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Abstract 
In this paper, using RETINA, a real-time navigation 

system, as an example, we study the important design issues 
underlying the processing of location-dependent continuous 
queries, especially those requiring access to data describing 
the current status of a dynamic environment and possessing 
spatial properties. To minimize the probability of missing the 
arrival deadline associated with each navigation request, we 
use a time-stamp with prediction scheme to model the traffic 
data and replicated dynamic directed graphs to organize the 
traffic data required for path searching and path calculation. 
Correctness of the best path calculations and scalability of the 
system are improved through an adaptive Push or Pull (APoP)  
scheme to monitor the best path and traffic data in navigation.  
 
Keywords: real-time data management, temporal consistency, 
mobile computing 

 
1. Introduction 

Owing to advances in mobile communication and 
database technologies, various innovative mobile computing 
applications are emerging. One of the important mobile 
applications is to support queries from mobile clients on real-
time data items. In this paper, we introduce our system, called 
RETINA, which is an abbreviation of REal-Time TraffIc 
NAvigation System. It is a real-time navigation system 
designed for critical services, i.e., ambulances and fire 
services. The basic function provided by the system is to 
calculate the best path based on the connections and the 
current traffic conditions of the roads for mobile clients to go 
from their current positions to their destinations. While a 
mobile client is following the suggested path to its destination, 
the path information is closely monitored. It is assumed that 
each navigation request is associated with a deadline, called 
arrival deadline, on its arrival time to the destination. 
Meeting the arrival deadline is one of the prime requirements 
of the system.  

In this paper, we report our views from the design and 
development of RETINA. Our focuses are to minimize the 
probability of missing the arrival deadlines of requests and at 
the same time to minimize the processing overhead in data 
monitoring with an attempt to improve the scalability of the 
system. In particular, we concentrate on the following three 
issues:  
(1) Efficient management of traffic data;  
(2) Minimizing the probability of missing arrival deadlines 

of navigation requests; and 
(3) Minimizing the overhead for monitoring the best path. 

We have formulated the navigation requests as location-
dependent continuous queries (LDCQs) [5] and have explored 
the temporal spatial properties of the traffic data items in data 
management and monitoring the best path such that the 

processing requirements of the requests can be met and the 
processing overhead can be minimized. We propose a 
replicated directed graph approach for searching the best path 
in which the servers cache traffic data from other servers. To 
maintain cached traffic data, we have adopted the Push and 
Pull techniques [3,4] for providing traffic data items for 
execution of the navigation requests [1] and for cached data 
management. In our design, the best path to a destination is 
calculated based on the roads connecting the starting location 
and the destination, and the real-time traffic conditions of the 
roads. In the calculation of the road traffic, future traffic 
conditions are predicted and used [2], both to minimize the 
impact of the changes in traffic conditions during the 
traveling and to increase the probability of satisfying the 
timing requirement of the system. 

 

2. The Problems 
Navigation requests are usually submitted as continuous 

queries. A continuous query stay s in the system for a period 
of time until its arrival deadline is reached. During this period, 
it will be evaluated continuously until its arrival deadline or 
until its termination conditions is satisfied. In addition, 
navigation requests are location-dependent  since the best path 
for a mobile client to the destination depends on its current 
location. To generate correct results, it is important to manage 
the real-time location of the mobile client, which initiates the 
request. Its position has to be mutually consistent to the 
execution of its navigation request. However, the network 
bandwidth of a mobile network is usually very limited and 
network disconnection is common. Tracking locations of 
moving objects accurately could incur a heavy workload on 
the mobile network and at the server for location update 
processing. 

