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Abstract— Modern web-based application infrastruc-
tures are based on clustered, multi-tiered architectures,
where request distribution occurs in two sequential
stages: over a cluster of web servers, and over a cluster of
application servers. Much work has focused on strategies
for distributing requests across a web server cluster
in order to improve the overall throughput across the
cluster. The strategies applied at the application layer
are the same as those at the web server layer, because it
is assumed that they transfer directly.

In this paper, we argue that the problem of distributing
requests across an application server cluster is fundamen-
tally different from the web server request distribution
problem, due to core differences in request processing in
web and application servers.

We devise an approach for distributing requests across
a cluster of application servers such that overall system
throughput is enhanced, and load across the application
servers is balanced. We compare the performance of our
approach with commercially used techniques, as well as
techniques from the recent literature. We perform this
comparison experimentally in terms of throughput and
response time performance, as well as resource utilization.
Our experimental results show a significant improvement
of up to nearly 80% in both throughput and response
time, with a very low additional cost in terms of CPU
overheads, 0.7% to 1.5%, on the web server, and virtually
no impact on CPU overheads on the application server. A
case study involving a large financial institution validates
the experimental results, showing significant response
time improvements.
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Performance evaluation, [H-3-5-e] Web-based services, [J-
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Fig. 1. Web Application Architecture

I. INTRODUCTION

Request distribution in clustered environments is an
important problem that has been studied in a number
of different contexts. In this paper, we are interested in
developing effective techniques for distributing requests
to a cluster of application runtimes, such as the Java
Virtual Machine (JVM) for Java EE applications and the
Common Language Runtime (CLR) for Microsoft .NET
applications. Here, we are specifically interested in the
common scenario of business applications running on
commercially-available application server software, as
opposed to special-purpose cluster architectures such as
those described in [1].

Modern application infrastructures are based on clus-
tered, multi-tiered architectures. Figure 1 shows a typ-
ical architecture for a web-based application, one rec-
ommended as a “best possible” architecture [2].

In Figure 1, there are two significant request dis-
tribution points. First, the web switch must distribute
incoming requests across a cluster of web servers for
HTTP processing. Subsequently, these requests must
be distributed across the application server cluster for
the execution of application logic. To distinguish be-
tween these two steps, we will refer to them as the
Web Server Request Distribution (WSRD) problem and
the Application Server Request Distribution (ASRD)
problem, respectively. In this paper, we develop an
effective ASRD technique for session-intensive applica-
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tions. ASRD and WSRD differ greatly in the dynamics
of work involved in serving a request (as described
in [3]); serving application requests requires much more
dynamic decision making than that required for web
server requests.

A. Related Work

Extensive literature dealing with the WSRD problem
exists and significant commercial value has been re-
alized from this work. WSRD approaches span both
content-blind policies such as random, round-robin
(RR), as well as content-aware policies such as IP
Address Routing [4], Least Loaded (based on a metric
called server load index) [4], Least Connections [5],
[6], Client Affinity [7], [8], and Session Affinity [4].
Commercial Products such as Cisco’s LocalDirector [5]
and F5 Network’s BIG/IP [6] are based on some of
these approaches. Nearly all of the above-mentioned
approaches are variants of the weighted RR (WRR)
approach [8].

In some commercial products [9], [10], content-
based routing schemes are supported, which route re-
quests based on information contained in the HTTP
header. These techniques do not consider the impacts
of statefulness in applications, and are thus orthogonal
to our work. Typically, content-based routing is used
to segment requests across geographically dispersed
environments, multiple application domains, etc.

The only strategies, to the best of our knowledge,
that are not WRR variants are the Locality-Aware
Request Distribution (LARD) algorithm [11] and the
Client/Session Affinity schemes, all of which are based
on some form of locality with respect to the servers.
The LARD strategy attempts to route tasks to exploit
the locality among the working sets of received requests
(e.g., cache sets on different web servers), while the
affinity based schemes distribute requests to exploit the
locality of session or state data. The authors of [12]
consider the extension of the LARD technique to the
application server’s EJB layer to take advantage of EJB
data caching where possible.

The bulk of ASRD in practice is based on a combina-
tion of RR and Session Affinity routing schemes drawn
directly from WSRD techniques (e.g., [13], [14], [15]).
More specifically, the initial requests of sessions (e.g.,
the login request at an airline web site) are distributed in
a RR fashion, while all subsequent requests are handled
through Session Affinity based schemes, which route all
requests in a particular session to the same application
server. A user’s session state, which stores information
relevant to the interaction between the end user and
the web site (e.g., user profiles or a shopping cart), is

usually stored in the process memory of the application
server that served the initial request in the session, and
remains there while the session is active – only the
application server instance where the session resides
can service requests for that session.

There is scant treatment of ASRD in the research
literature. Approaching load balancing as a variant
of the dynamic scheduling problem, techniques from
the scheduling field (e.g., [16], [17]) may be applica-
ble here. Some work in the literature [18] takes this
approach, proposing the application of optimization
techniques to the problem of providing different classes
of service (e.g., standard and premium service) in the
context of web services.

While we can think of the ASRD problem as a
variant of the dynamic scheduling problem at a high
level (our technique will use a variant of the shortest-
queue-first approach), a straightforward application is
difficult. Virtually all dynamic scheduling techniques
[19] presuppose some knowledge of either the task
(e.g., duration, weight) or the resource (queue sizes,
service times) or both. This assumption really does
not work in our case, because both the tasks and the
resources are highly dynamic. Moreover, the scalability
requirements of an ASRD are such that any technique
usable in practice must have only negligible overheads.
The most direct work comparable to ours, that we were
able to discover is [3], in which the authors show that
system resource usage is not a good indicator of load
on an application. The authors suggest that a better
basis for determining load might be the number of
active requests on an application, and propose a load
balancing technique for application requests based on a
“least-active-requests” routing policy. We refer to this
as the HJ technique throughout the remainder of the
paper. While the authors make a strong point in showing
that system resource usage is not a strong basis for an
ASRD technique, their load balancing technique has
a significant limitation in that it is not applicable to
stateful applications. Stateful session-based interactive
applications form a large class of applications, e.g., a
login-based web application is interactive, and therefore
stateful. Our approach considers the stateful case. To
summarize, ASRD techniques in practice virtually al-
ways utilize WSRD policies, and there doesn’t appear
to be a good candidate for use in ASRD scenarios in
the research literature.

