

Processing of Location-Dependent Continuous Queries on

Real-Time Spatial Data: The View from RETINA

Dick Hung1, Kam-Yiu Lam1, Edward Chan1 and Krithi Ramamritham2

Department of Computer Science1
City University of Hong Kong
85 Tat Chee Avenue, Kowloon

HONG KONG

Department of Computer Science and Engineering2
Indian Institute of Technology Bombay

Mumbai, INDIA

Abstract
In this paper, using RETINA, a real-time navigation

system, as an example, we study the important design issues
underlying the processing of location-dependent continuous
queries, especially those requiring access to data describing
the current status of a dynamic environment and possessing
spatial properties. To minimize the probability of missing the
arrival deadline associated with each navigation request, we
use a time-stamp with prediction scheme to model the traffic
data and replicated dynamic directed graphs to organize the
traffic data required for path searching and path calculation.
Correctness of the best path calculations and scalability of the
system are improved through an adaptive Push or Pull (APoP)
scheme to monitor the best path and traffic data in navigation.

Keywords: real-time data management, temporal consistency,
mobile computing

1. Introduction

Owing to advances in mobile communication and
database technologies, various innovative mobile computing
applications are emerging. One of the important mobile
applications is to support queries from mobile clients on real-
time data items. In this paper, we introduce our system, called
RETINA, which is an abbreviation of REal-Time TraffIc
NAvigation System. It is a real-time navigation system
designed for critical services, i.e., ambulances and fire
services. The basic function provided by the system is to
calculate the best path based on the connections and the
current traffic conditions of the roads for mobile clients to go
from their current positions to their destinations. While a
mobile client is following the suggested path to its destination,
the path information is closely monitored. It is assumed that
each navigation request is associated with a deadline, called
arrival deadline, on its arrival time to the destination.
Meeting the arrival deadline is one of the prime requirements
of the system.

In this paper, we report our views from the design and
development of RETINA. Our focuses are to minimize the
probability of missing the arrival deadlines of requests and at
the same time to minimize the processing overhead in data
monitoring with an attempt to improve the scalability of the
system. In particular, we concentrate on the following three
issues:
(1) Efficient management of traffic data;
(2) Minimizing the probability of missing arrival deadlines

of navigation requests; and
(3) Minimizing the overhead for monitoring the best path.

We have formulated the navigation requests as location-
dependent continuous queries (LDCQs) [5] and have explored
the temporal spatial properties of the traffic data items in data
management and monitoring the best path such that the

processing requirements of the requests can be met and the
processing overhead can be minimized. We propose a
replicated directed graph approach for searching the best path
in which the servers cache traffic data from other servers. To
maintain cached traffic data, we have adopted the Push and
Pull techniques [3,4] for providing traffic data items for
execution of the navigation requests [1] and for cached data
management. In our design, the best path to a destination is
calculated based on the roads connecting the starting location
and the destination, and the real-time traffic conditions of the
roads. In the calculation of the road traffic, future traffic
conditions are predicted and used [2], both to minimize the
impact of the changes in traffic conditions during the
traveling and to increase the probability of satisfying the
timing requirement of the system.

2. The Problems
Navigation requests are usually submitted as continuous

queries. A continuous query stay s in the system for a period
of time until its arrival deadline is reached. During this period,
it will be evaluated continuously until its arrival deadline or
until its termination conditions is satisfied. In addition,
navigation requests are location-dependent since the best path
for a mobile client to the destination depends on its current
location. To generate correct results, it is important to manage
the real-time location of the mobile client, which initiates the
request. Its position has to be mutually consistent to the
execution of its navigation request. However, the network
bandwidth of a mobile network is usually very limited and
network disconnection is common. Tracking locations of
moving objects accurately could incur a heavy workload on
the mobile network and at the server for location update
processing.