To calculate the best path, the system needs access to a 
(large) set of traffic data, which record the current traffic 
conditions of the roads, to perform path-searching 
computation on the traffic data. The computation could be 
quite complex and incur a heavy workload overhead if the 
computation is performed frequently. Road traffic data are 
temporal spatial data. Each traffic data item describes the 
current traffic condition of a particular road segment in the 
system. Its value can be highly dynamic and change rapidly 
with time. Different road segments may have different 
distances from the current position of the requesting client. To 
the queries, it is important to provide the latest versions of the 
data items for their executions. Accessing out-dated (stale) 
data items may seriously affect the usefulness of the query 
results and increase the probability of missing the arrival 
deadlines of the navigation requests. However, maintaining 
data freshness could incur a heavy processing overhead on the 
system. Therefore, how to improve the scalability of the 
system and at the same time to maintain data freshness for 



query execution is an important tradeoff in the design of the 
systems. The management of traffic data for correct execution 
of navigation requests becomes an even more complex 
problem if the data items are distributed at several servers. 
The use of multiple servers is important to the scalability and 
fault tolerance of the system. 

Another important concern in improving the scalability of 
the system is how to minimize the overhead for calculating 
the best path. It could be very expensive and the cost depends 
on the number of roads in the systems, and how the roads are 
arranged and connected. In order to ensure that a client can 
meet its arrival deadline, the system has to monitor the traffic 
data. Close monitoring of traffic data therefore could be very 
expensive especially if the update rates of the traffic data are 
high and the data are distributed. 

The navigation system is for critical services and its prime 
performance objective is to minimize the probability of 
missing the arrival deadline. If it is expected that the arrival 
deadline will be missed, it is important to minimize the 
lateness and to inform the client of the situation as earlier as 
possible. To achieve the above objectives, the system needs to 
know what is the “best path” to the client’s destination. 
However, the definition of the meaning of the “best path” is 
not trivial in this kind of temporal spatial problem . As a client 
takes time to its destination, the best path at current time may 
not be the best one if the objective is to minimize the 
probability of missing the arrival deadline. Consider the 
example shown in Figure 1. At time t1, client C is at edge p1  
and is following the calculated best path (p1, p2, p3 and p4) to 
its destination, D. At time t2, C  is at p2 and the calculated best 
path to p4 has been changed to (p2, p1, p3, p4), i.e., due to an 
increase in traffic congestion between p2 and p3. Therefore, it 
has to go back to p1. However, when it reaches p1 at t3, the 
best path may change back to (p1, p2, p3 and p4). We can see 
that client C is moving back and forth between p1 and p2 and 
has wasted a lot of time. Compared to the move between the 
two paths, another choice for the client is follow the original 
suggested path (p1, p2, p3 and p4) at time t1. Although it may 
not be the best path at t2, it is the best path at time t3. The 
cause of the problem is that in the calculation of the best path, 
it only considers the current traffic data and does not consider 
what will be the future traffic data. 
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Figure 1.  Problem in the Calculation of the Best Path 

Although it is impossible to have the exact values of future 
traffic data, accuracy in prediction can be improved by 
predicting the future values of traffic data. Since the predicted 
value of a data item has a higher probability to be the value at 
the time when the client is on the edge than the current value 
of the data item, the chance of going back and forth could be 
lower. 
 
3. System Model and Architecture  

The system is supported on a cellular mobile network. In 
each cell, there is a traffic server for managing the traffic data 

belonging to the cell and for serving the clients within the cell. 
The traffic servers are connected together by a high-speed 
network and the traffic server maintains a database to records 
the connections of the roads in the whole service area. The 
roads are divided into road segments. A traffic sensor is 
installed at the control point of each road segment to measure 
the traffic condition of the road segment. The measured traffic 
data values are sent to the server of their cells as traffic 
updates through a reliable wired network. The mobile clients 
may generate navigation requests to the traffic server of their 
current cells while they are moving. It is assumed that each 
client is carrying a positioning device and knows its current 
location. If a mobile client moves into another cell, the traffic 
server of the new cell will take up the job to serve the client 
and monitor the best path. 