B. Contributions
Contributions of this paper include:
1) Identifying the need for new ASRD techniques, as

opposed to applying existing WSRD techniques
in the application layer.
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2) Proposing an algorithm and architecture design
for assigning load to clustered application servers,
where requests are evenly distributed while still
routing requests based on session affinity when
possible.

3) Demonstrating, both experimentally using the
standard TPC-W benchmark [20] as well as
through a real-life case study scenario, the effi-
cacy of our proposed technique.

C. Issues in Applying WSRD strategies to the Applica-
tion Layer

It is important to understand why WSRD strate-
gies at the ASRD layer are sub-optimal, and in
many cases ineffective. The key reason for this is that
web servers and application servers are fundamentally
different entities, and therefore the same notions of
what constitutes a “loaded” server do not apply, as
demonstrated in [3]. We highlight three key differences
here to illustrate the reasons for this.

First, the biggest difference is in the determinism of
the work performed. Web servers do very well defined
and quantifiable work, e.g., processing HTTP headers
and serving up static content. Application servers, on
the other hand, run multi-layer ad-hoc programs which
might be dependent on data obtained from outside the
application layer infrastructure. Thus, serving a request
to an application server is significantly more complex
than at the web server layer, evidenced by the fact that
the application server cluster saturates well before the
web server cluster in most dynamic applications.

The second issue is the degree to which observing
the system yields insights into its load level. Sys-
tem observation is a key component of most effective
WSRD policies, such as WRR policies. Consider, for
instance, the fact that a web server that is running
at 30% CPU would be considered “lightly loaded”
(compared to one running, say at 50%) by most WSRD
policies. While such a judgment is quite accurate in the
case of a web server, it often breaks down when applied
to an application server. For instance, an application
server running at 30% CPU might be experiencing low
CPU utilization simply because a bulk of its active
threads are “blocked” (e.g., waiting for database query
results). In contrast, another application server in the
same cluster running at 50% CPU may actually be less
loaded, as it might possess a greater number of free
threads. Note that while we used CPU utilization as the
discussion metric in the above example, our arguments
apply to any WSRD metric.

Third, since it is difficult, if not impossible, to
determine the work required for a request based on
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Fig. 2. Load Distribution for App Server A1
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Fig. 3. Load Distribution for App Server A2

the characteristics of the request or system resource
utilization, most WSRD techniques that rely on such
information simply will not work when applied to
ASRD. For this reason, most ASRD techniques use
simple RR to distribute requests representing new ses-
sions. Thereafter, requests for existing sessions are
distributed to the application server instance where the
session’s data resides. Clearly, Session Affinity schemes
provide certain distinct advantages (such as state lo-
cality) identified previously. However, these policies
often result in severe load imbalances across the
application cluster, due primarily to the phenomenon
of the convergence of long-running or high-resource-
demanding jobs in the same servers.

The problem of load imbalance due to session affinity
is well known among practitioners, and has received
wide treatment in the literature (e.g., [21], [22]). Con-
sider an application cluster having two application
servers, A1 and A2, configured identically. Consider a
sequence of sessions arriving at the cluster, such that
sessions are of two types: a long session S, which
lasts 3 minutes; or a short session s, which lasts 1
minute. Suppose that the following sequence of 10
sessions arrive to the cluster and are distributed to A1

and A2 according to the session affinity-RR policy:
s1, s2, S3, s4, s5, S6, s7, S8, S9, s10, where the interar-
rival time between new sessions is one minute. This
policy results in the load distributions for A1 and A2

shown in Figures 2 and 3, respectively.
Both figures show load, in terms of the number of
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active sessions assigned, vs. time (in minutes). During
the time interval spanning (4,5), A1 reaches maximum
capacity (2 active sessions), while A2 remains idle. A
similar situation occurs during the (7,8) time interval.
As this simple example illustrates, a combined RR and
Client/Session Affinity strategy can easily create load
imbalances across the cluster.

Load imbalance is not the only issue inherent in a
session affinity scheme. There is also the issue of the the
lack of session failover. This problem occurs because a
session object resides on only one application server.
When an application server fails, all of its session
objects are lost, unless a session failover scheme is
in place. The two main session failover schemes used
are session replication, in which session objects are
replicated at one or more application servers in the
cluster, and centralized session persistence, in which
session objects are stored in a centralized repository
(e.g., a DBMS).

Effectively, these session failover mechanisms “vir-
tualize” a session’s data, making it available to any
application server instance in the cluster, thus enabling
any server in the cluster to service any incoming
request. However, there is a cost associated with moving
a session object from one server process to another,
so it is beneficial to serve a request on the server
instance where the session’s data already resides. The
ReDAL approach attempts to optimize this tradeoff
by servicing a request on the server instance where
the session data resides unless a significant load im-
balance situation is detected, in which case workload
may be transferred off a highly-loaded server to a
server experiencing lower load. We show the benefits
of our approach experimentally in this paper.

The remainder of this paper is organized as follows.
In Section II, we present our ASRD approach. We
then evaluate the performance of our proposed approach
and compare it with that of existing ASRD policies
experimentally, in Section III. Section IV describes a
real-life test of our proposed approach. Finally, we
conclude in Section V.

II. THE ReDAL APPROACH

The ReDAL approach attempts to minimized load
imbalances across application servers for stateful
session-based applications. To accomplish this, ReDAL
augments the traditional session-affinity based schemes
with three specific techniques:

1) We define a non-intrusive load estimation mea-
sure that senses the relative load of an application
server without requiring instrumentation on the
application server hardware or software.

2) Based on these load measurements, we propose
a request distribution scheme that dispatches re-
quests to the affined servers when possible, and
to less-loaded application servers when there is a
significant load imbalance.

3) Further, in order to minimize the movement of
session data between application servers, we in-
troduce a capacity reservation scheme that at-
tempts to estimate the near-future expected load
on an application server based on the sessions re-
siding on the server, and to reserve future capacity
sufficient to service those sessions’ requests.