To calculate the best path, the system needs access to a
(large) set of traffic data, which record the current traffic
conditions of the roads, to perform path-searching
computation on the traffic data. The computation could be
quite complex and incur a heavy workload overhead if the
computation is performed frequently. Road traffic data are
temporal spatial data. Each traffic data item describes the
current traffic condition of a particular road segment in the
system. Its value can be highly dynamic and change rapidly
with time. Different road segments may have different
distances from the current position of the requesting client. To
the queries, it is important to provide the latest versions of the
data items for their executions. Accessing out-dated (stale)
data items may seriously affect the usefulness of the query
results and increase the probability of missing the arrival
deadlines of the navigation requests. However, maintaining
data freshness could incur a heavy processing overhead on the
system. Therefore, how to improve the scalability of the
system and at the same time to maintain data freshness for

query execution is an important tradeoff in the design of the
systems. The management of traffic data for correct execution
of navigation requests becomes an even more complex
problem if the data items are distributed at several servers.
The use of multiple servers is important to the scalability and
fault tolerance of the system.

Another important concern in improving the scalability of
the system is how to minimize the overhead for calculating
the best path. It could be very expensive and the cost depends
on the number of roads in the systems, and how the roads are
arranged and connected. In order to ensure that a client can
meet its arrival deadline, the system has to monitor the traffic
data. Close monitoring of traffic data therefore could be very
expensive especially if the update rates of the traffic data are
high and the data are distributed.

The navigation system is for critical services and its prime
performance objective is to minimize the probability of
missing the arrival deadline. If it is expected that the arrival
deadline will be missed, it is important to minimize the
lateness and to inform the client of the situation as earlier as
possible. To achieve the above objectives, the system needs to
know what is the “best path” to the client’s destination.
However, the definition of the meaning of the “best path” is
not trivial in this kind of temporal spatial problem . As a client
takes time to its destination, the best path at current time may
not be the best one if the objective is to minimize the
probability of missing the arrival deadline. Consider the
example shown in Figure 1. At time t1, client C is at edge p1
and is following the calculated best path (p1, p2, p3 and p4) to
its destination, D. At time t2, C is at p2 and the calculated best
path to p4 has been changed to (p2, p1, p3, p4), i.e., due to an
increase in traffic congestion between p2 and p3. Therefore, it
has to go back to p1. However, when it reaches p1 at t3, the
best path may change back to (p1, p2, p3 and p4). We can see
that client C is moving back and forth between p1 and p2 and
has wasted a lot of time. Compared to the move between the
two paths, another choice for the client is follow the original
suggested path (p1, p2, p3 and p4) at time t1. Although it may
not be the best path at t2, it is the best path at time t3. The
cause of the problem is that in the calculation of the best path,
it only considers the current traffic data and does not consider
what will be the future traffic data.

C u r r e n t n o d e
o f C

P 2

P 3

P 1

P 4

T a r g e t
n o d e

P 2

P 3

P 1

P 4
T a r g e t

N o d e

S h o r t e s t P a t h
a t t 1

S h o r t e s t P a t h
a t t 2

C u r r e n t n o d e
o f C

Figure 1. Problem in the Calculation of the Best Path

Although it is impossible to have the exact values of future
traffic data, accuracy in prediction can be improved by
predicting the future values of traffic data. Since the predicted
value of a data item has a higher probability to be the value at
the time when the client is on the edge than the current value
of the data item, the chance of going back and forth could be
lower.

3. System Model and Architecture

The system is supported on a cellular mobile network. In
each cell, there is a traffic server for managing the traffic data

belonging to the cell and for serving the clients within the cell.
The traffic servers are connected together by a high-speed
network and the traffic server maintains a database to records
the connections of the roads in the whole service area. The
roads are divided into road segments. A traffic sensor is
installed at the control point of each road segment to measure
the traffic condition of the road segment. The measured traffic
data values are sent to the server of their cells as traffic
updates through a reliable wired network. The mobile clients
may generate navigation requests to the traffic server of their
current cells while they are moving. It is assumed that each
client is carrying a positioning device and knows its current
location. If a mobile client moves into another cell, the traffic
server of the new cell will take up the job to serve the client
and monitor the best path.