The traffic server at a cell is responsible for managing the 
traffic data of its cells and for serving the clients within the 
cell. Figure 2 shows the architecture of a traffic server. The 
data manager is responsible for managing the database. It 
consists of two components: cache manager and version 
manager. The database consists of two types of data items: 
real-time and static data items. Each server maintains the 
same set of static data which are the information about the 
road information and connection information of the roads in 
the whole system. The real-time data items are state-based 
information and are used to record the traffic conditions of the 
road segments. Updates for the traffic data of its cells are 
received from road sensors. Real-time data of the traffic 
conditions of the road segments of other cells are cached from 
other cells and are managed by the cache manager. In order to 
reduce the data access delay, the data items are downloaded 
into the cache buffer in the main memory from stable storage 
at system startup. In the traffic server, the update stream 
handler receives traffic updates from the sensors installed on 
the roads. The update stream handler puts the new updates 
into the update buffer from which the data manager will 
install the updates into the cache buffer. The version manager 
is responsible for maintaining coherence amongst the 
different versions in the various servers. The client service 
manager is responsible for serving navigation requests from 
mobile clients. 
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Figure 2. The Navigation Server 
 
4. Management of Traffic Data and Traffic 
Value Prediction 

In this section, we will discuss the details of the various 
schemes designed to manage the traffic data to support the 
navigation function efficiently at each traffic server. We 
propose a time-stamp with prediction  scheme for modeling 
the traffic data and a replicated dynamic directed graphs 
scheme to organize the traffic data for best path searching.  

 
4.1 Traffic Data Modeling  

For each traffic data item x, three copies are maintained 
in the cache buffer: current value (xc), previous value (xp) and 
last database updated value (xd). The current value, xc, is the 
value from the last update. Previous value, xp, is the value 



before the current data value. Last database update value, xd,  
is the current value of the data item in the database. Whenever 
a new update arrives, the current value will be copied into the 
previous value, and the new value from the update will be 
copied into the current value. Associated with each value is a 
time-stamp, ts(x). In addition to the three data versions, a 
prediction function pf(x) is maintained for each data item x. It 
calculates the trend of a data item x to describe how the value 
of x changes compared to previous values. In our design, we 
use an exponentially weighted moving average approach for 
calculating the data trend:  
fx,n = (fx,n + αfx,n-1 + α2fx,n-2 + …. + αn-1fx,1 ) / S 

where S is the sum of the weights (1 + α + α2  
+ …. + αn-1) 

fx,n = (x p,n – xp,n-1) /(ts(x  p,n) −  ts(x p,n-1)), where α is a tuning 
parameter with a value smaller than 1. 

Periodically, an update transaction is executed to save the 
current values of the data items, xc, at the buffer (into the 
database). The update period is dynamically defined and is 
based on the difference of the data values.  
 
4.2 Traffic Graph 

Each server maintains a directed graph at its cache buffer. 
The graph is defined according to how the road segments are 
connected in the service area. The length of an edge is using 
the current value of the data item corresponding to the road 
segment. It is a dynamic directed graph since the length of an 
edge in the graph is not fixed. New values from the traffic 
sensors are periodically sent to their servers to update the 
values of the traffic data corresponding to the road segments. 
For the control points, which are maintained by other servers, 
new traffic data values are cached from the other servers as 
shown in Figure 3. Therefore, an important issue is to 
maintain validity of cached data so that temporal consistency 
of the data items can be ensured for best path calculation.  
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Figure 3. Management of Traffic Graphs  
 
4.3 Traffic Graph Value Prediction and Path 
Searching 

When a server receives a navigation request from a 
mobile client, it performs a best path search on the traffic 
graph using a shortest path-searching algorithm to find the 
best path to the destination from its current position in the 
shortest time. Each request is associated with a current 
location, client ID and arrival deadline. To improve the 
correctness of the results, we use predicted traffic values for 
calculating the length of the edges in the traffic graph. 