A. Intuition

In the Request Distribution for the Application Layer
(ReDAL) approach, we characterize an application
server as being in one of two states: (a) lightly-loaded,
or (b) heavily loaded. We explain these characteriza-
tions using Figure 4 (adapted from [23]), the upper
portion of which shows a typical throughput curve for
an application server as load is increased. Section A
represents a lightly loaded application server, for which
throughput increases almost linearly with the number
of requests. This behavior is due to the fact that there
is very little congestion within the application server
system resource queues at such light loads. Section B
represents a heavily loaded application server. Here, the
response time increases proportionally to the user load
due to increased queue lengths in the application server.
Thus, as soon as this peak throughput point or satura-
tion point is reached, application server performance
degrades. We refer to the load level corresponding to
this throughput point as the peak load.

In order to determine the peak load at runtime, we
do not need to find the exact peak throughput point,
we need only determine where the rate of change of
throughput with load reaches zero by looking at the
first derivative of the throughput curve – effectively,
the slope of the throughput curve. We can generate a
close approximation of the slope of throughput curve at
runtime by gathering two data values at a configurable
interval: (a) transactions per second, and (b) number
of incoming requests. The lower portion of Figure 4
shows an approximation of the first derivative df(x)

dx of
the throughput curve f(x) shown in the upper part of
Figure 4. Here, df(x)

dx is roughly linear in the early stages
of Section A, where the server is very lightly loaded.
As the server begins to experience congestion in the
later stages of Section A, the slope of f(x) begins to
drop as load approaches its peak. In this stage, df(x)

dx
drops toward 0 as f(x) approaches peak load. When
f(x) reaches peak load, df(x)

dx reaches 0. With this, we
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can designate a server to be lightly loaded if df(x)
dx is

positive, and heavily loaded if df(x)
dx is 0 or negative.

At an implementation level, finding the point at
which df(x)

dx reaches 0 requires a few tweaks to account
for burstiness in traffic, as well as the potential for dif-
ferences in average response times (based on resource
usage) across different types of requests. The following
expression describes a more detailed view of throughput
on a server, to help account for these issues: df(x)

dx ≈
∑
∀(p)

dfp(x)
dxp

=
∑

∀(p)
∑m−1

i=1
th

(i+1)
p −thi

p

count
(i+1)
p −counti

p

, where
dfp(x)
dxp

is the slope of the throughput curve for request
type p. In this expression, i represents an interval of
time (where the typical interval duration is on the
order of a second) and the sequence of m intervals
represents the m most recent time intervals from the
current time, thi

p represents throughput achieved for a
specific request type p during an interval i, and countip
represents the number of requests for request type p that
arrived during the interval i. This expression allows us
to normalize for burstiness by considering the slope of
the throughput curve over a sliding window of time,
rather than at distinct points in time. It also enables
us to generate a separate throughput curve slope per
request type, and sum these values to get an estimate
of the overall health of the application server.

With respect to Figure 4, we characterize a given
application server as either dispatchable or non-
dispatchable. A dispatchable application server cor-
responds to a lightly loaded server, while a non-
dispatchable application server corresponds to a heavily
loaded application server. At an implementation level,
this maps to the scenario where dfp(x)

dxp
≤ 0 for most or

all of the throughput curves for the individual request

types p.
The goal of the ReDAL approach, intuitively, is

to keep all application servers in its control under
“acceptable” throughput thresholds, i.e., the goal here
is not to “balance” load per se, but rather to keep the
cluster in a stable (not overloaded) state as long as
possible – balancing load is an ancillary effect. Here,
“balanced” load refers to the distribution of requests
across an application server cluster such that the load
on each application server is approximately equal.

The mechanism the algorithm follows to achieve this
goal is as follows: at decision times, i.e., when a request
needs dispatching, it attempts to send the request to an
affined dispatchable server (i.e., the server where the
immediately prior request in the session was served),
failing which it attempts to send the request to the “least
loaded” dispatchable server, and finally, if the above
two conditions cannot be met, sends it to the “least
loaded” server overall. Clearly, we must first figure out
the load levels of servers, which we can then mapped
to dispatchability.

ReDAL follows a capacity reservation procedure
to judge load levels. At an intuitive level, this ca-
pacity reservation mechanism is based on two key
premises. First, it assumes that the think-time or view-
time between user actions is predictable, based on
past behavior. This is a valid assumption – previous
research (e.g.[24]) on online user behavior shows that
think-time is highly predictable. Second, it assumes
that session affinity, where consecutive requests in a
given user session are handled by the same application
server instance, will improve performance. We show
the validity of this assumption through the experimental
results in Section III.

We now describe the capacity reservation procedure
in detail. Consider an application server Ak processing
y sessions. Assume that it is desired to keep the server
under a throughput of T . Further, it takes h seconds, on
average, between consecutive requests inside a session
(this is referred to as think time) and that the system, at
any given time, considers the state of this application
server G seconds into the future. Given this infor-
mation, for tractability, let us partition the lookahead
period G into C distinct time slices of duration d. Such
partitioning allows us to make judgments effectively
– given that we are attempting to compute a decision
metric (throughput in this case), it is easier and more
reliable to monitor this metric over discrete periods
of time, rather than performing continuous dynamic
monitoring at every instant.

In terms of the capacity reservation procedure, given
y sessions in the current time slice, we assume that
each of these sessions will submit at least one more
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request. Clearly, these requests are expected to arrive in
a time slice h units of time away from the current slice,
in time slice ch. This prompts us to reserve capacity
for the expected request in this application server in
ch. More accurately, when a request r arrives at an
application server Ak at time t, assuming that this
request belongs to a session S, we reserve a unit of
capacity (sufficient to service a request) on Ak for the
time slice containing the time instant t+h. Note that this
reflects our desire to preserve affinity – we assume that
all requests for session S will, ideally, be routed to Ak.
Such rolling reservations provide a basis for judging
expected capacity at an application server. To dispatch a
request, if dispatching the request to the affined server is
not possible, we check the different application servers
in the cluster to see which ones have the property that
the amount of reserved capacity in the current time
slice is under the desired maximum throughput T , and
choose the least loaded server among them.

