
distance to the boundary at xi is d(xi). We assume the error distribution to
be normal N(0, σ2), where σ2 is the observation error variance. Note that in
reality, observations from range sensors may not satisfy this assumption but in
experiments with real sensors [9], we verify that the mathematical technique is
applicable even when the assumption does not hold.

For a point on the boundary estimated at location xpj , d(xpj) is the actual
distance of boundary from xpj and d̂(xpj) is the estimated distance. Assuming
a smooth boundary, it is possible to use a local average of the observations near
xpj to construct an estimate for d(xpj). The kernel smoothing [10] technique that
uses observations in the neighborhood of xpj is applied to estimate d̂(xpj). Thus
d̂(xpj) is,

d̂(xpj) =
1
n

n∑

i=1

Wi(xpj)yi (3)

where {Wi(xpj)}n
i=1 denotes a sequence of weights defined using a kernel func-

tion. The weight for xpj is non-zero in the neighborhood from (xpj − h) to
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(xpj + h), referred to as the h-neighborhood of xpj . Using the observations in
the h-neighborhood of xpj , the variance of the y-component of the observations
is also estimated. This variance σ̂2(xpj) captures the spatial variations of the
boundary and is an estimate of the actual observation error variance σ2.

σ̂2(xpj) =

(
1
n

n∑

i=1

Wi(xpj)y2
i

)
− d̂2(xpj) (4)

A crucial step in estimating the boundary is choosing the parameter h that
controls how much of the neighborhood around xpj has to be considered. An
iterative plug-in approach (refer [11] for details) is used to estimate the opti-
mal value of h that minimizes the error in estimation. Evaluation of optimal
h involves estimation of the boundary for all x values of the sensors. This is
the reason we recommend a centralized approach for evaluating the optimal h
initially.

Since both expressions, Equation (3) and Equation (4), are summations, they
are amenable to distributed evaluation. All observations contributing to the esti-
mation of d̂(xpj) and σ̂2(xpj) may not be available at a single cluster head. Each
cluster head computes partial expressions for d̂(xpj) and σ̂2(xpj), referred to as
partial aggregates. Whenever possible, partial aggregates from multiple cluster
heads for a specific xpj are combined at intermediate nodes and forwarded to the
base station. The base station collects all partial aggregates and estimates d̂(xpj)
and σ̂2(xpj) for all estimation points xpj . Using the above technique, k distinct
points xpj , j = 1, . . . , k along a boundary are estimated. These k points on the
boundary are used as input to an interpolation scheme that estimates the con-
fidence band at δ distance around the entire boundary. DBTR uses smoothing
spline [10] interpolation to estimate the boundary.

3.2 Model-Based Temporal Estimation Technique

The temporal estimation technique uses a model for the dynamics built using
a time sequence of observations of the distances to the boundary. Typically the
model is dependent on the exact application scenario. But the distinction in
our approach is that here the sensors are not performing in situ measurements.
Specifically, we are interested in modeling the velocity of the boundary which may
be affected by factors such as the prevailing weather conditions, surrounding
topography etc. If the combined effect of these factors can be modeled as a
Gaussian error, and the actual physical process has a linear dynamics, then
traditional tracking models like Kalman Filter can be used. A sensor maintains
a state representation of distances to the boundary that is updated at each time
step. Assuming that the boundary at a discrete point changes in a linear fashion
with time, we use Kalman Filters to predict future boundary locations.

Process state s(xpj , ti) consists of the actual distance d(xpj , ti) to the bound-
ary at xpj and the velocity of the boundary along the y axis at time instant ti.

s(xpj , ti) =
[
d(xpj , ti)
ḋ(xpj , ti)

]
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ḋ(xpj , ti) denotes the change in d(xpj , ti) with respect to time. Irrespective of
the actual movement of the boundary, we are interested in knowing only the
change in d(xpj , ti), i.e., the y component of the velocity of the boundary at xpj .
The principle of remote or range sensing helps in reducing the dimensionality of
the problem because a range sensor can always find the distance to a moving
boundary irrespective of its own location. For simplicity, here we assume that
the boundary moves with a constant mean velocity having a mean zero random
acceleration. Then the state space equation becomes:

s(xpj , ti) = F × s(xpj , ti−1) + G × αp(xpj , ti−1) (5)

where αp(xpj , ti−1) is a Gaussian error with distribution N [0, σ2
p]. The matrix F

relates the state at time ti to the state at time ti−1. The term G× αp(xpj , ti−1)
represents the noise component in the process model and matrices F and G can
be obtained using simple laws of motion:

