
Recovery of Mobile Internet Transactions: Algorithm,
Implementation and Analysis

Shashi Anand B Krithi Ramamritham

Department of Computer Science And Engineering
Indian Institute of Technology, Bombay

Powai, Mumbai - 400 076, India

ABSTRACT
The increasing popularity of mobile devices and the support
of web portals towards performing transactions from these
mobile devices has enabled business on the move. However,
internet access from mobile devices is expensive and is sub-
ject to high rate of disconnections. For a user executing a
transaction with a web portal from a mobile device, the dis-
connection will require him to redo all the steps in the trans-
action on subsequent reconnection. This paper proposes a
recovery scheme to restore the most recent and valid(MRV)
response from the previous session, so that the effort towards
rework is minimized. The user, upon reconnection, can con-
tinue from the restored response without restarting from the
beginning of the transaction. The practicality of the scheme
has been demonstrated by implementing it in a WAP sys-
tem. The results from the implementation clearly indicate
the performance advantages that can be gained from this
recovery approach. The correctness of the scheme has been
established using a reasoning framework.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems–Transaction Pro-
cessing ; C.2.1 [Computer Communication Networks]:
Network Architecture and Design–Wireless Communication

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Mobile internet transaction, mobile transaction, internet trans-
action, recovery, WAP, WAP internet transaction

1. INTRODUCTION
The increasing popularity of wireless hand-held devices,

such as mobile phones, has expedited development of ap-
plications for these devices. Specialized internet portals are
being developed for accessing internet from these devices.
These portals cater to the restricted computational environ-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE’05, June 12, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-088-4/05/0006 ...$5.00.

ment, such as smaller display area and limited memory, of
these devices. Some of the internet portals support com-
mercial transactions to be executed from these hand-held
devices, thus enabling business on the move. This business
model is popularly known as M-Commerce.

Although M-Commerce enables business on the move, in-
ternet access from mobile devices is significantly expensive.
It involves substantial computational and monetary resources.
Moreover, the wireless networks are not as reliable as wired
networks and the probability of disconnection is higher in
these networks. Any disconnection while executing a trans-
action will require the user, upon reconnection, to redo the
entire sequence of steps that constitute the transaction. This
not only increases the cost incurred by the user for execut-
ing the transaction, but also impacts the performance of the
entire system, since disconnection results in pre-mature ter-
mination of transactions. Repeated attempts to successfully
complete the transaction will reduce the throughput of the
system.

Thus, upon reconnection, it is important to be able to re-
store an appropriate response from the previous session and
retry the rest of the transaction. The user can continue from
the restored response without restarting from the beginning
of the transaction.

The response restored to the user should be such that:
1. the response is valid - Between the time when the re-
sponse was served from the server and the time of restora-
tion, the resources, such as database, based on which the
response was generated at the server may have been modi-
fied and hence, the response is no longer valid. Any response
that is generated based on information in a response that
has become invalid is also invalid.
2. the response should belong to the transaction of interest to
the user - The user might be involved in transactions with
multiple websites at the time of failure. Upon reconnection,
he can access any of these websites. A valid response from
the requested website should be restored.

A recovery scheme that restores a response from the pre-
vious session should ensure that the above objectives are
satisfied. This paper proposes one such recovery scheme.

1.1 Related Work
Recovery techniques have drawn tremendous attention in

the literature on transactions. Most of the research efforts
have focused on design of recovery schemes for systems with
fixed hosts and do not have severe constraints on memory
and computational power. Since hand-held devices are char-

MSS

MSS

MSS

Gateway
WAP Web

Server

Network

1
2

2

33
4

1

4

User

1 1

44

Wireless

Network

Fixed

Fixed Network

Agent

Figure 1: Mobile Computing Environment

acterized by limited memory and computational power, the
existing recovery schemes for fixed systems cannot be ex-
tended directly to the mobile computing environment.

Phoenix/ODBC, a system described in [10], provides per-
sistent client-server database sessions by masking the database
server crash from the client. [21] proposes a protocol for
mobile transaction recovery in which the user agent com-
municates with the fixed host, known as Mobile Support
Station(MSS), of the mobile environment shown in Figure
1 through messages. These messages, logged at MSS, are
used to create the image of a mobile transaction during re-
covery. The recovery schemes in [28] are based on logging
recovery-related information in the MSS. This information
can be used to recover the user’s session upon re-connection
after disconnection. However, due to the mobility of the
hand-held devices, the recovery information should be prop-
agated from one MSS to another MSS during hand-off, thus
increasing the cost of hand-off operation. Some schemes
in [28] propagate the recovery related information among
the MSSs only when necessary for recovery. Such schemes
are known as Lazy Schemes, as against Eager Schemes in
which the recovery related information is propagated during
hand-off. The recovery scheme in [25] retains the recovery
information in the MSS where the information was gener-
ated while the mobile devices move within a certain range
of the MSS. The recovery information is transferred to a
different MSS only when the device moves out of the range.
The recovery scheme presented in [31] eliminates the need
to transfer the recovery related information among MSSs
by logging the information in the gateway. Upon reconnec-
tion, the scheme analyzes this information to identify a valid
response that can be restored to the user.

1.2 Contributions of the paper
This paper presents a recovery scheme to restore, upon re-

connection, a valid response from the previous user session.
This scheme differs from the scheme in [31] in the following
ways:
1. Recovery of transactions with multiple dependen-
cies: The scheme proposed in this paper supports recovery
of internet transactions in which a response is dependent
on information in multiple previous responses. The depen-
dency analysis scheme in [31] aborts on encountering such a
dependency.
2. Recover transaction of interest to the user: If the
user was involved in transactions with multiple websites at
the time of disconnection, the scheme in this paper recovers
the transaction that is requested by the user upon recon-
nection. However, the recovery technique in [31] recovers

the transaction in which the user was involved at the time
of disconnection. The recovered transaction may not be of
interest to the user.
3. Controlled logging at the gateway: The scheme
discussed here is a log-based scheme that logs recovery re-
lated information of responses from the website. Unlike
the scheme in [31] that logs the recovery information of
all the responses intercepted by the gateway irrespective of
whether the response is part of a transaction, this scheme
defines transaction boundaries and logs the recovery related
information of only the responses that belong to a transac-
tion. This will reduce significant storage overhead in envi-
ronments where not all interactions of a user with a website
correspond to a transaction.
4. Server generated response identifier: The scheme
in [31] relies on the server script name that is contained in
the URL of the user request to identify a response during
recovery. This dependence will not hold when portals have
a single content generator(For eg., Java Servlet) to generate
multiple responses. All these responses will have the same
name. Hence, it will not be possible to distinguish these
responses during recovery. The recovery mechanism in this
paper assigns a server generated identifier for each response.
This enables identification of responses independent of the
URL.