If all the application servers are found to be in non-
dispatchable state, we have two options: (a) we can send
the request to the application server with the least load
at the current time; or (b) we can delay the dispatching
decision until some server becomes dispatchable – since
the overall system is not fully deterministic, the first
dispatchable server may not be the server that would
have been chosen under option (a).

Thus, we consider two variations on our algorithm
to handle the case where no server is in a dispatchable
state: standard ReDAL, and a modified version of
ReDAL, which we will call ReDAL-W for ReDAL-
Wait. In standard ReDAL, the request is queued at
the application server to which it was dispatched until
the application server has finished processing prior
requests, and has the capacity to service the request.
In ReDAL-W, the new request is not sent immediately
to any particular application server instance, but rather
placed into a queue on the ReDAL request dispatcher.
Requests in this queue are dispatched to an applica-
tion server only when the application server becomes
dispatchable. Delaying the dispatching decision until a
server becomes dispatchable takes advantage of addi-
tional information available in the future, specifically
which application server instance becomes dispatchable
first, allowing us to make a more accurate dispatching
decision than in the standard ReDAL case.

The above discussion, of course, does not account
for every practical issue. In reality, we have to account
for various other issues, e.g., the fact that the current
request may actually be the last request in a session (in
which case the reservation we have made is actually
an overestimation of the capacity required), as well as
the fact that we may have mis-estimated think time for

a particular request. The full ReDAL algorithm takes
care of these practical issues.

B. System Architecture

The architecture of our proposed approach is similar
to that shown in Figure 1. Our system consists of two
main logical modules: (i) the Application Analyzer, and
(ii) the Request Dispatcher. The Application Analyzer
and Request Dispatcher reside together on the web
server as a plug-in (denoted as circles within the web
servers in Figure 1).

The Application Analyzer is responsible for char-
acterizing the behavior of an application server as dis-
patchable or non-dispatchable. This module monitors
each application server’s throughput to generate a close
approximation of the slope of the server’s throughput
curve f(x), and designates a server as dispatchable if
df(x)
dx is positive, and non-dispatchable if df(x)

dx is zero
or negative. (We remind the reader that, as noted earlier
in this section, it is not necessary to generate the exact
throughput curve for an application server – we only
need the slope of the curve.) These values are used
by the Request Dispatcher module, which we describe
next.

The Request Dispatcher is responsible for the run-
time routing of requests to a set of application servers
according to our proposed request routing policy. To
accomplish this, the Request Dispatcher monitors ex-
pected and actual load on each application server. Upon
receiving a request, the Request Dispatcher first deter-
mines whether the request is part of an existing session.
If so, it will direct the request to the application server
owning the session, as long as the affined server is in a
dispatchable state. Otherwise, it will send the request to
the application server having the lowest expected load.
Requests that initiate a new session are also routed to
the least loaded application server. Though not shown in
Figure 1, we assume that there is a session virtualization
mechanism (as described in Section I) in place to enable
session failover.1

C. Technical Details

We consider a set of application servers A =
{A1, A2, . . . , An} configured as a cluster, where a
cluster is a set of application servers configured with
the same code base, and sharing runtime operational
information (e.g., user sessions and EJBs). For the sake
of simplicity, we assume that each application server

1Such mechanisms are provided with virtually every commercial
application server, either as a native feature, or through the use of
a DBMS. Third party solutions are also available.
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Ak (k = 1, . . . , n) is identical, though our approach
also applies in the case of heterogeneous application
servers. A request r is a specific task to be executed
by an application server. We assume that each request
is part of a session, S, where a session is defined as
a sequence of requests from the same user or client.
In other words, S =< r1,S , r2,S , . . . , rs,S >, and rj,S
denotes the jth request in S. A set of web servers W =
{W1,W2, . . . , Wn} dispatch application requests to the
application servers in A. Based on this foundation,
let us define some notions that will be used in our
algorithmic description.

Think time (h) is defined as the time between
two consecutive requests rj,S and rj+1,S , measured in
seconds. Think time is computed as a moving average
of the time between consecutive requests from the same
session arriving at the cluster. The moving average
considers the last g requests arriving at the cluster,
where g represents the window for computing the
moving average and is a configurable parameter.

A Time slice (ci) is defined to be a discrete time
period of duration d (in seconds, where d is greater
than the time required to serve an application request)
over which we record measurements for throughput on
each application server. We consider a finite number
of such time slices, C = {c0, c1, . . . , cC−1}, where c0

represents the current time slice, each ci (i = 0, . . . , C−
1) represents the ith time slice, and C allows sufficient
time slices for reservations h seconds in the future, i.e.,
C = dh

d e. The C time slices are organized in a cycle
of time slices for each application server, as shown in
Figure 5. Each time slice will have an associated set of
two load metrics, actual load and expected load, which
are updated as new requests arrive and existing requests
are served.

The Actual load (ltk) of an application server Ak at
time t is defined as the number of requests arriving at
Ak within a time slice ci, such that t ∈ ci. (We drop
the t superscripts when t is implicit from the context.)
Intuitively, ltk maintains the count of requests that have
been assigned to application server k within the current
time slice ci. For example, if 10 requests have been
assigned to application server k since the start of ci,
then ltk = 10.

The Predicted time slice. Consider a request rj of a
session S arriving at time tp. The predicted time slice
cq of the subsequent request in the session, i.e., rj+1,
is the time slice containing the time instant tp +h such
that the request rj+1 is predicted to arrive at the time
instant tp + h.

The Expected load (ek
i ) of an application server Ak

for the time slice ci is defined as the number of requests
expected to be served by Ak during the time slice ci.

Current Time

Time Slice

Fig. 5. Cycle of Time Slices

t1 t2

r2r1

c0 c1 c2

think time (h)

e1 e2e0

d

time

Fig. 6. Load Metrics

Expected load is determined by accumulating the num-
ber of requests that a given application server should
receive during ci based on the predicted time slices for
future requests for each active session associated with
Ak.