F =
[
1 ts
0 1

]
and G =

[
t2s
2
ts

]

where ts is the duration between time instant ti and ti−1. In this case, it can
be same as the sampling period of sensors. Assuming that the model accurately
represents the dynamics of the boundary, σ2

p can be taken as a small quantity as
compared to the observation error variance σ2. If α(xpj , ti) is the error in sensor
observations as given in Equation (2), the observation y(ti) at xpj is linearly
related to the state using the observation matrix as:

y(ti) = H × s(xpj , ti) + α(xpj , ti) (6)

where H = [1 0] is the observation matrix. This relationship is helpful to de-
rive the distance d(xpj , ti) information from the current state. The observation
error covariance for the Kalman Filter at estimation point xpj is obtained from
observation error variance σ2(xpj) estimated in Equation (4).

While the boundary can be estimated at any k points using the spatial esti-
mation technique irrespective of whether sensors are located at those points, the
temporal estimation has to be associated with a specific sensor and its obser-
vations. Assuming that the boundary has similar temporal variation within the
h-neighborhood of a location, any sensor having observations within h distance
from xpj can perform the temporal estimation for xpj . Moreover, by applying
distinct Kalman Filter-based estimates for each of the k points, it is possible to
track a boundary that has different sections moving at different velocities.

3.3 DBTR – Combining Spatial and Temporal Estimations

The proposed algorithm combines both spatial estimation as well as Kalman
Filter-based temporal estimation and is illustrated in Figure 3 for a specific
estimation point xpj (xpj is omitted from all terms for clarity). In this block
diagram, two stages of Kalman Filter, state prediction and state update, are
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Fig. 3. Details of combining the Spatial and Temporal Estimation Techniques

shown separately. The prediction stage is used to predict the s−(ti) from the
state s+(ti−1) at previous time instant ti−1. The output from the prediction
stage and the new sensor observation are used to obtain the updated output
s+(ti). Both the prediction and update stages are needed for maintaining the
current distance information. From the state information, the distance to the
boundary as predicted by the Kalman Filter is obtained using H×s+(ti). This is
compared with d̂(tLast), the last updated estimate obtained using the regression
technique. Then, the difference Δd is estimated as:

Δd = H × s+(ti) − d̂(tLast) (7)

If the difference is more than c × δ (where c is a constant and δ is the user
specified width of the confidence band), it implies the boundary at xpj has
moved a distance larger than c × δ. Then the boundary is updated with the
latest observations from all sensors in the h-neighborhood of xpj . The estimate
from the spatial technique is taken as the latest best estimate of the distance
to the boundary at xpj and is used by future temporal estimations for more
accurate prediction. In Figure 3, d̂(ti), the output from spatial estimation is used
to update the distance information in state s+(ti). The intelligent combination of
spatial and temporal estimation techniques not only minimizes wasted boundary
updates but also avoids updates to sections of the boundary that have not moved
significantly.

4 Minimizing Number of Estimation Points

Our technique uses an interpolation scheme over a finite set of boundary points
to estimate a confidence band around the boundary. The interpolation error of
the confidence band reduces as the number of estimation points is increased.
However, this will lead to an increased communication overhead. Our goal is
two fold: (i) to estimate boundary at a minimal number of points, and (ii) to
ensure that the interpolated band as mentioned in Section 2 covers the actual
boundary with high confidence. We use k to denote the number of estimation
points.
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Fig. 4. Confidence band with different number of estimation points

Since the variance σ̂2(x) captures the local spatial changes within the
h-neighborhood, a higher value of the variance indicates a larger spatial vari-
ation of the boundary. We hypothesize that the sections of the boundary with
higher variance contribute primarily to a higher LOC. Thus adding more esti-
mation points in the high variance sections of the boundary is likely to reduce
the LOC.

Our algorithm initially estimates the boundary at a small number of equidis-
tant points. We can set k = �Xrange/2h� such that the boundary is estimated at
every 2h interval, where Xrange is the range of x values over which the bound-
ary is being observed. Next, the sections of the boundary are sorted according
to decreasing order of spatial variation and estimation points are incrementally
added in that order. As more boundary points are estimated, the interpolation
error reduces and LOC, the probability of the band not covering the boundary, is
lower. This iterative process converges when additional boundary points do not
lead to a further reduction in LOC. In absence of knowledge of the actual LOC,
the heuristic uses another metric, prediction error, to decide the termination
criterion for additional estimation points.