The recovery scheme has been implemented in Kannel -
an open source WAP gateway. The results obtained from
this implementation which indicate the performance bene-
fits that can be gained with this recovery approach are pre-
sented.1 The complexity and the correctness of the recovery
scheme are also established in this paper.

1.3 Organization of the paper
This paper is organized as follows: Section 2 provides an

overview of a typical mobile computing environment for ac-
cessing internet from hand-held devices. The notion of mo-
bile internet transaction and the associated concepts are es-
tablished in Section 3. The recovery scheme is discussed
in Section 4. The implementation details are given in Sec-
tion 5. Section 6 presents the results of testing and perfor-
mance evaluation of the recovery subsystem. A reasoning
framework[27] that is used for specification and reasoning
in loosely-coupled software systems is described in Section
7. The support offered by this framework is limited to basic
specifications. Hence, the framework has been extended to
support specification of advanced operations. These exten-

1We are consulting the Kannel group to submit the recovery
subsystem as a patch to the gateway.

sions are explained in Section 8. In Section 9, this reasoning
framework has been used to prove the correctness of the
recovery scheme. Finally, Section 10 offers the concluding
remarks.

2. MOBILE COMPUTING ENVIRONMENT
A mobile computing environment, such as WAP environ-

ment, is designed to enable wireless hand-held devices to
access a computer network while on the move. The environ-
ment has been developed to address the constraints such as
limited memory, low power CPU and small display area of
hand-held devices and low bandwidth in wireless networks.
This section provides an overview of a typical mobile com-
puting environment used to access internet from hand-held
devices.

2.1 Architecture
A typical mobile computing environment is as shown in

Figure 1. The components of the system and their functions
are as explained below:

User Agent: The user agent is the hand-held device used
to access internet content. Each such device, also referred
to as Mobile Host, will have an embedded protocol stack for
communicating over a wireless medium.

Mobile Support Station(MSS): The MSS is the fixed
host in the environment that communicates directly with
the user agent over wireless medium. Each MSS is respon-
sible for communicating with the user agents in a limited
geographical area known as cell. Each user agent can com-
municate only with the MSS that controls the cell to which
the agent belongs. As the agent moves from one cell to an-
other cell, the MSS with which it is communicating will be
changed to the MSS of the new cell. This phenomenon is
known as handoff in cellular parlance.

Gateway: The gateway is a fixed entity in the system
that enables the user agents to access internet through HTTP.
The gateway is the software interface between mobile en-
vironment specific protocol, such as WAP, and HTTP. It
is responsible for transformation between mobile requests
(responses) and HTTP requests(responses). For optimal
bandwidth utilisation, the mobile requests/responses are in
binary form. Hence, the transformation at the gateway in-
volves conversion between binary mobile requests(responses)
and textual HTTP requests(responses).

The gateway information is provided by the service provider
and the user will have to explicitly specify the gateway in
the user agent for accessing internet. All internet traffic
from the device will be routed through the gateway, even
while the user is on the move.

Web Server: The web server services the HTTP requests
over the internet by providing appropriate HTTP responses.

In the above system, internet access from a user agent
consists of the following steps:
1. The mobile device requests for the desired website. This
request will be forwarded to the gateway through the MSS
of the cell to which the device belongs.
2. The gateway transforms the request into HTTP request
and forwards it to the web server.
3. The web server serves the appropriate web page to the
gateway.
4. The gateway transforms the HTTP response from the
web server into a response for the user agent. This response
is forwarded to the user agent.

3. MOBILE INTERNET TRANSACTION
As discussed in Section 1, several internet portals support

business transactions to be executed from mobile devices.
We term such transactions as Mobile Internet Transactions.
This section formally defines Mobile Internet Transaction
and establishes the associated concepts of Response Depen-
dency Graph and Time-To-Live property of a web response.

3.1 Mobile Internet Transaction
Definition: A Mobile Internet Transaction(iTx) is a se-

quence of actions executed by a user from a hand-held device
on a desired website to achieve one or more goals.

Each action corresponds to a request from the user to the
desired website and is followed by an appropriate response2

from the web server.
Example 3.1: Consider an auction portal, where a user

can view the auction items and buy the items of his choice.
Here, the goal is to buy an item and the corresponding in-
ternet transaction consists of the following actions:

A0: Request for login page
A1: Log in to view/buy items
A2: Select an item type
A3: Specify the no. of items
A4: Confirm by entering the credit card number
A5: Log out

3.2 Response Dependency Graph
Each request in an internet transaction results in the exe-

cution of a script on the server that generates the necessary
response. The response so produced depends on the user
request. Also, it may depend on the information in one or
more previous responses. This dependency of responses over
each other can be formally defined as given below:

Definition: A response Ri is said to be dependent on
response Rj, denoted as Ri → Rj, if generation of Ri is
dependent on information in the response Rj .

Example 3.2: In Example 3.1, let the responses for actions
A2 and A3 be R2 and R3 respectively. Here, R2 contains
the information about the selected item type and allows the
user to specify number of items of the selected type. On
specifying the number of items, the response R3 specifies
the total cost and allows the user to enter the credit card
number. The total cost depends on the selected item type
and the number of items. The information about the num-
ber of items is a part of the user request. The information
about the selected item type is contained in the response
R2. Hence, R3 is said to be dependent on R2.