Figure 6 helps to illustrate how expected load is
determined. The figure shows a linear view of a partial
cycle of time slices. Each time slice has an expected
load counter. For instance, consider the cycle for Ak.
Here, ek

0 represents the expected load counter for the
current time slice (c0), ek

1 the expected load counter
for time slice c1, and so on. Suppose that request r1

in a particular session occurred at time t1, as shown in
the figure. From the think time (h), we can determine
the time slice in which request r2 is expected to arrive.
Suppose that, based on the think time, it is determined
that request r2 will arrive at time t2, which occurs in
time slice c2 (refer to Figure 6). Then ek

2 , the expected
load for time slice c2, is incremented by one. This
effectively reserves capacity for this request on Ak

during c2.
Since predicted time slices are not guaranteed to be

correct, we may need to adjust the expected load to ac-
count for incorrect predictions. An incorrectly predicted
request may arrive either (a) in a time slice prior to its
predicted time slice, or (b) in a time slice subsequent to
its predicted time slice. In the former case, we simply
decrement the expected load counter for the predicted
time slice upon observing the arrival of the request
in the current time slice. For example, referring to
Figure 6, suppose that request r2 actually arrives during
the current time slice (c0). In this case, the actual load,
l, for the current time slice is incremented, while the
expected load, ek

2 , for time slice c2 is decremented. This
effectively cancels the reservation for this request on the
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application server during the future time slice.
In the case where a request arrives subsequent to

its predicted time slice, we have no way of knowing
about this error until we reach the end of the predicted
time slice. We can only estimate that this type of error
will occur with a certain frequency. We account for
this type of error in our modified load metric, mk, for
application server Ak, defined as mk = ltk +αek

0 , where
α (0 < α ≤ 1) is an expected load factor which adjusts
for requests that arrive after their predicted time slices.

Setting an optimal value of α requires first estimating
think time, then adjusting alpha for the correctness of
that estimate. There are multiple methods of estimating
think time in the literature, e.g., based on the analysis of
web logs [25] or logs generated with an HTTP packet
sniffer [26]. Such logs provide data on the interarrival
times for user requests, i.e., think time. Finding the
correctness of think time estimates generated from such
logs can be done with standard train and test techniques
drawn from artificial intelligence – using two data
samples, where an estimate of think time is generated
using the first sample, and tested using the second
sample to obtain a value for correctness of the think
time estimate. For applications where the think time
estimate is very accurate, higher values of α can be
used (e.g., α = 0.9); the value of α should be reduced
as the correctness of the think time estimate becomes
less accurate.

We briefly summarize the above-described load met-
rics. For a given application server, we maintain an
expected load counter for each time slice. For the
current time slice, we record the actual load by observ-
ing the number of requests served by the application
server. We then compute the modified load for the
current time slice by summing the actual load and
the adjusted expected load (adjusted to account for
prediction errors).

D. Handling Multiple Web Servers

The preceding discussion focused on the load metrics
maintained by a single web server. In the best-practices
recommended architecture [2], each web server dis-
patches requests to a separate cluster, so there is no
need to share load metrics across web servers. However,
in practice, there are multi-web server environments
(e.g., as depicted in Figure 7) in which multiple web
servers dispatch requests to the same application server
cluster. Since each web server runs its own instance
of the Request Dispatcher, we must ensure that each
Request Dispatcher accesses the same global view of
load metrics. To accomplish this, each Request Dis-
patcher maintains a synchronized copy of the global

Fig. 7. Web Application Architecture with Single App Server
Cluster

view of load metrics. This global view is updated
via a multicast synchronization scheme, in which each
Request Dispatcher periodically multicasts its changes
to all other Request Dispatcher instances. This data
sharing scheme allows all Request Dispatcher instances
to operate from the same global view of load on the
application servers, and yet allows each instance to act
autonomously. Another issue that arises in a multi-web
server environment is computing think time given that
consecutive requests from the same session may be sent
to a different web server. To address this issue, each
web server, upon sending an HTTP response, records
the time that the response is sent in a cookie. Thus,
if a subsequent request from this session is sent to a
different web server, the new web server can retrieve
the time of the last response and use it to compute think
time.

It should be noted that this synchronization scheme
adds very little overhead to the system, both in terms
of network communications overhead and processing
overhead. The communications overhead depends on
the number of application servers, the number of time
slices, and the storage space needed for the load met-
rics. The number of web servers is not included in
this computation because, in a multicast network, the
number of recipients of a message (here, web servers
are the recipients) doesn’t matter – the message is
broadcast once and all recipients receive it. To reduce
the potential for multiple web servers to assign requests
to the same “least-loaded” server, the multicast interval
should be set to ensure that synchronization of load
metrics occurs multiple times per time slice.

For example, consider an application environment
having 50 application servers and a think time (h) of
60 seconds2. If we assume a time slice duration (d)
of 5 seconds, then the number of time slices (C) is
60/5 = 12. The load metric value and the current
throughput value can each be stored as 1-byte integers.

2These values were obtained from a major web retailer.



9

Since there is only a single value for each of the actual
load and current throughput values, synchronizing this
data across the web server plug-ins requires transmitting
2 bytes for each of the 50 application servers, and thus
incurs 100 bytes of synchronization overhead. Trans-
mitting expected load requires sending 12 bytes (1 byte
for each time slice) for each of 50 application servers,
incurring 600 bytes of synchronization overhead. Thus,
the total synchronization overhead incurred for a web
server cluster, summing the overheads for actual load,
current throughput and expected load, is 700 bytes per
transmission per web server. Considering the overhead
for Ethernet protocol (42 bytes), IPV4 (20 bytes) and
UDP (8 bytes) [27], the total network overhead per
web server becomes 770 bytes per transmission. If we
assume a UDP multicast interval of 1 second and 5
web servers (to serve the 50-application-server cluster),
then the maximum overhead possible at any given time
is 30.8 Kbps, which is negligible (less than 0.03%) in
the context of the total capacity of a 100 Mbps network
(and far less on gigabit networks, which are becoming
increasingly prevalent in enterprise application infras-
tructures).

With regard to processing overhead, a given Request
Dispatcher performs n × C operations to apply the
updates it receives from another Request Dispatcher.
Since each Request Dispatcher applies the changes it
receives to its own copy of the global view array, there
is no locking contention.