The prediction error at a specific location is the absolute difference between
the observation and the estimated boundary at that location. When estimated
over a set of n sensors, the probability of the prediction error being greater than δ
can be used as a representative of LOC. This probability is evaluated as follows:

predition error(δ) =
1
n

n∑

i=1

I(|d̂(xi) − yi| > δ) (8)

Figure 4 illustrates the main aspect of our algorithm. It shows that with 5
points some sections of the boundary is outside the confidence band but with
two additional points in sections of high variance, portions of the boundary
outside the band reduces. We experimentally find that the trend of prediction
error is similar to the LOC of boundaries (see Section 5.4 for details).

5 Experimental Evaluation of DBTR

In this section, we evaluate the performance of DBTR and its sensitivity to
various parameters. The goals of our experimental evaluation are as follows:
(i) to verify the effectiveness of DBTR as a combination of both spatial and
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Fig. 5. Boundaries used to evaluate DBTR

temporal estimation techniques, (ii) to test its sensitivity to parameters such
as specified width of band, number of estimation points and dynamics of the
boundary, and (iii) to verify the effect of the adaptive update policy of DBTR
on communication overheads.

5.1 Experimental Setup

Extensive simulation-based experiments are used to evaluate DBTR. DBTR al-
gorithm is implemented in a MATLAB-based simulator. In addition, the spatial
estimation technique is verified in a TOSSIM [12] based simulator and the re-
sults from these two simulators are similar. Sensors are randomly deployed in
a two-dimensional field with dimension 100 units × 50 units. The communica-
tion range of sensors is 10–12 units. The maximum number of hops from the
base station to sensors in a multi-hop network varies between 7–12 for different
networks. We assume each sensor message contains a single observation and a
single partial aggregate (explained in Section 3.1). Transmission of messages is
assumed to be error-free. The error in sensor observations is assumed to be a
Gaussian distribution N(0, σ2), where σ2 is the error variance.

The performance of DBTR is evaluated with several boundaries generated
using mathematical functions and real data traces from sensors. The boundaries
in Figure 5 having different spatial variations are used as a representative set
to evaluate DBTR. For example, the boundaries in Figure 5(a) and 5(b) are
smooth while that in 5(c) is non-smooth. In addition, we also use a boundary
(Figure 5(d)) obtained based on a real oil-slick2. The boundary Smooth 1 is used
as the default boundary in all experiments unless specified otherwise. Dynamic
boundaries are generated using a constant mean velocity model. Assuming a
continuous boundary consists of several discrete points, at every time instant,
each of the boundary points is displaced by a finite distance based on the model.
We consider two scenarios: (i) all points on the boundary move with the same
velocity and (ii) different points move with different velocities.

5.2 Evaluation Metrics

DBTR is evaluated using two metrics: (i) communication overhead and (ii) ac-
curacy of estimated boundary. The overall communication overhead is the cu-
mulative number of transmissions required for the spatial estimation technique
2 Data for Lake Maracaibo http://modis.marine.usf.edu/index.html
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Fig. 6. Effect of the width of band and the number of estimation points on LOC

and the temporal estimation technique. This reflects the energy expenditure of
our solution. Accuracy of the estimated boundary is measured in terms of LOC
that is defined in Section 2. LOC reported is the mean value over at least 100
sets of observations.

5.3 Comparison of Boundary Estimation Techniques

In this section, we compare the performance of DBTR with both temporal and
spatial estimation techniques. In the temporal only and spatial only scenarios,
the confidence intervals around the boundary are updated at time instants when
the boundary is expected to move by greater than 0.5 × δ, as predicted by the
temporal estimation. Figure 6(a) plots the LOC with varying δ, the width of
the confidence band (LOC for this experiment is the mean over 20 estimated
boundary points). Total duration of the experiment is 100 seconds. The velocity
of boundary is 1 unit/sec and sampling interval for the sensors is 0.5 sec. We
observe that for δ = 1 − 1.2, DBTR performs better than both Temporal and
Spatial techniques by a factor 2.8−2.5. For δ < 1.2, DBTR as well as spatial es-
timation provide better performance as compared to temporal estimation. This
is because the error in sensor observations is reduced due to aggregation from
multiple sensors. For δ > 1.2, the temporal technique provides better perfor-
mance than the spatial technique. This is due to the fact that the accuracy of
the temporal estimation improves if the boundary changes by 0.5 × δ less fre-
quently. However, we observe that DBTR performs best for all values of δ. This
is attributed to the feedback from the spatial estimation to the temporal estima-
tion, due to which DBTR predicts the future boundary changes most accurately.
This experiment demonstrates the effectiveness of combining the temporal and
spatial estimation techniques in DBTR.