Since the source of information required for generating a
response is decided while designing the website, the depen-
dencies among the responses can be determined statically
while designing the site. A response R is dependent on all
other responses that contain the information required for its
generation.

We represent the actions that constitute an iTx along with
the dependencies of responses over each other as a graph
known as Response Dependency Graph.

Definition: A Response Dependency Graph(RDG) is a
directed graph representing the actions and the dependencies

2Throughout this paper, the terms request and response
refer to the request generated by the user agent and the
response generated by the server respectively. They do not
refer to any other actions in the user agent/server.

R1
List of
Items

R2
Item

Count
Entry

R3
Credit
Card

Entry

R4
Report

R5
Thank
You

R0
Login

A2 A3A1 A4 A5A0

Figure 2: RDG for Example 3.3

among the responses in an iTx. The nodes and edges of the
graph are as defined below:
Nodes: Each node in a RDG represents a response from
the web server.
Edges: There are two types of edges in a RDG as defined
below:
Dependency Edge: A dependency edge exists from a

node representing response Ri to a node representing re-
sponse Rj if the response Ri is dependent on response Rj.
It is denoted by →.
Action Edge: An action edge exists from a node repre-

senting response Ri to a node representing response Rj if the
user executes an action A in Ri to obtain Rj. It is denoted
by −− > and labeled with the corresponding action A.

The subgraphs of the RDG formed with edges of one type
- dependency edges or action edges - are acyclic.

Example 3.3: Let the responses corresponding to the ac-
tions in the internet transaction of Example 3.1 be R0, R1,
R2, R3, R4 and R5 respectively. Here, the responses R0, R1,
R2 and R3 allow the user to login, view the list of item types
and select an item type, specify the no. of items and enter
the credit card number respectively. The response R4 is a
report of the entire transaction. Let each of the responses
R2, R3 and R4 depend on its previous response. Then, the
RDG for this transaction will be as shown in Figure 2.

Example 3.4: If the portal allows accumulation and re-
demption of shopping points, then the user can redeem few
points while shopping at the portal. The final amount that
he has to pay is the total cost of the items minus the re-
demption value. The corresponding RDG will be as shown
in Figure 3. The symbols A6, A7 and A8 denote the actions
Redeem shopping points, Confirm redemption and Accept fi-
nal cost respectively. The responses R6 and R7 allow the
user to specify the no. of points to be redeemed and confirm
the redemption respectively. The response R8 summarizes
the final cost of the item.

R1
List of
Items

R2
Item

Count
Entry

R6

Points
Shoping
Redeem

R7

Redemp
Confirm

tion

R4
Report

R3
Credit
Card

Entry

R8
Summary

R5
Thank
You

R0

Login

A1 A2 A3 A4 A5A6 A7 A8A0

Figure 3: RDG for Example 3.4

3.3 TTL of a Web Response
A web response in an iTx that is generated based on re-

sources such as databases is valid only till the resources are
modified. This validity of a response is specified by the
server as an attribute of the response known as its Time-
To-Live (TTL).

Definition: The TTL of a web response is defined as the
time till when the response is valid.

Since the generation of a response is application depen-
dent, setting the TTL of a response is also application de-
pendent.

Definition: A response is said to be live at a given time
instant if its TTL is greater than that time instant.

Beyond the TTL of a response, the response is invalid and

all the responses dependent on it also become invalid. This
can be recursively defined as follows:
1. A response is invalid beyond its TTL
2. A response dependent on an invalid response is invalid

From the above definition, it is to be noted that a live
response may be invalid.

Example 3.5: In Example 3.3, if R2 is invalid at a particu-
lar time instant, then R3 is also invalid since it is dependent
on R2. Since R4 is dependent on R3, R4 is also invalid from
that time instant.

4. MOBILE INTERNET TRANSACTION
RECOVERY SCHEME

As discussed in Section 1, internet access from mobile
devices involves substantial computational and monetary
resources. Any disconnection while executing an internet
transaction requires that all the previous actions have to be
redone upon reconnection. This requires additional compu-
tational and monetary resources. This additional require-
ment can be minimised by automated recovery of the trans-
action in the previous session. This section describes the
recovery scheme being proposed in this paper for recovery
of mobile internet transactions.

4.1 Most Recent And Valid (MRV) Response
In an iTx that involves a sequence of actions with re-

sponse for each action valid for a limited period of time, any
recovery attempt on reconnection of the user after discon-
nection must restore a valid response belonging to the iTx
so that the amount of rework is minimised. This response to
be restored, henceforth referred to as the Most Recent and
Valid(MRV) Response, is recursively defined as given below:

Definition: Let R be the last response received(in the
iTx that is being recovered) by the user at the time of
disconnection. The MRV response to be restored to the
user,MRV (R), is defined w.r.t. this response R as follows:
If R is not dependent on any other response, then,

If R is live, MRV (R) = R.
Else, MRV (R) = NULL

Else, let the response R be dependent on responses R1, R2,
.....Rn. Let the MRV responses w.r.t. these Ris be Rv1

,
Rv2

,Rvn
respectively. Then,

If ∀i, Rvi
= Ri, then

If R is live, MRV (R) = R.
Else, MRV (R) = latest Ri on which R is dependent

Else, MRV (R) = Rvi
corresponding to the earliest Ri

on which R is dependent such that Rvi
6= Ri.

(1)

If MRV (R) is NULL, then no response can be restored to
the user by the recovery scheme. The user’s web request
should be forwarded to the web server to fetch the response
directly from the server.

Example 4.1: In the RDG shown in Figure 2, if the user
gets disconnected after obtaining response R3, the MRV re-
sponse among the responses R1,R2 and R3 will be restored
to the user. If R2 had become invalid, the response R1 will
be restored to the user if it is live. If all the responses - R1,
R2, R3 - were valid, the response R3 will be restored to the
user.

Example 4.2: Consider the RDG shown in Figure 3. Here,
let the user get disconnected after obtaining response R8.

On reconnection, since R8 is dependent on R2 and R7, the
response R8 will be restored only if both R2 and R7 are
valid and R8 is live. Else, if R2 is valid, the MRV response
among the responses R6,R7,R8 will be restored. Else, the
MRV response among R1,R2 will be restored.