A second potential issue can arise in the scenario
where multiple web servers dispatch requests to the
same application cluster (as depicted in Figure 7). In
such a scenario, if a very large number of requests
for new sessions arrive within this time interval, all
the new requests will be sent to the same least-loaded
application server. To prevent this from occurring, we
implement a simple estimation scheme in the web
servers, assuming a uniform distribution of this large
number of requests for new sessions across the web
server cluster. Here, each web server in the cluster
maintains a separate estimated actual load value be-
tween updates. For each request requiring a new session
arriving at a given web server instance, the instance
assumes that a similar request has arrived on all other
clusters, and increments actual load for the least-loaded
application server by one, and estimated actual load by
the size of the cluster. This estimate is reset every time
updated load values arrive from the other web servers
in the cluster.

III. EXPERIMENTAL RESULTS

In this section, we show the runtime performance of
the ReDAL algorithm with a set of experimental re-

sults, comparing it to a widely used existing technique,
specifically a commercial implementation of the RR
scheme, and the HJ load balancing scheme. We consider
two cases for the ReDAL algorithm with two different
settings for the α parameter: ReDAL-ALPHA=0.9 and
ReDAL-ALPHA=0.5 to show the impact of varying
α3; here, higher values of α take greater advantage of
ReDAL’s reservation scheme than lower values.

In this, we are interested in five particular questions:
(1) How does throughput performance compare across
the RR, HJ, ReDAL-ALPHA=0.5, ReDAL-ALPHA=0.9
and ReDAL-W-ALPHA=0.9 algorithms?, (2) How does
response time performance compare across the RR, HJ,
ReDAL-ALPHA=0.5, ReDAL-ALPHA=0.9 and ReDAL-
W-ALPHA=0.9 algorithms?, (3) How do each of these
policies impact CPU resource utilization on the web
server?, (4) How does ReDAL impact CPU overheads
on the application server? and (5) How is application
server scaling affected by ReDAL?

A. Experimental Architecture

Our experiments were run using the general architec-
ture described in Figure 1, with the addition of a load
generation tool to simulate user requests, and a session
clustering mechanism. As the topology described in
Figure 1 is described as the “best possible topology”
by IBM WebSphere scalability documentation [2], we
primarily focus on this topology. Later in this section,
we also demonstrate the impact of the topology depicted
in Figure 7 on our ReDAL approach.

The experimental environment consists of a Load-
Runner V6 load generator [28], which simulates client
requests; several Apache HTTP Server V2.0 [29]
web server instances; and several WebLogic Server
V7.1 [30] application server instances. The number of
web server and application server instances we use in
our experiments are described in Table I. We use two
Oracle 10g [9] database servers.

Of the two database servers, one stores application
data. The other serves as a session object repository,
which ensures that all session objects are accessible
from each application server instance. Session access is
implemented as an override of the HttpSession object,
which connects to the database to read and write the
session data, if not already residing in the application
server’s memory space.

We have implemented the ReDAL algorithm as an
Apache Web Server plug-in module, written in C++.

3We have found that α = 1 is effective only in the case where
there is no error in think time prediction in capacity reservation.
This is not a realistic scenario; thus, we consider values of α up to
0.9 in these experiments.
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Parameter Values Base
Value

Number of Web Servers 1, 2, 5 2
Number of Application
Servers

10, 20, 30 20

TABLE I
EXPERIMENTAL PARAMETERS

For the RR algorithm, we use the WebLogic Apache
plug-in module, which implements a round-robin dis-
patching policy. We have implemented HJ as an Apache
plugin, adding support for statefulness (not addressed
in [3]) through calls to an external session object
repository.

The TPC-W [20] benchmark is used in all experi-
ments. The TPC-W application is an online bookstore.
One Oracle database 10g server is used to store the
book and transactional data as described in TPC-W.
The cardinality of the ITEM table in TPC-W in these
experiments is 100,000. Fourteen user activities are
defined in the TPC-W benchmark, of which 6 activities
fall under the “browse” classification, and 8 activities
fall under the “order” classification. Three different
mixes (“Browsing”, “Shopping” and “Ordering”) of
these activities are defined in TPC-W. For our experi-
ments, we used the “Shopping” mix where 80% of the
user actions fall under “browse” and 20% of the user
actions fall under “order.”

The load generator is configured to simulate a vary-
ing number of simultaneous user sessions, with each
session submitting a stream of requests to the web
server. Each request is chosen randomly as defined in
TPC-W benchmark. Think time (h) between requests
is set to a small number of milliseconds to allow us to
minimize the number of threads required on the load
generator, while still simulating significant loads on the
experimental architecture.

Due to the short think times between requests, we
must also use a small window size. For all experiments,
the window size for ReDAL algorithm is set to 100 ms,
i.e., d = 0.1. (In real life, think time is significantly
longer than millisecond timeframes – typically, d is in
the multi-second range.)

Sessions are stored to the external session repository
(in an Oracle 10g database) as well as in the application
server’s memory space. If a request arrives at an ap-
plication server for a locally-stored session object, read
speed is dramatically reduced over the external retrieval
case. If a request updates a session object that resides
on another application server, an invalidation message is
sent to remove the object. This configuration is used in

the HJ and ReDAL cases, where session virtualization
is required (RR does not require session virtualization).

All machines used in the experiments are configured
with a dual-core dual-CPU (1.5 MHz), 2 GB RAM, and
20 GB disk, and run Windows 2003 Server. All commu-
nication takes place on a local area 100 Mbps Ethernet
network. All application server instances are installed
in 10 machines, deployed as follows: when we use 30
application servers, each machine is running 3 appli-
cation server instances, when we use 20 application
servers, each machine is running 2 application server
instances and when we use 10 application servers, each
machine is running 1 application server instance. Each
web server instance is run on a separate machine. Thus
when we are running 5 web server instances we have 5
machines dedicated for web servers. Three machines are
used to simulate user sessions, and one of these three
machines additionally hosts the Load Runner console
which displays consolidated performance data.

In these experiments, we measure three performance
metrics: (1) Throughput refers to the average number
of transactions per second the cluster of application
server provides. (2) Average Response Time (ART)
refers to the average request response time that the
cluster of application servers can provide. Throughput
of the cluster and Average Response Time are measured
from the perspective of the end user. (3) Web Server
CPU Utilization (WSCU) refers to the percentage CPU
utilization on the web server, as measured by operating
system utilities.