Traffic data have spatial properties towards a location-
dependent query. If a control point is further away from its 
current position, the time when the mobile client will reach 
the control point will become later, and the current traffic 
conditions reported by the control points will have a higher 
probability to be different from the traffic condition when the 
mobile client is passing through the control point. In our 
proposed prediction scheme, we estimate the future traffic of 
an edge at the time when a mobile client will be on the edge. 
The length of an edge, Li, in the graph is a variable and is 
calculated as the product of the physical length of the road 
segment, pi, and its traffic condition, wi: Li= pi × wi 

The physical length of a road segment is a constant while 
wi is a variable. In the search of the best path searching, the 
value of w i is obtained from a time varying function, traffic(i,t)  
which returns the traffic condition of road segment i at time, t. 
The function, traffic(i,t) first calculates the predicted time (t), 
which is the estimated time when the mobile client will be on 
the starting point of road segment i. It is the summation of the 
current time and the predicted traveling time from its current 
position to the start point of the road segment, i. Note that the 
traffic condition returned from a road sensor of a road 
segment indicates the approximate time for a client to pass 
through the road segment. The predicted traffic of the road 
segment i at the predicted time (t) will be calculated using a 
linear extrapolation method where the future predicted value 
for data item x at time t is calculated as: x t = fx,n × t  + xc. 

 
5. Path Monitoring and Re-calculation 

While a mobile client is following the suggested path to its 
destination, the best path has to be closely monitored to 
ensure that it is still the best path to the destination. The data 
monitoring problem can be divided into two parts: 
(1) To monitor the best path information between the client 

and the server, which is serving the client, and;  
(2) To monitor the values of the traffic data, especially those 

cached data from other servers, to ensure that they are 
still temporally consistent for best path calculation.  

To resolve the first problem, the system may need to 
perform re-calculation when there is a change in traffic 
condition of the roads or the client’s movement is different 
from prediction. In principle, any change in traffic data even 
for the edges not in the path may affect the best path. The 
frequency of re-calculation affects the shortest path 
information to the client. However, on the other hand, it is 
important to minimize the monitoring overhead since the data 
values could be highly dynamic and the cost for the 
performance of the path-searching algorithm could be very 
high. To resolve the second problem, a traffic server needs to 
forward new values to refresh cached data items at other 
servers whenever it receives a new traffic update. The 
frequency of data forwarding affects the update processing 
workload and communication overhead for data transmission. 
 
5.1 Adaptive Push or Pull (APoP) 
5.1.1 Overview 

In this section, we will introduce an adaptive Push or Pull 
method, called adaptive Push or Pull (APoP) for maintaining 
consistency of cached traffic data. In APoP, a request may be 
served in Pull or Push modes. Conditions are defined to 
determine the switching between Push and Pull. The design 
objectives of APoP are: 
(1) To balance the workloads on the mobile network and at 

the server,  
(2) To improve the scalability of the system, and 



(3) To meet the data consistency requirements and arrival 
deadlines of the requests.  

In principle, the conditions for switching between Push 
and Pull are defined based on several factors: the current 
system workload, the urgency of the requests, and the size of 
the set of data items interested by each request. In general, the 
network overhead of using Pulling is higher than using 
Pushing while the processing overhead at the server is higher 
with Pushing than Pulling. Normally, Pushing can provide a 
closer monitoring of the best path than Pulling at the expense 
of a higher processing overhead at the server by adjusting the 
frequency for checking of pushing conditions. In addition, 
unlike conventional pulling schemes, the pulling period in 
APoP is assigned by the server. So, if the pulling time has 
arrived and the server does not receive the pulling request, the 
server will assume that the client has been disconnected from 
the network. Since a server may be serving multiple 
navigation requests, the server should serve the set of requests 
in a fair manner such that each request receives similar 
amount of server (defined in terms of service time) from the 
server. So, if the processing power of the server is P, then the 
average amount of workload to be assigned to serve a request 
is P/N where N is the number of concurrent requests in the 
server. The purpose is to prevent a navigation request from 
overloading the server and affecting the processing of other 
requests. 