4.2 The Role of Web Application in the
Recovery Scheme

The implementation of the recovery scheme to be de-
scribed in Section 4.4 requires that the web application should
add the HTTP headers listed below to each response that
belongs to a transaction. The information in these headers
will be logged at the gateway for use during any subsequent
recovery attempts.
1. Response ID: This is an unique identifier identifying
the response being served. This ID can be generated stati-
cally or dynamically depending on the web application.
2. TTL: This value indicates the TTL of the response. It
should be the absolute time till when the response being
served is valid. For a response that is always valid, the TTL
header should not be added.
3. Dependent Responses: This is a comma-separated
list of response identifiers specifying the responses on which
the current response being served is dependent. This de-
pendency information is available for the application as ex-
plained in Section 3.2. For each identifier in the list, the
response with the corresponding name should have been
served earlier. For a response that is not dependent on any
other response, the header should not be added.
4. Transaction Boundaries: Since an internet transac-
tion consists of a series of actions and the responses that
form the transaction boundaries are determined by the ap-
plication, the application should add an header named TrxBe-
gin to the response that forms the beginning of the transac-
tion. Similarly, an header named TrxEnd should be added
to the response that forms the end of the transaction. For all
intermediate responses, neither of these headers - TrxBegin
and TrxEnd - should be added.

Example 4.3: In the iTx in Example 3.3, R1 is the be-
ginning of the iTx and R4 is the end of the iTx. Hence,
the headers TrxBegin and TrxEnd should be added to the
responses R1 and R4 respectively.

4.3 On-Demand Recovery
Upon reconnection from a user following a disconnection

while executing an internet transaction, automatic restora-
tion of the MRV response from the website requested by the
user may be unwarranted. For example, if a user experi-
ences a disconnection while reserving an air ticket with an
airline portal and on subsequent reconnection, he wants to
abort the reservation and reserve in a different flight, au-
tomatic restoration of the MRV response from the previous
reservation transaction is unwarranted. Hence, the recovery
scheme being discussed in this paper posts a query page to
the user upon reconnection to check if he wants the previous
session to be restored. Recovery is attempted on receiving
an affirmative response from the user. Else, the user’s re-
quest is forwarded to the web server. We term this concept
of recovering based on user’s need as On-Demand Recovery.

4.4 The Recovery Scheme
This section describes the recovery scheme in terms of the

functions that constitute the scheme. This scheme is a log

based gateway resident scheme. In order to restore the MRV
response to a user upon reconnection, the recovery scheme
is composed of the following functions:

4.4.1 Maintenance of Recovery Log
The recovery subsystem maintains a recovery log that

contains information about the responses that is required
for transaction recovery. This log contains records for each
request-response pair corresponding to all transactions that
are being executed from mobile devices that are configured
to access internet through the gateway. Each record con-
tains the following attributes:
1. User ID: This attribute identifies the mobile device. For
simulated devices, the IP address of the host on which the
device is simulated is saved in this field. For real devices,
the MSISDN(Mobile Station ISDN) number can be used to
identify the device. The MSISDN number is the number
used to identify the mobile subscriber.
2. Domain Name: This attribute specifies the website
associated with the transaction to which the given request-
response pair belongs. For example, if the request URL is
http://www.domain-name.com/login.jsp, the value saved in
this field is www.domain-name.com.
3. Request Time: This field specifies the time at which
the request arrived at the gateway. Since the requests arrive
at the gateway in the same sequence as that dispatched from
the mobile device, this attribute identifies the sequence of
requests.
4. Response ID: This attribute identifies the response
from the website given by the value of domain name at-
tribute. The value of the response identifier specified by the
web application through the HTTP header is used to popu-
late this field.
5. Response Headers: This field contains the headers
received in the response from the web application.
6. Response Body: This field contains the response body
received from the web application.
7. TTL: This attribute specifies the time till when the re-
sponse stored in the given record is valid. The value in the
TTL header set by the web application is used to fill this
field.
8. Dependent Responses: This attribute is a comma-
separated list of response identifiers obtained from the web
application through the HTTP header. It specifies the re-
sponses on which the current response is dependent.
9. Cookies: All the cookies despatched by the web appli-
cation through the response corresponding to the given log
record are logged in this field of the log record.

The information required for creating a log record can
be fetched from the requests and responses while processing
them at the gateway. The creation/updation of log record
while processing requests and responses is discussed in Sec-
tion 4.4.3 and Section 4.4.4.

4.4.2 Identification and Recording of Connections
from Mobile Devices

The recovery subsystem in the gateway maintains a log
of connections from mobile devices to the recovery subsys-
tem. This log contains a record for each connection to the
subsystem. The information in this log is used to determine
when recovery is to be attempted as explained in Section
4.4.3. Each log record contains the following attributes:
1. User ID: For simulated devices, the source IP address

of the host on which the device is simulated is recorded. For
real mobile devices, the MSISDN number is recorded.
2. Session ID: This attribute has the session ID of the
session corresponding to the connection.
3. Connection Status: This attribute is used to track the
status of the connection. The status is set to 0 when a new
record is created. The status=0 specifies a new connection.
Subsequently, this attribute is updated by the request pro-
cessing module as explained in Section 4.4.3.
4. URL: This attribute specifies the initial URL associ-
ated with the connection. This attribute is updated before
beginning recovery as explained in Section 4.4.3.

The recovery subsystem creates or updates a connection
log record when a connection is established from a mobile
device to the subsystem. The latter operation, i.e., updating
a connection log record, is done when the log contains a
record for a connection from the mobile device with whom
the new connection is being established. This is possible
when the gateway containing the recovery subsystem fails
and starts up when the user is executing a transaction. A
request from such a user immediately following the gateway
start-up will be preceded by a connection request from the
mobile device to the gateway.

The recovery subsystem deletes a connection record from
the connection log when the mobile device corresponding to
the connection disconnects from the gateway.