The traffic server at a cell is responsible for managing the
traffic data of its cells and for serving the clients within the
cell. Figure 2 shows the architecture of a traffic server. The
data manager is responsible for managing the database. It
consists of two components: cache manager and version
manager. The database consists of two types of data items:
real-time and static data items. Each server maintains the
same set of static data which are the information about the
road information and connection information of the roads in
the whole system. The real-time data items are state-based
information and are used to record the traffic conditions of the
road segments. Updates for the traffic data of its cells are
received from road sensors. Real-time data of the traffic
conditions of the road segments of other cells are cached from
other cells and are managed by the cache manager. In order to
reduce the data access delay, the data items are downloaded
into the cache buffer in the main memory from stable storage
at system startup. In the traffic server, the update stream
handler receives traffic updates from the sensors installed on
the roads. The update stream handler puts the new updates
into the update buffer from which the data manager will
install the updates into the cache buffer. The version manager
is responsible for maintaining coherence amongst the
different versions in the various servers. The client service
manager is responsible for serving navigation requests from
mobile clients.

Database

Rea l - t ime
Traffic data

Static Road
Data

Update
Stream

Update
Buffer

Cache
Manager

Version
Manager

 Updates to
other servers

update
 cache buffer

Cache
Buffer

Client
Servics
Manager Client

Requests

Figure 2. The Navigation Server

4. Management of Traffic Data and Traffic
Value Prediction

In this section, we will discuss the details of the various
schemes designed to manage the traffic data to support the
navigation function efficiently at each traffic server. We
propose a time-stamp with prediction scheme for modeling
the traffic data and a replicated dynamic directed graphs
scheme to organize the traffic data for best path searching.

4.1 Traffic Data Modeling

For each traffic data item x, three copies are maintained
in the cache buffer: current value (xc), previous value (xp) and
last database updated value (xd). The current value, xc, is the
value from the last update. Previous value, xp, is the value

before the current data value. Last database update value, xd,
is the current value of the data item in the database. Whenever
a new update arrives, the current value will be copied into the
previous value, and the new value from the update will be
copied into the current value. Associated with each value is a
time-stamp, ts(x). In addition to the three data versions, a
prediction function pf(x) is maintained for each data item x. It
calculates the trend of a data item x to describe how the value
of x changes compared to previous values. In our design, we
use an exponentially weighted moving average approach for
calculating the data trend:
fx,n = (fx,n + αfx,n-1 + α2fx,n-2 + …. + αn-1fx,1) / S

where S is the sum of the weights (1 + α + α2
+ …. + αn-1)

fx,n = (x p,n – xp,n-1) /(ts(x p,n) − ts(x p,n-1)), where α is a tuning
parameter with a value smaller than 1.

Periodically, an update transaction is executed to save the
current values of the data items, xc, at the buffer (into the
database). The update period is dynamically defined and is
based on the difference of the data values.

4.2 Traffic Graph

Each server maintains a directed graph at its cache buffer.
The graph is defined according to how the road segments are
connected in the service area. The length of an edge is using
the current value of the data item corresponding to the road
segment. It is a dynamic directed graph since the length of an
edge in the graph is not fixed. New values from the traffic
sensors are periodically sent to their servers to update the
values of the traffic data corresponding to the road segments.
For the control points, which are maintained by other servers,
new traffic data values are cached from the other servers as
shown in Figure 3. Therefore, an important issue is to
maintain validity of cached data so that temporal consistency
of the data items can be ensured for best path calculation.

A

B

C

D

E

F

G

H

I

J

K

L

M

Moni tor by
Server AKey:

2

4

7

1

3

3

3

5 5

2
4

6

11

2

3

Moni tor by
Server B

Server
A

Server
B

Traff ic Value
from Server B

Control Points
Monitoring

E, G, H, I, J, K, L, MA, B, C, D, F
}{

Traff ic Value
from Server A

Control Points
Monitoring

Figure 3. Management of Traffic Graphs

4.3 Traffic Graph Value Prediction and Path
Searching

When a server receives a navigation request from a
mobile client, it performs a best path search on the traffic
graph using a shortest path-searching algorithm to find the
best path to the destination from its current position in the
shortest time. Each request is associated with a current
location, client ID and arrival deadline. To improve the
correctness of the results, we use predicted traffic values for
calculating the length of the edges in the traffic graph.