B. Throughput Performance

Figure 8 shows how throughput varies for
ReDAL-W-ALPHA=0.9, ReDAL-ALPHA=0.9,
ReDAL-ALPHA=0.5, HJ, and RR as the number
of simultaneous sessions increases from 5 to 100 for
20 application servers and 2 web servers.

For all approaches, throughput shows an inverted “U”
shape, i.e., throughput rises initially, peaks, and then
falls. Throughput rises initially, as the arrival rate of
requests increases, then peaks when a resource on the
server reaches maximum utilization (e.g., CPU reaches
100%). Once a resource reaches its maximum usage,
queuing for that resource begins, causing throughput to
drop.

We now consider each curve relative to one another.
For the ReDAL-ALPHA=0.5 curve, throughput/server
peaks at 80 simultaneous sessions with 192 transactions
per second per server. HJ and RR do not perform as well
as ReDAL-ALPHA=0.5, both peaks at 60 simultaneous
sessions, providing only 130 transactions per second
per server in the RR case, and with 157 transactions
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Fig. 8. Average Throughput Per Application Server

per second in HJ case. The lower throughput in the
RR case results from one or more of the application
servers in the cluster reaching a resource bottleneck
(in this case, CPU utilization reaching 100%) due to
unbalanced load, bringing down the overall through-
put on the cluster. This clearly shows the impact of
maintaining balanced load across the application server
cluster that ReDAL provides. The lower throughput in
the case of HJ stems from the fact that HJ does not take
advantage of session affinity, and needs to retrieve the
session from external storage on every request. On the
other hand, ReDAL-ALPHA=0.9 outperforms ReDAL-
ALPHA=0.5, peaking at 80 simultaneous sessions and
providing higher throughput, at 243 transactions per
second per server. This shows the benefit of ReDAL’s
reservation planning capability, which has greater im-
pact as α is increased. The ReDAL-W-ALPHA=0.9
performs same as ReDAL-ALPHA=0.9 until all servers
reach the saturation point (peak throughput). At sat-
uration point, all servers become non-despatchable.
Here, the ReDAL-W algorithm performs better than the
ReDAL with peak at 269 transactions per seconds at
80 simultaneous sessions. The nominal improvement
of our ReDAL-W is also seen at the load of 100
sessions where the throughput in case of ReDAL-W-
ALPHA=0.9 is 264 transactions per second compared
to 234 transactions per seconds in case of ReDAL-
ALPHA=0.9.

C. Response Time Performance

Our response time experimental results, shown
in Figure 9, show how ART varies for ReDAL-
W-ALPHA=0.9, ReDAL-ALPHA=0.9, ReDAL-
ALPHA=0.5, HJ, and RR as the number of
simultaneous sessions increases from 5 to 100.

For all approaches, the ART curves are exponential.
Here, response time is relatively flat initially, then
begins to increase with each successive value for simul-
taneous sessions. The points where the slopes of these
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Fig. 9. Average Response Time

curves begin to increase sharply are closely correlated
to the peaks in the throughput curves. Specifically, these
“knee points” map exactly to the peaks in the ATAS
curves. Here, as the arrival rate of requests increases, re-
sponse time begins to increase sharply when a resource
on the server reaches maximum utilization, at which
point queuing begins, causing rising response times.

We now consider each curve relative to one another.
For the ReDAL-ALPHA=0.5 curve, response time be-
gins to increase sharply at 80 simultaneous sessions
with a response time of 346 ms. RR does not perform
as well as ReDAL-ALPHA=0.5; here, response time
begins to increase sharply at a lower simultaneous
session load of 60 sessions, and providing a response
time of 662 ms at 80 simultaneous sessions. This
underscores the point made with regard to throughput –
maintaining balanced load across the application server
cluster provides significant benefit. For the HJ case,
response time is higher than the ReDAL-ALPHA=0.5
case, i.e., 440 ms at 80 sessions, reinforcing the
points shown in the throughput experiment – that there
is significant advantage in utilizing session affinity.
On the other hand, ReDAL-ALPHA=0.9 outperforms
ReDAL-ALPHA=0.5. While it begins to rise sharply
at the same number of simultaneous sessions (80),
it provides a lower average response time of 280
ms for 80 simultaneous sessions. This reiterates our
point regarding the benefits of ReDAL’s reservation
mechanism. Further, at high loads when all servers
reach saturation point i.e. non-despatchable state, our
ReDAL-W algorithm performs better than ReDAL. The
ART value for 80 simultaneous users in the case of
ReDAL-W-ALPHA=0.9 is 250 ms compared to 280
ms in case of ReDAL-ALPHA=0.9. Similarly, the ART
value for 100 simultaneous users is less in the case
of ReDAL-W-ALPHA=0.9 than ReDAL-ALPHA=0.9.
This demonstrates the benefit of despatching a request
only when an application server is ready to serve, which
is done in our algorithm ReDAL-W. In most real life
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Fig. 10. Average CPU Utilization on the Web Server

scenarios, application servers are seldom operated at
saturation point, i.e., in non-dispatchable states, so we
focus our further experimental and real life studies on
our standard ReDAL algorithm.

D. Peak CPU Usage on the Web Server

We show that the response time and throughput
benefits of ReDAL come at a very low computational
cost by considering the average CPU overheads on
the web server, which is where the three approaches
differ. Figure 10 shows shows how WSCU varies for
ReDAL, HJ, and RR as the number of simultaneous
sessions increases from 5 to 100 for 20 application
servers and 2 web servers. Here, we show only the
results for α = 0.9 for the ReDAL case, since the value
of α does not impact the work required for ReDAL.
In addition, experiments showed that the impact of the
single additional thread in case of ReDAL-W is so
minimal that the percentage CPU utilization in case of
ReDAL-W is almost same as the ReDAL case. Thus,
we do not report the CPU utilization of the web server
in case of ReDAL-W separately.