4.4.3 Processing User Requests
Since each request from a mobile device will have to pass

through the gateway, the gateway can intercept these re-
quests. Each of these intercepted requests is processed by
the recovery subsystem in the gateway as given below:
1. Extract the user ID and the requested URL from the in-
coming request. Since the URL is required by the gateway
in order to forward the request to the web server, every gate-
way will have an API to extract the URL from the request.
Such an API can be readily used by the recovery subsystem
to extract the URL for logging the request.
2. Determine the website from the URL extracted in step
(1).
3. If the status in the connection log record for the connec-
tion from the given user ID is 0, then,

(a) If the log contains atleast one record correspond-
ing to the user ID and website determined in steps (1) and
(2) respectively, the user is trying to connect to a website
with which he was executing an iTx before disconnection.
Clearly, the request is a re-connection attempt. Hence, re-
covery can be attempted to restore the MRV response from
the website to the user. To perform on-demand recovery,

i. Send a WML page to the user querying if he wants
the previous session to be recovered. Form the query page
such that the user’s reply is encoded in the reply URL.

ii. Update the status in the connection log record to
1.

iii. Store the requested URL in the URL field of the
connection record.

(b) Else, the request is to a different website. Hence,
purge the log records belonging to the user, update the sta-
tus in connection record to 2, log the request and forward
the request to the web server as explained in step (5).
4. Else, if the status in the connection record is 1, the cur-
rent request is either a reply to the query for on-demand
recovery or a new request. Hence,

(a) If the request URL has parameters specifying recov-
ery to be attempted,

i. Restore the MRV response from the website to the
user. This can be done by identifying the log record corre-
sponding to the MRV response as explained in Section 4.4.5.
On identifying the log record, fetch the response header, re-
sponse body and the cookies from the log record to form
a response that can be restored to the user. If there is no
response that can be restored, log the request and forward
it to the web server as explained in step (5). Use the URL
in the URL field of the connection log record to forward the
request.

ii. Purge the invalid log records and those correspond-
ing to the user’s interaction with other websites. This garbage
collection process is discussed in Section 4.4.6.

iii. Update the status in the connection log record to
2.

(b) Else, if the request URL has parameters specifying
not to attempt recovery, purge the log records belonging to
the user, update the status in connection record to 2, log
the request and forward the request to the web server as
explained in step (5). Use the URL in the URL field of the
connection log record to forward the request.

(c) Else, the URL is to a different site. Hence, process
the request as follows:

i. If the log contains atleast one record corresponding
to the user ID and website in the new URL, recovery can
be attempted again to restore the MRV response from the
website to the user. To perform on-demand recovery,

A. Send a WML page to the user querying if he wants
the previous session to be recovered. Form the query page
such that the user’s reply is encoded in the reply URL.

B. Update the status in the connection log record to
1.

C. Store the requested URL in the URL field of the
connection record.

ii. Else, purge the log records belonging to the user, up-
date the status in connection record to 2, log the request
and forward the request to the web server as explained in
step (5).
5. Else, if the status in the connection record is 2, the re-
quest is from an existing connection. Hence,

(a) Log the request in the recovery log. The logging pro-
cess is follows:

i. Create a log record with attributes as listed in Sec-
tion 4.4.1.

ii. Set the value of attributes user ID and domain-
name to respective values of user ID and the domain name
of the website corresponding to the current request.

iii. Set the value of request time attribute to current
time at the gateway.

iv. Add the record to the log.
(b) Forward the request to the web server.

4.4.4 Processing Response obtained from Web Server
The HTTP response obtained from the web server is pro-

cessed by the recovery subsystem as given below:
1. Determine the website from where the response is re-
ceived and the user ID to whom the response is destined.
Since this information is required by the gateway for for-
warding the response to the user, it will have APIs to obtain
this information from the response. Such APIs can be used
readily by the recovery subsystem.

2. Identify the most recent log record corresponding to the
user ID and the website determined in step (1). This log
record was created when the request corresponding to the
response being processed was intercepted by the gateway.
3. Check if the log contains a record with the same response
ID as that of the response being processed. The response ID
of the response being processed can be found in the header
as explained in Section 4.2.
4. If such a log record exists, use the log record for further
processing. Set the request time in the record to that in the
most recent record that was identified in Step (2) and delete
that most recent record.
Else, use the most recent record identified in Step (2) for
processing in subsequent steps.
5. If the response has an header named TrxBegin, then the
response is the beginning of an internet transaction. Hence,
update the log record being processed as explained in step
(8) and forward the response to the user.
6. Else, if the response has an header named TrxEnd, then
the internet transaction has ended. Hence,

(a) Update the log record as explained in step (8) and
forward the response to the user.

(b) Record that the transaction by the given user with
the given web site has been completed in a log of completed
transactions. On receiving the acknowledgment from the
user for the response, delete all the transaction log records
corresponding to the user ID and the website under consid-
eration.
7. Else, the response does not have either of the headers -
TrxBegin and TrxEnd. Hence,

(a) If the log contains more than one record correspond-
ing to the user and website under consideration, the user is
in the midst of a transaction. Hence, update the log record
being processed as explained in step (8).

(b) Else, the single log record in the log was created when
the request corresponding to the response being processed
was intercepted by the gateway. Since the response does not
have either of the headers - TrxBegin and TrxEnd, the re-
sponse does not belong to a transaction. Hence, delete the
record from the log and forward the response to the user.
8. Update the log record as follows:

(a) Extract the values of headers named TTL, Response
ID and Dependent Responses from the response and update
the corresponding attributes in the log record with these
values. If the header named TTL is not found, then the re-
sponse is valid forever. Hence, set the TTL in the log record
to a special value(For eg., 0) indicating this validity of the
response.

(b) Set the value of attributes - response header and
response body - to response header and response body ob-
tained from the web server.

(c) Extract the cookies from the response to fill up the
cookies field of the log record.