 
5.1.2 Pull Mode 

In APoP, initially, a newly submitted request will be 
served in Pull mode, i.e., the client periodically sends a 
navigation request with its current position to the server. The 
reason is that the Pull approach can provide a higher degree 
of resiliency to server failure and at the same time it can 
control the workload at the server and on the network by 
adjusting the Pulling period. When it is not necessary to have 
a close monitoring of its shortest path, i.e., its arrival deadline 
is far from the current time, a larger Pulling period may be 
used in order to minimize the workloads at the server and on 
the mobile network. Each request in Pull mode is assigned a 
Pulling period bound, min_pp and max_pp. The next Pulling  
period is defined within this bound by the server based on:  
(1) The predicted workload for serving the request; and 
(2) The dynamic properties of the data items. 

Each request is assigned a workload index, which 
indicates the relative cost for performing the shortest path 
search for the request. The workload index is calculated as a 
function of the distance of the moving client from its 
destination, its speed and the workload index of its previous 
calculation. After defining the shortest path, the set of the 
control points, which are close to the shortest path, are 
defined as the set of interested data items of the request. The 
set of interested data items are the data items on the shortest 
path and those within a threshold distance from the shortest 
path. The changes in the values of the data items in the 
interested data item set have a higher probability of affecting 
the shortest path. Thus, if their rate of change is higher, the 
pulling period should be shorter. The dynamic properties of 
the data items can be calculated as the mean of the trends of 
the data items, i.e., in fx,n in our data model, of the data items 
in the interested data set.  

In serving a Pulling request, a traffic server may need to 
generate pulling request to other servers if it has cached data 
from other servers. The additional pulling not only increases 
the pulling case but also increases the delay for processing the 
requests. To resolve the problem, we may define a similarity 
bound on each data item. If the time-stamp of the current 

value of a cached data item is close to the current time and its 
trend is not large, the request for pulling to the server, which 
maintains the data item, may not be necessary. Even though a 
new version has been created, its value will be similar to the 
value of the cached data item  

 
5.1.3 Push Mode 
5.1.3.1 Pull to Push 

When the arrival deadline of a request is approaching 
and the workload of the database server is within system 
capacity, the system may switch to serve some of the requests 
to Push mode (Pull-to-Push) in order to minimize the mobile 
communication cost and to provide a closer monitoring of 
data items for the request. The selection of which requests to 
be switched to Push mode (Pull-to-Push) is based on the 
deadlines and the slacks of the requests. Note that when the 
deadline of a mobile client is approaching, normally, it should 
be close to its destination. Therefore, the processing overhead 
of the path-searching algorithm should be smaller comparing 
to the case where the deadline is far away. In order to prevent 
frequent re-calculation due to a highly variable value of an 
edge, if the predicted arrival time is smaller than the arrival 
deadline, re-calculation will be performed only when there is 
a change in traffic value of a path in the shortest path; and the 
change is an increase in value. 

The set of requests which are being served in Push mode 
are maintained in the push list and data structures for 
maintaining the state of the requests will be created by the 
system including the set of interested data items of the 
requests. Similar to the requests being served in Pull mode, 
each request (Q) in Push mode will be defined with a set of 
interested data items set, ID(Q). The union of the interested 
data items set of all the requests, which are in Push mode, is 
called server interested data item set. It means the server has 
to closely monitor the values of this set of data items. The 
changes in their values have a high probability in changing 
the best path. Again, the definition of the set of interested data 
items for a request is based on the shortest path and the 
defined threshold distance. 

When the workload at the server is heavy, some of the 
requests may be switched back to Pull mode (Push-to-Pull). 
The selection is again based on the deadlines, the slacks, and 
the update rates of the set of data items required by the 
requests, which are in the push list. If the total update rate of 
the interested data items is higher, switching it to pull mode 
can provide a greater saving in server workload.  