Traffic data have spatial properties towards a location-
dependent query. If a control point is further away from its
current position, the time when the mobile client will reach
the control point will become later, and the current traffic
conditions reported by the control points will have a higher
probability to be different from the traffic condition when the
mobile client is passing through the control point. In our
proposed prediction scheme, we estimate the future traffic of
an edge at the time when a mobile client will be on the edge.
The length of an edge, Li, in the graph is a variable and is
calculated as the product of the physical length of the road
segment, pi, and its traffic condition, wi: Li= pi × wi

The physical length of a road segment is a constant while
wi is a variable. In the search of the best path searching, the
value of w i is obtained from a time varying function, traffic(i,t)
which returns the traffic condition of road segment i at time, t.
The function, traffic(i,t) first calculates the predicted time (t),
which is the estimated time when the mobile client will be on
the starting point of road segment i. It is the summation of the
current time and the predicted traveling time from its current
position to the start point of the road segment, i. Note that the
traffic condition returned from a road sensor of a road
segment indicates the approximate time for a client to pass
through the road segment. The predicted traffic of the road
segment i at the predicted time (t) will be calculated using a
linear extrapolation method where the future predicted value
for data item x at time t is calculated as: x t = fx,n × t + xc.

5. Path Monitoring and Re-calculation

While a mobile client is following the suggested path to its
destination, the best path has to be closely monitored to
ensure that it is still the best path to the destination. The data
monitoring problem can be divided into two parts:
(1) To monitor the best path information between the client

and the server, which is serving the client, and;
(2) To monitor the values of the traffic data, especially those

cached data from other servers, to ensure that they are
still temporally consistent for best path calculation.

To resolve the first problem, the system may need to
perform re-calculation when there is a change in traffic
condition of the roads or the client’s movement is different
from prediction. In principle, any change in traffic data even
for the edges not in the path may affect the best path. The
frequency of re-calculation affects the shortest path
information to the client. However, on the other hand, it is
important to minimize the monitoring overhead since the data
values could be highly dynamic and the cost for the
performance of the path-searching algorithm could be very
high. To resolve the second problem, a traffic server needs to
forward new values to refresh cached data items at other
servers whenever it receives a new traffic update. The
frequency of data forwarding affects the update processing
workload and communication overhead for data transmission.

5.1 Adaptive Push or Pull (APoP)
5.1.1 Overview

In this section, we will introduce an adaptive Push or Pull
method, called adaptive Push or Pull (APoP) for maintaining
consistency of cached traffic data. In APoP, a request may be
served in Pull or Push modes. Conditions are defined to
determine the switching between Push and Pull. The design
objectives of APoP are:
(1) To balance the workloads on the mobile network and at

the server,
(2) To improve the scalability of the system, and

(3) To meet the data consistency requirements and arrival
deadlines of the requests.

In principle, the conditions for switching between Push
and Pull are defined based on several factors: the current
system workload, the urgency of the requests, and the size of
the set of data items interested by each request. In general, the
network overhead of using Pulling is higher than using
Pushing while the processing overhead at the server is higher
with Pushing than Pulling. Normally, Pushing can provide a
closer monitoring of the best path than Pulling at the expense
of a higher processing overhead at the server by adjusting the
frequency for checking of pushing conditions. In addition,
unlike conventional pulling schemes, the pulling period in
APoP is assigned by the server. So, if the pulling time has
arrived and the server does not receive the pulling request, the
server will assume that the client has been disconnected from
the network. Since a server may be serving multiple
navigation requests, the server should serve the set of requests
in a fair manner such that each request receives similar
amount of server (defined in terms of service time) from the
server. So, if the processing power of the server is P, then the
average amount of workload to be assigned to serve a request
is P/N where N is the number of concurrent requests in the
server. The purpose is to prevent a navigation request from
overloading the server and affecting the processing of other
requests.