5.4 Impact of Estimation Points on Prediction Error and LOC

This experiment verifies correctness of the heuristic-based algorithm used to select
k, the number of estimation points. The goal is to ensure that the prediction error
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can accurately capture the trend in LOC. Figure 6(b) plots the prediction error
function and the LOC for boundaries Smooth 1 and Smooth 2. We observe that
with increase in k, the prediction error function (see Section 4) and LOC both re-
duce and finally stabilize for k > 14. Initially LOC decreases much more sharply
(85%) as compared to prediction error (29%), but for k > 14, both the prediction
error and LOC reduces by a small amount (0.5 − 0.2). The value of k for which
prediction error stabilizes can be used as a good choice for the number of estima-
tion points. Since prediction error stabilizes earlier, a few more boundary points
can be further added in order to achieve the minimized LOC. This experiment
shows that the prediction error function represents LOC with high fidelity.

5.5 Communication Overhead of DBTR

The communication overhead of DBTR has two components: the number of
messages required by the spatial estimation technique and the number of updates
as indicated by the temporal estimation technique.

Overhead due to Spatial Estimation Technique. The result of this exper-
iment is included from [9] to show the communication overhead of the spatial
estimation component of DBTR. This overhead is compared with a solution
where all the observations are sent to a central server for the estimation of the
confidence band. Figure 7(a) plots the total number of messages for different sizes
of the network. For 20 estimation points, the communication overhead for DBTR
is lower than that of the centralized solution by a factor 3.3 − 2.6. The commu-
nication overhead for the spatial estimation depends on the h-neighborhood and
with increase in network size, the value of h reduces. Thus, the distributed solu-
tion of DBTR is easily scalable to larger networks. However, the communication
overhead of DBTR increases in proportion with the number of estimation points
which justifies reducing the number of estimation points to minimize communi-
cation overheads.

Overhead Due to Boundary Dynamics. In this experiment, we observe
how the communication overhead of DBTR varies with different velocities of the
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boundary. The communication overhead depends on how frequently the estima-
tion is updated. The number of updates depend mainly on two factors: (i) the
width of the estimated band and (ii) velocity of the boundary along the y axis.
Figure 7(b) depicts the number of updates required for two different velocities
in an interval of 100 seconds as δ is varied. All the boundary points are assumed
to be changing at the same velocity. The boundary is updated only when it is
expected to have changed by more than 0.5× δ. We observe that the number of
updates reduce by a factor of half as δ doubles, allowing for the boundary to be
updated less frequently. As expected, a faster moving boundary requires more
updates and as velocity changes from 0.5 to 1 unit/s, the number of updates
increase by a factor more than 1.35. The experiment is also conducted with dif-
ferent portions of the boundary changing at different velocities and it shows that
DBTR is able to capture boundary dynamics for adaptive updates.

5.6 Effect of Update Policies on Accuracy
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The goal of this experiment is to compare
the adaptive estimation technique of DBTR
with a technique that periodically estimates
the boundary. In such a scheme, the esti-
mation based on regression is performed pe-
riodically rather than being based on the
continuously predicted changes in the bound-
ary (DBTR). The experiment is conducted for
three scenarios– boundaries changing at veloc-
ities of 0.8, 1.0, 1.2 units/s. Figure 8(b) plots
LOC versus periodicity of boundary updates
for schemes with different periods. The period
of updates is stated in terms of the number of
sensor sampling intervals. We observe that for
a certain velocity, there is an optimal period

that should be used to obtain a LOC of 1% or less. For example, when velocity=
1.0 unit/s, LOC is 1.06% for a period of 4 sampling intervals. For each of the
boundaries, the performance of DBTR is also shown. The period of DBTR is
obtained by dividing the total duration with the number of times DBTR up-
dates the boundary. The LOC is different in all three scenarios. For velocity
of 1.0 unit/s, on an average DBTR updates the boundary at every 3.42 sam-
pling intervals and achieves LOC of 0.86%. We note that DBTR may require
lower communication overhead as it uses aperiodic updates without sacrificing
accuracy obtained in a periodic scheme. Thus, the performance of DBTR is
comparable with a periodic update scheme while not requiring prior knowledge
about the dynamics of the boundary.