For all approaches, the WSCU curves are linear with
a positive slope, i.e., CPU utilization increases with
increasing simultaneous sessions. The RR approach
shows the lowest overall WSCU, rising from 1.55%
at 5 sessions to 8.5% at 100 sessions. The HJ case
shows slightly higher values than RR, rising from 2%
to 10.2%, due to the fact that it tracks more information
about the application cluster than RR, essentially a
count of active requests on each application instance.
ReDAL also shows slightly higher WSCU values than
RR, rising from 2.2% to 11.6%. These values are higher
than that of RR and HJ because ReDAL not only
maintains load information for application servers, but
also exchanges that data across the web server cluster.
Overall, this cost 3% additional CPU over RR, and
1.4% over the HJ case, a very low cost to pay to obtain
the throughput and response time benefits shown above.
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E. CPU Overheads on the Application Server

Here we demonstrate how the peak CPU of ap-
plication server varies for different load distribution
schemes. For each load distribution scheme, i.e., HJ,
RR, and ReDaL, at each number of simultaneous
sessions, we note the peak % CPU across twenty
application servers with two web servers. We plot this
peak % CPU vs. the number of simultaneous sessions in
Figure 11. Due to highly un-balanced load distribution,
the peak CPU % is higher in the case of RR and HJ than
in the case of ReDal. Also, for RR and HJ, the peak
CPU reaches 100% earlier than in the ReDal case. This
is reflected in the increase in ART in Figure 9.

F. Scaling with Additional Application Servers

Figure 12 shows CPU usage on the web server for
simultaneous sessions increasing from 5 to 100, for 10,
20, and 30 application servers running behind the two
web servers. Each case uses ReDal, with α = 0.9, to
distribute the request load across the application servers.
The curves all increase as the number of simultaneous
sessions increases – each additional session increases
the number of requests that must be distributed across
the application server set. The curves for 10, 20, and 30
application servers all show very similar CPU growth
rates as the number of simultaneous sessions increase,
with the 10-server case showing slightly lower CPU
usage than the 20-server case, and the 20-server case
showing slightly higher CPU usage than the 30-server
case. Clearly, increasing the number of application
servers results in increased CPU usage on the web
server, due to the increased complexity in tracking the
load states of more servers; however, this increase is
very small – the difference between the 20-server and
30-server cases is about 4%.

G. Scaling with Additional Web Servers

Figure 13 shows how the ReDAL approach per-
forms with varying numbers of web servers. In this
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experiment, we kept the number of application servers
constant at twenty and varied the number of web
servers to 1, 2 and 5, and measured end-to-end response
time for each case. We consider two topologies in
this experiment: (a) the hierarchical topology shown in
Figure 1, in which each web server dispatches requests
to a separate application server cluster (for 1, 2, and
5 web servers); and (b) the non-hierarchical topology
shown in Figure 7 (for 5 web servers, marked ”NH” in
Figure 13).

The first noticeable point about this set of plots is that
the curves are clustered tightly together, showing that
end-to-end response time does not vary significantly
with the number of web servers. This is due to the
fact that the primary bottleneck in the TPC-W bench-
mark is the application server processing. The slight
improvement in the performance with the increased
number of web servers is due to the fact that the HTTP
protocol and image request processing (which is the
responsibility of the web server) is spread across a
larger number of web servers.

We now consider the differences between the curves
in Figure 13 based on topology. Topology begins to
impact the ReDAL experimental setup when the number
of web servers is greater than two – in both the
hierarchical (Figure 1) and non-hierarchical (Figure 7)
topology cases, when two web servers are deployed,
they are typically fully synchronized for failover pur-
poses, including any plug-in information. Thus, we do
not show a curve here for “#Web Server=2 NH” because
it is exactly the same as in the hierarchical case.

We are, therefore, interested in the curves for “#Web
Server=5” and “#Web Server=5 NH”. The curve for
“#Web Server=5 NH” shows a slight decrease (8% at
the highest load levels) in performance as compared
to the case of “#Web Server=5”. This is due to the
additional overhead of sharing load metrics across the
web server cluster when load and throughput data
must be synchronized, as well as the slight increase
in processing required to compute the load matrix for
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all the application servers.

IV. CASE STUDY

To validate our experimental results, we tested the
performance of our ReDAL algorithm in the staging
environment of an online application at a major U.S.
credit card issuer. In this staging environment, the
application runs on 30 instances of WebLogic appli-
cation server running on RedHat Linux 9.0, where the
WebLogic cluster receives requests through an Apache
HTTP server 2.0 running on Linux RedHat 9.0.

Load is distributed across the WebLogic cluster using
WebLogic’s Apache plugin, which uses a Round Robin
(RR) algorithm to distribute requests. User sessions are
synchronized across the cluster using the WebLogic
session synchronization mechanism.

We implemented two additional Apache plugins,
representing the ReDAL and HJ algorithms, for per-
formance comparison purposes. Based on anonymized
web server logs from the application, we generated
LoadRunner 6.0 [28] scripts to emulate user behavior.
In Figure 14, we show the response time of the system
as recorded by LoadRunner vs. the number of sessions
connected to the system for ReDAL, HJ and RR.

For ReDAL, we varied α and found that we obtained
optimal performance at α = 0.8 for the application.
Thus, in Figure 14, we plot ReDAL for α = 0.8. As
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can be seen from Figure 14, the response time is lowest
in the case of ReDAL. The rate of change in the slope of
the curve, i.e., the increase of response time as the num-
ber of sessions increases, is also much lower for ReDAL
than for HJ and RR. Though RR is the most widely
used application server request distribution logic, it is a
very rudimentary algorithm. In this study, HJ improves
the response time by 25% at 1000 sessions, whereas
our ReDAL improves the overall performance by 50%
over RR. This demonstrates the applicability of our
algorithm in a real-life case.

V. CONCLUSION

We devise an approach for distributing requests
across a cluster of application servers such that overall
system throughput is enhanced, and load across the
application servers is balanced. Our approach considers
two cases, one suited to clustered servers that are
sized to handle peak load on the site, and a second
case that is best suited for a highly loaded cluster of
servers that operates beyond the saturation point. We
compare the performance of our approach with widely
used industrial and recently proposed techniques from
the literature experimentally, in terms of throughput
and response time performance, as well as resource
utilization. Our experimental results show a significant
improvement of up to nearly 80% in both throughput
and response time, with a very low additional CPU cost,
ranging from 0.7% to 1.5%. A case study validates the
experimental results, also showing significant response
time improvements.
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