5.1.2 Pull Mode

In APoP, initially, a newly submitted request will be
served in Pull mode, i.e., the client periodically sends a
navigation request with its current position to the server. The
reason is that the Pull approach can provide a higher degree
of resiliency to server failure and at the same time it can
control the workload at the server and on the network by
adjusting the Pulling period. When it is not necessary to have
a close monitoring of its shortest path, i.e., its arrival deadline
is far from the current time, a larger Pulling period may be
used in order to minimize the workloads at the server and on
the mobile network. Each request in Pull mode is assigned a
Pulling period bound, min_pp and max_pp. The next Pulling
period is defined within this bound by the server based on:
(1) The predicted workload for serving the request; and
(2) The dynamic properties of the data items.

Each request is assigned a workload index, which
indicates the relative cost for performing the shortest path
search for the request. The workload index is calculated as a
function of the distance of the moving client from its
destination, its speed and the workload index of its previous
calculation. After defining the shortest path, the set of the
control points, which are close to the shortest path, are
defined as the set of interested data items of the request. The
set of interested data items are the data items on the shortest
path and those within a threshold distance from the shortest
path. The changes in the values of the data items in the
interested data item set have a higher probability of affecting
the shortest path. Thus, if their rate of change is higher, the
pulling period should be shorter. The dynamic properties of
the data items can be calculated as the mean of the trends of
the data items, i.e., in fx,n in our data model, of the data items
in the interested data set.

In serving a Pulling request, a traffic server may need to
generate pulling request to other servers if it has cached data
from other servers. The additional pulling not only increases
the pulling case but also increases the delay for processing the
requests. To resolve the problem, we may define a similarity
bound on each data item. If the time-stamp of the current

value of a cached data item is close to the current time and its
trend is not large, the request for pulling to the server, which
maintains the data item, may not be necessary. Even though a
new version has been created, its value will be similar to the
value of the cached data item

5.1.3 Push Mode
5.1.3.1 Pull to Push

When the arrival deadline of a request is approaching
and the workload of the database server is within system
capacity, the system may switch to serve some of the requests
to Push mode (Pull-to-Push) in order to minimize the mobile
communication cost and to provide a closer monitoring of
data items for the request. The selection of which requests to
be switched to Push mode (Pull-to-Push) is based on the
deadlines and the slacks of the requests. Note that when the
deadline of a mobile client is approaching, normally, it should
be close to its destination. Therefore, the processing overhead
of the path-searching algorithm should be smaller comparing
to the case where the deadline is far away. In order to prevent
frequent re-calculation due to a highly variable value of an
edge, if the predicted arrival time is smaller than the arrival
deadline, re-calculation will be performed only when there is
a change in traffic value of a path in the shortest path; and the
change is an increase in value.

The set of requests which are being served in Push mode
are maintained in the push list and data structures for
maintaining the state of the requests will be created by the
system including the set of interested data items of the
requests. Similar to the requests being served in Pull mode,
each request (Q) in Push mode will be defined with a set of
interested data items set, ID(Q). The union of the interested
data items set of all the requests, which are in Push mode, is
called server interested data item set. It means the server has
to closely monitor the values of this set of data items. The
changes in their values have a high probability in changing
the best path. Again, the definition of the set of interested data
items for a request is based on the shortest path and the
defined threshold distance.

When the workload at the server is heavy, some of the
requests may be switched back to Pull mode (Push-to-Pull).
The selection is again based on the deadlines, the slacks, and
the update rates of the set of data items required by the
requests, which are in the push list. If the total update rate of
the interested data items is higher, switching it to pull mode
can provide a greater saving in server workload.

5.1.3.2 Minimizing Monitoring Overhead in Push

The main concern in data monitoring using the Push mode
is how to reduce the number of recalculation. Not all changes
in traffic data will affect the shortest path especially those
changes are smaller. To minimize the number of recalculation,
we may use a batching method for performing the
recalculation. Since each request will have an estimated
arrival time, we can calculate its slack time for meeting the
arrival deadline. If the increase in traffic value of those edges
on the shortest path is smaller than the slack, it does need to
perform re-calculation. Although the best path at the client
side may not still be the shortest path, the client should still
meet its arrival deadline. On the other hand, if the total
decrease in traffic data of those edges, which are in the
interested data of a request but are not those edges on the
shortest path, is not greater than the slack of the request, the
system also does not need to perform re-calculation.