5.7 Summary of Results

Experimental evaluation of DBTR reveals the following important results: (i)
DBTR consistently estimates boundaries more accurately than the Spatial-only
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and the Temporal-only estimation techniques. (ii) The distributed in-network es-
timation strategy significantly reduces the communication overhead as compared
to the centralized solution by a factor about 2.6 to 3.3. (iii) The accuracy and
communication overhead of DBTR are similar to the optimal periodic update
scheme. (iv) The heuristic for simultaneously minimizing LOC and the number
estimation points achieves a LOC of less than 2% for smooth boundaries.

Additional results from a more comprehensive experimental evaluation re-
ported in [8] are: (i) A good choice of threshold for amount of change in the
boundary (in Figure 3) is 0.5 × δ. It implies that for low LOC, the boundary
should be updated before the temporal estimation technique indicates that the
boundary is changed by 0.5×δ. (ii) While non-smooth boundaries require higher
number of estimation points, the efficacy of DBTR is demonstrated for smooth
as well as non-smooth boundaries. (iii) Initial evaluation suggests that DBTR is
applicable for non-zero sensing angles provided sensors detect an adequate set
of points on the boundary.

6 Related Work

DBTR uses the spatial-temporal correlations among sensor readings to estimate
the boundary efficiently. An alternative to non-parametric regression based tech-
nique is to use parametric regression as in [13] where sensor network data is
modeled in terms of basis functions. The non-parametric approach reduces the
effect of observation errors by aggregation. In the parametric case, the observa-
tions are taken to be the actual values of the sensed quantity and the coefficients
of basis functions are computed to obtain an estimation with minimized mean
square error (MSE). The system BBQ [14] exploits correlation among sensor at-
tributes and a probabilistic model to answer queries. While our approach works
for a boundary of arbitrary shape, the multivariate gaussian distribution used
by BBQ may not be applicable.

An alternative to the model-based approach using Kalman Filter is simple
state space models [15]. If the individual boundary points follow non-linear dy-
namics or have non-Gaussian errors more advanced techniques like particle fil-
ter [16] can be used. Switching Kalman Filters can be used to monitor boundaries
with non-stationary dynamics (e.g., a storm) as discussed in [17].

There is a large amount of work dealing with contour extraction [18] using
sensor networks. While a boundary detection technique is useful in detecting the
presence of a phenomenon (either plume or fire), a contour extraction technique
can provide more detailed information about the phenomenon. DBTR is most
similar to the boundary estimation technique proposed by Nowak et al. [2]. The
main difference is that DBTR tracks a dynamic boundary without incurring sig-
nificant communication overhead, but there is no easy way for extending their
technique to track dynamics apart from periodically recomputing the boundary.
While DBTR provides a non-parametric estimation of the boundary, their tech-
nique provides a staircase-like approximation of the boundary. DBTR’s adaptive
selection of estimation points is also similar to the adaptive sampling method [19]
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which consists of two phases- a preview phase of collecting observations followed
by a refinement phase in regions containing the boundary. DBTR attempts to
minimize the locations for estimation points whereas their approach achieves a
minimax bound on MSE.

DBTR makes use of sensors with range/remote capabilities for detecting a
moving boundary. Another application using remote sensing is CASA [5], where
a network of radars is used for meteorological monitoring to detect tornadoes.

7 Conclusion

We have developed a technique for dynamic boundary estimation in sensor net-
works where observations from range sensors are aggregated and a confidence
band around the true boundary is obtained from estimates at a few selected
locations. In addition, the temporal correlation among observations at certain
points is utilized to develop a Kalman Filter based technique for estimating
the changes in the boundary. This strategy updates the estimates before the
boundary is expected to move out of the confidence band. Thus, our solution
provides confidence band with high accuracy around the actual boundary at all
times with low communication overheads that a suitable periodic scheme cannot
achieve without prior knowledge about the dynamics of the boundary.

As part of future work, we propose to study the parametric regression tech-
nique for estimating boundaries in sensor networks. We propose to explore the
impact of non-zero sensing angles on the accuracy of estimation. We also plan to
extend our strategy to include in-situ measurements for detecting a boundary.
Another way to extend our work is to consider more complex models for the
dynamics of the boundary.
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