 
5.1.3.2 Minimizing Monitoring Overhead in Push 

The main concern in data monitoring using the Push mode 
is how to reduce the number of recalculation.  Not all changes 
in traffic data will affect the shortest path especially those 
changes are smaller. To minimize the number of recalculation, 
we may use a batching method for performing the 
recalculation. Since each request will have an estimated 
arrival time, we can calculate its slack time for meeting the 
arrival deadline. If the increase in traffic value of those edges 
on the shortest path is smaller than the slack, it does need to 
perform re-calculation. Although the best path at the client 
side may not still be the shortest path, the client should still 
meet its arrival deadline. On the other hand, if the total 
decrease in traffic data of those edges, which are in the 
interested data of a request but are not those edges on the 
shortest path, is not greater than the slack of the request, the 
system also does not need to perform re-calculation.  

 



5.2 Client Location Prediction 
As explained in Section 1, in processing the navigation 

request, it is important to maintain consistency between the 
current location of the client and the execution of the request 
since it is location-dependent. Uncertainty in location can be 
large when a client is being served in push mode. When 
performing the data monitoring, the server estimates the 
location of a mobile client for the calculation of the shortest 
path if it is serving the client in push mode. The estimation 
can be based on the information in the traffic graph. In the 
traffic graph, the length of a node indicates how long the 
client will take to complete the edge. In addition, the client 
will report its location if its location deviates from the 
estimated position more than a location update threshold. In 
this way, we can minimize the number of location update for 
those clients in push mode. 

 

6. Implementation and Operations  
6.1 Implementation 

In the implementation of RETINA, two basic components, 
database servers and mobile clients, are developed. The server 
program is implemented in VC++ 6.0 on Windows NT and the 
client program is implemented in both VC++ 5.0 for Win CE 
3.0 and VC++ 5.0 on Windows 2000. The server process 
consists of multiple flags for different functions including 
servicing requests from mobile client and for system 
management. A SQL server is connected to the server 
program at each site and it maintains a database containing 
the road connections of a district in Hong Kong. A simulated 
process is defined at the server to create new traffic data 
values randomly for the road segments maintained by the 
system. Each client machine, PC or handheld PC, is pre-
loaded with a set of maps for the roads defined in the database 
servers. The client program consists of multiple flags for 
displaying a map, getting and displaying traffic data on the 
map and generating different types of location-dependent 
requests. In this section we will main focus on the screen and 
menu design 
 
6.2 Screen Design and Operations  

The following screen is designed to setup the connection 
between server and client, user can input the server address 
and port number to connect to the navigation server according 
to that IP address and port number via a wireless network. 

 
Figure 4. Connect Screen 

The following is the main screen of the system. It shows 
the detailed map of the control points, static object icons and 
the current location of the mobile client itself. 

 
Figure 5. Navigation Screen 

In navigation, a moving client may select the destination 
by click on the control point sensor associate with it. After 

selecting the destination, the shortest path will be display as 
the green filled arrows. In navigation mode, only control 
points along the shortest path will be display and the path will 
be update, according to the traffic condition and displacement 
of the mobile client. 

 
Figure 6. Navigation Screen 

The Traffic screen displays the current traffic status 
on the road. If the traffic is in low density, a green 
triangle will be display, otherwise the triangle will 
trended to be red and indicate that the traffic is in high 
volume on that road segment. The Traffic screen is 
trigger by the “Traffic” menu item on the menu bar. 

 

7.   Conclusions and Future Works 
In this paper we presented the design issues involved in 

the development of our real-time navigation system.  Using a 
time-stamp with prediction scheme to model the traffic data 
and replicated dynamic directed graphs to organize the traffic 
data required for path searching and calculation, we hope to 
minimize deadline misses associated with navigational 
requests.  An adaptive push and pull technique is used to 
improve the scalability of the monitoring of traffic in our 
system. We are currently implementing the system on a 
Windows CE/ Windows 2000 based platform to test the 
performance of our system and the effectively of using the 
push and pull schemes for maintaining the temporal 
consistency of traffic data.   
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