5.2 Client Location Prediction
As explained in Section 1, in processing the navigation

request, it is important to maintain consistency between the
current location of the client and the execution of the request
since it is location-dependent. Uncertainty in location can be
large when a client is being served in push mode. When
performing the data monitoring, the server estimates the
location of a mobile client for the calculation of the shortest
path if it is serving the client in push mode. The estimation
can be based on the information in the traffic graph. In the
traffic graph, the length of a node indicates how long the
client will take to complete the edge. In addition, the client
will report its location if its location deviates from the
estimated position more than a location update threshold. In
this way, we can minimize the number of location update for
those clients in push mode.

6. Implementation and Operations
6.1 Implementation

In the implementation of RETINA, two basic components,
database servers and mobile clients, are developed. The server
program is implemented in VC++ 6.0 on Windows NT and the
client program is implemented in both VC++ 5.0 for Win CE
3.0 and VC++ 5.0 on Windows 2000. The server process
consists of multiple flags for different functions including
servicing requests from mobile client and for system
management. A SQL server is connected to the server
program at each site and it maintains a database containing
the road connections of a district in Hong Kong. A simulated
process is defined at the server to create new traffic data
values randomly for the road segments maintained by the
system. Each client machine, PC or handheld PC, is pre-
loaded with a set of maps for the roads defined in the database
servers. The client program consists of multiple flags for
displaying a map, getting and displaying traffic data on the
map and generating different types of location-dependent
requests. In this section we will main focus on the screen and
menu design

6.2 Screen Design and Operations

The following screen is designed to setup the connection
between server and client, user can input the server address
and port number to connect to the navigation server according
to that IP address and port number via a wireless network.

Figure 4. Connect Screen

The following is the main screen of the system. It shows
the detailed map of the control points, static object icons and
the current location of the mobile client itself.

Figure 5. Navigation Screen

In navigation, a moving client may select the destination
by click on the control point sensor associate with it. After

selecting the destination, the shortest path will be display as
the green filled arrows. In navigation mode, only control
points along the shortest path will be display and the path will
be update, according to the traffic condition and displacement
of the mobile client.

Figure 6. Navigation Screen

The Traffic screen displays the current traffic status
on the road. If the traffic is in low density, a green
triangle will be display, otherwise the triangle will
trended to be red and indicate that the traffic is in high
volume on that road segment. The Traffic screen is
trigger by the “Traffic” menu item on the menu bar.

7. Conclusions and Future Works
In this paper we presented the design issues involved in

the development of our real-time navigation system. Using a
time-stamp with prediction scheme to model the traffic data
and replicated dynamic directed graphs to organize the traffic
data required for path searching and calculation, we hope to
minimize deadline misses associated with navigational
requests. An adaptive push and pull technique is used to
improve the scalability of the monitoring of traffic in our
system. We are currently implementing the system on a
Windows CE/ Windows 2000 based platform to test the
performance of our system and the effectively of using the
push and pull schemes for maintaining the temporal
consistency of traffic data.

References
[1] O. Ulusoy, “Real-Time Data Management for Mobile
Computing”, in Proceedings of International Workshop on
Issues and Applications of Database Technology (IADT'98),
Berlin, Germany, 1998.
[2] A.P.Sistla, O.Wolfson, S.Chamberlain, S. Dao, “Querying
the Uncertain Position of Moving Objects”, in Temporal
Database: Research and Practice, Lecture Notes in Computer
Science (Springer Verlag), 1998.
[3] S. Acharya, M. Franklin, S. Zdonik, “Balancing Push and
Pull for Data Broadcast”, Proceedings of ACM SIGMOD,
Tucson, Arizona, 1997.
[4] Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi
Ramamritham, Prashant Shenoy “Adaptive Push-Pull:
Disseminating Dynamic Web Data”, in Proceedings of the
10th WWW Conference, Hong Kong, 2001.
[5] M.H. Dunham and V, Kumar, “Location dependent data
and its management in mobile databases,” in Proceedings of
International Workshop of Database and Expert Systems
Applications, pp. 414-419, 1998.

Acknowledgement: The work described in this paper was
partially supported by a grant from the Research Grants
Council of Hong Kong SAR, China [Project No. CityU
1076/02E].