4.4.5 Perform Internet Transaction Recovery
On receiving a request from a mobile device, the gate-

way determines if a transaction has to be recovered for the
user as explained in Section 4.4.3. If so, the MRV response
from the requested website is restored by analyzing the de-
pendencies and validity of the previous responses from the
website that have been logged in the recovery log. This can
be accomplished by identifying the log record correspond-
ing to the MRV response and forming a response using the

information in the log record. The MRV response can be
identified as given below:
1. Identify the log record corresponding to the most recent
response R from the website for the user under considera-
tion.
2. Determine the MRV response w.r.t. the response R as
given below:

(a) If the response R is not dependent on any other re-
sponse, then,

i. If its TTL is greater than current time or the TTL
specifies that the response is valid forever, the MRV response
w.r.t. R is itself.

ii. Else, there is no valid response w.r.t. the response
R that can be restored.

(b) Else, process the responses on which the response R
is dependent in the increasing order of their request times to
determine the MRV response w.r.t. the response R as given
below:

i. For each response Ri on which the response R is
dependent, determine the MRV response Rvi

w.r.t. the
response Ri by recursive application of the step (2). If
Ri = Rvi

, then the response Ri is valid. Else, Ri is in-
valid.

ii. If all the responses on which the response R is de-
pendent are valid and R is live, i.e., the TTL of the response
R is greater than the current time or it specifies that R is
valid forever, then the response R is the MRV response.

Else, if R is not live, then the latest response on which
R is dependent is the MRV response.

iii. If any response Ri is invalid, then restore the MRV
response Rvi

w.r.t. the response Ri.
iv. If such a response Rvi

is not available, then the
response Rj immediately prior to the response Ri, in the
list of responses on which R is dependent in the increasing
order of the request time, is the MRV response w.r.t. the
response R.

v. If such a response Rj is not available, there is no
valid response that can be restored.

If there is a disconnection during the recovery process, on
subsequent connection attempt, the recovery process will be
restarted. Let the response that was identified for restora-
tion during the initial recovery attempt be R. Since the log
records for responses beyond the response R are purged dur-
ing recovery(garbage collection), the log contains records for
responses till R. Hence, the recovery process will restore the
MRV response w.r.t. the response R.

4.4.6 Garbage Collection of Log Records
When the number and length of mobile internet transac-

tions passing through a gateway integrated with the recovery
subsystem increases, the number of log records at the gate-
way also increases. Hence, the gateway may experience a
storage crunch. To cope with this problem, the log records
corresponding to the responses that are no longer useful for
any subsequent recovery operations can be purged. This
garbage collection process, performed after recovering an iTx
for a user, consists of the following steps:
1. Identify all the log records corresponding to the user for
whom the transaction is being recovered. Let this set of
records be S.
2. Let the request time corresponding to the response being
restored to the user be t. Let S1 ⊂ S be the set of log records
that correspond to the website w.r.t. which the transaction

is being recovered. Let S2 = S − S1 be the set of all other
log records corresponding to the user.
3. Delete all the log records in S1 whose request time is
greater than t.
4. Delete all the log records in S2.

The log records of a successfully completed iTx are purged
from the recovery log while processing the last response of
the iTx as explained in step (6) of Section 4.4.4.

4.4.7 Persistent Logging
The gateway deployed in a computer system is prone to

crash due to several reasons such as software bugs, hardware
errors, etc. In such an event, the information in connec-
tion maintenance log and recovery log maintained in volatile
memory will be lost. When the gateway is restarted, recov-
ery can no longer be attempted for reconnecting users. In
order to make the failure of gateway transparent to users
w.r.t. transaction recovery, the log records should be per-
sisted onto a stable storage. While starting the gateway, the
logs in stable storage can be used to initialise the in-memory
logs.

A stable version of the logs can be maintained by
1. Updating the stable storage during any creation/ upda-
tion/deletion operations on the connection maintenance log
by connection maintenance module and request processing
module.
2. Updating the stable storage during any updation/ dele-
tion operations on the recovery log by response processing
module and garbage collection module. The log record cre-
ated by the request processing module need not be added
to the stable storage since a response cannot be restored to
a user until it has been obtained from the server.

Example 4.4: Illustration of internet transaction recovery
by the recovery subsystem
Consider the RDG in Figure 3. Let the user get discon-
nected after obtaining response R8. At this instant, the
recovery log will contain records for responses R1, R2, R6,
R7 and R8. Upon reconnection, the recovery subsystem at
the gateway will record the connection attempt. On subse-
quent request to the same website, the recovery subsystem,
while processing the request, will check the log to find that
there are records pertaining to an iTx with the website cor-
responding to the current request. Hence, it will identify
the connection attempt as a reconnection and trigger the
recovery process. The recovery process will analyze the de-
pendencies among the responses R1, R2, R6, R7 and R8 to
identify the MRV response that can be restored to the user.
This analysis will proceed as explained in Example 4.2. Fol-
lowing the recovery, the log records that are later than the
response being restored will be purged from the log.

4.5 Location of Recovery Subsystem
In order to restore the MRV response as defined in (1), the

information about the responses w.r.t. recovery3 should be
accessible to the recovery subsystem for performing the de-
pendency analysis and validity checks. Hence, the recovery
subsystem can be located anywhere in the path of a response
shown in Figure 1 from the web server to the user agent, i.e.,
web server, network elements, gateway, MSS and the user
agent. The important characteristics of these entities w.r.t.
implementing recovery subsystem are as given below:

3The required information consists of the dependency list,
TTL, etc. as discussed in Section 4.2

1. User Agent: The user agent is characterized by con-
strained computational and storage facilities. Long internet
transactions might require considerable storage space for ac-
commodating the recovery related information.
2. Network Elements: The data is not guaranteed to tra-
verse the same set of network elements from the web server
to the user agent for every response.
3. Web Server: The location of the recovery logic in the
web server imposes additional load on the server since the
responses have to be logged for each response being served,
in addition to serving the response. Also, since the wire-
less environment has a high probability of disconnection,
repeated recovery attempts will have significant impact on
the performance of the web server.
4. MSS: If the recovery subsystem is implemented at the
MSS, the recovery related information logged at a MSS should
be propagated to the next MSS during the hand-off of the
mobile device. This increases the overhead of the hand-off
operation.
5. Gateway: The gateway is a fixed entity in the system
through which all the user requests and the corresponding
responses are routed. The gateway does not suffer from
any memory constraints. Moreover, each gateway caters
to a limited number of users as determined by the service
provider. Hence, recovery subsystem in the gateway will be
responsible for recovering transactions for this limited set of
users.

Based on the above considerations, the gateway is an opti-
mal location for implementing the recovery subsystem. Also,
the location of the recovery subsystem in the gateway makes
the recovery process transparent to user and the server.

4.6 Complexity of the functions in the
Recovery Scheme

The complexity of the functions that constitute the recov-
ery scheme are established below:

4.6.1 Request Processing
The request processing functionality involves checking the

connection log and inserting log records to the recovery log.
Since the connection log can be checked by linear search and
log record can be added to the recovery log in constant time,
the request processing is a O(n) process.

4.6.2 Response Processing
The processing of a response involves

1. Retrieving the log records corresponding to the user and
the website under consideration.
2. Updating a log record. Since retrieving the log records
corresponding to the user and the website under consider-
ation involves searching the log, it can be accomplished by
linear search. The process can be optimized by indexing
the log records on user ID. The process of updating the log
records can be done in constant time. Hence, response pro-
cessing is a O(n) process.

4.6.3 Transaction Recovery
The recovery operation which involves recursively check-

ing the validity of the responses on which a response is de-
pendent is equivalent to Depth First Traversal(DFT) of the
RDG. Since the complexity of DFT on a graph G(V,E) is
θ(|V |+ |E|), the recovery operation is of the order θ(n+m),

Processing
Response

Module

Bearer Box

WAP Box

SMS Box

Module
Maintenance
Connection

Request
Processing

 Module

Transaction
Recovery
Module

Module
Collection
Garbage

Module
Logging

Persistent

Recovery SubsystemKannel Gateway

Recovery Enabled Kannel Gateway

Figure 4: Architecture of Recovery Enabled Kannel Gateway

where n is the number of responses in the log corresponding
to the iTx being recovered and m is the number of edges in
the RDG with these n responses.

4.6.4 Garbage Collection
The garbage collection process involves searching the log

for all records corresponding to the user under consideration
followed by deleting appropriate records. Since this can be
accomplished by linear search, the garbage collection is a
O(n) process. However, this can be optimized by indexing
the log records on user ID.

5. IMPLEMENTATION OF THE
RECOVERY SCHEME

The recovery scheme discussed in Section 4 has been im-
plemented in WAP[7] environment using an open-source WAP
gateway - Kannel WAP gateway[2]. This section provides
an overview of Kannel’s architecture followed by implemen-
tation details of the recovery scheme.

5.1 Architecture of Kannel
Kannel is a open-source WAP and SMS gateway whose de-

velopment was started by Wapit Ltd. It is now co-ordinated
by Kannel Group consisting of Trigenix Ltd., Wapme Sys-
tems and Global Networks Inc. It has been certified as one of
the 3 WAP reference gateways for OpenGroup certification
of user agents implementing WAP stack, henceforth referred
to as WAP devices.

Kannel WAP gateway consists of 3 processes(boxes):
1. Bearer Box: This process implements the datagram
layer of WAP stack[7] and connects to the WAP devices.
It intercepts the messages from WAP devices and forwards
them to WAP and SMS boxes.
2. WAP Box: This process implements the WAP stack[7]
above the datagram layer and is responsible for processing
the WAP messages despatched from the bearer box. Its
functionality includes transforming WAP requests to HTTP
requests, despatching these HTTP requests to the web server,
intercepting the HTTP response from the web server for con-
verting it into WAP response and forwarding it to the WAP
device through the bearer box.
3. SMS Box: This process implements the SMS gateway
functionality. It receives the SMS messages from the bearer
box, interprets them as service requests and responds to
them in appropriate way.

Typical installation of Kannel consists of one instance of
bearer box and one or more instances of WAP and SMS
boxes. The bearer box multiplexes the requests among the
WAP/SMS boxes.

5.2 Implementation of the Recovery Scheme
The proposed recovery scheme has been implemented and

integrated with the WAP Box of Kannel. This recovery sub-
system is initialised by the start-up process of the WAP Box.
The initialisation process consists of creating the (i) recov-
ery log explained in Section 4.4.1 and the (ii) connection
record log explained in Section 4.4.2. The recovery subsys-
tem implements persistent logging and hence, during start-
up, these logs are initialised using the logs in stable storage.
All subsequent operations on these logs are executed by the
modules in the recovery subsystem listed below.

The architecture of the Kannel gateway integrated with
the recovery subsystem is as shown in Figure 4.

The recovery subsystem consists of the following modules:
1. Connection Maintenance Module: This module
is invoked by the WAP box, when it receives a connec-
tion/disconnection event from a WAP device. This module
is responsible for maintaining the list of connections from
WAP devices required to detect if a user’s transaction in
the previous session has to be recovered, as explained in
Section 4.4.2.
2. Request Processing Module: This module is invoked
by the WAP box after transforming the WAP request from
the user to HTTP request. It is responsible for processing
the request from the user as explained in Section 4.4.3. This
module checks if transaction recovery should be attempted
for the user whose request is being processed. If so,

(a) it invokes the transaction recovery module to identify
the appropriate response to be restored to the user.

(b) it invokes the garbage collection module to purge
the log records that are no longer useful for any subsequent
recovery operations. Else, it extracts the parameters nec-
essary for creating the recovery log record from the HTTP
request and creates the log record, as explained in Section
4.4.3
3. Response Processing Module: This module is in-
voked by the WAP box when the box receives an HTTP
response from the web server. This module is responsible
for processing the response obtained from the web server, as
explained in Section 4.4.4.

4. Transaction Recovery Module: This module is in-
voked by the Request Processing Module if a transaction is
to be recovered for the user whose request is being processed.
It is responsible for analysing the dependency and validity
of appropriate responses logged in the recovery log to iden-
tify the most recent and valid response from the previous
session to be restored to the user, as explained in Section
4.4.5.
5. Garbage Collection Module: This module is invoked
by the Request Processing Module after identifying the re-
sponse to be restored to the user. It is responsible for iden-
tifying and purging the log records that are no longer useful
for any subsequent recovery operations, as explained in Sec-
tion 4.4.6.
6. Persistent Logging Module: Persistent logging has
been implemented in the recovery subsystem using SQLite
database as the stable storage. This module consists of two
components:

(a) SQLite Library: This component forms the in-
terface to the SQLite database and provides API calls for
performing database operations.

(b) Interface for the recovery subsystem: This
component bridges the recovery subsystem with the SQLite
library. This facilitates persistent logging by transform-
ing the calls from the recovery subsystem to appropriate
database operations of the SQLite library.

6. TESTING OF THE RECOVERY
SUBSYSTEM

The recovery subsystem, implemented as discussed in Sec-
tion 5, was subjected to functional and performance tests.
The results from these tests indicate several performance
benefits that can be obtained in the mobile environment
using the recovery subsystem. This section discusses these
tests and presents the results obtained from these tests.

6.1 Recovery Supporting Websites
Testing the recovery subsystem requires the websites to

provide the additional information listed in Section 4.2. We
call the websites that conform to these requirements as Re-
covery Supporting Websites. Two such sites have been de-
veloped to test the implementation of the recovery scheme.
These websites support simple airline reservation and auc-
tion transactions respectively.

6.2 Functional Testing
Testing the recovery subsystem consists of 2 phases:

1. Self testing with WAP device simulator
2. System testing with WAP device

6.2.1 Self Testing
The first phase of the testing has been completed using

Winwap[6] - a micro browser that serves as a WAP device
simulator. Some of the important test scenarios included
testing by disconnecting while being in the midst of a single
iTx, multiple interleaved iTxs, testing with responses that
are dependent on multiple previous responses and testing
by reconnecting after one or more responses have become
invalid.

When recovery was attempted in each of the above sce-
narios, the corresponding MRV response was restored to the
user.

6.2.2 System Testing
System testing of the recovery subsystem with a WAP de-

vice requires setting up the environment discussed in Section
2. With reference to the infrastructure shown in Figure 1,
the recovery subsystem can be tested in any of the following
ways:

1. GPRS Mode: Testing in this mode requires the follow-
ing setup:

(a) Install the recovery supporting websites in machines
with public IP address so that these websites are accessible
as internet sites.

(b) Obtain access to a test gateway of the service provider
and install the recovery subsystem in the gateway.
In this mode, testing proceeds as given below:

(a) Configure the WAP device to use the test gateway
of the service provider.

(b) Access the recovery supporting websites like any other
internet website and execute internet transactions with these
sites.

(c) Execute the test cases that were used for self testing.
Support required from the service provider: Setting
up the environment for testing as described above requires
the following support from the service provider:

(a) Access to a test gateway of the service provider
(b) Installation of the recovery subsystem in the gateway

2. GSM Circuit Switched Mode: Accessing internet in
this mode consists of dialing up the service provider from
the WAP device. The test setup for testing the recovery
subsystem is as given below:

(a) Connect the computer running the bearer box of the
gateway to a telephone line through a modem.

(b) Configure the computer to start up PPP when the
modem answers an incoming call. PPP(Point-to-Point Pro-
tocol)[29] is the network connection protocol used between
the WAP device and the computer.

(c) Install recovery subsystem in the gateway.
With this setup, the testing proceeds as follows:

(a) Configure the WAP device to access internet through
dial-up mode. Use the telephone number of the line con-
nected to the computer containing the bearerbox as the dial-
up number.

(b) Dial up and access recovery supporting websites like
any other internet site. Execute internet transactions with
these sites.

(c) Execute the test cases used for self-testing.
Support required from the service provider: Setting
up the environment for testing as described above requires
the following support from the service provider:

(a) Service provider should support GSM data connec-
tion.

Since the support required from the service provider for set-
ting up the test environment couldn’t be obtained, system
testing of the recovery subsystem couldn’t be performed.

6.3 Performance Testing
Experiments were conducted to measure/compare the per-

formance of the recovery subsystem and performance related
parameters of mobile internet transaction environment. These
experiments and their results are discussed below:

6.3.1 Experiment 1: Measurement of Average
Completion Time of an iTx and Average
Throughput

Aim
To compare the

1. average iTx completion time in recovery enabled WAP
system with that in WAP system devoid of the recovery
subsystem.

2. average throughput(No. of iTxs per second) in recovery
enabled WAP system with that in WAP system devoid of
the recovery subsystem.

Procedure
1. Enable the recovery subsystem in the WAP system.
2. Subject the recovery subsystem to varying number of
simulated concurrent iTxs. The iTx described in Example
3.4 was used for this experiment.
3. Make all the concurrent iTxs to experience a connec-
tion drop after obtaining the response R3. Then, restart
the transaction from the response restored by the recovery
subsystem.
4. Measure the average iTx completion time and average
throughput(No. of iTxs per second) for each case of Step
(2). The average throughput is given by (No. of iTxs / total
time).
5. Repeat the above procedure in WAP system devoid of
recovery subsystem. In this case, in Step (3), restart the
transactions from the beginning.

Result
The comparative graph of the average iTx completion time
and the average throughput in the two environments dis-
cussed above are as shown in Figure 5 and Figure 6.

Inference
1. From the graph shown in Figure 5, it can be inferred
that the average iTx completion time decreases in recovery
enabled WAP system, i.e., a transaction can be completed
sooner in a recovery enabled WAP system in relation to
WAP system devoid of recovery subsystem.
2. From the graph shown in Figure 6, it can be inferred
that the average throughput increases in recovery enabled
WAP system, i.e, more iTxs can be executed in recovery
enabled WAP system in a given time period in relation to the
number of iTxs that can be executed without the recovery
subsystem.

6.3.2 Experiment 2: Measurement of Overhead of
the Recovery Subsystem on the Gateway

Aim
To weigh the overhead imposed by the recovery subsystem
in the gateway during normal operation.

Procedure
1. Enable the recovery subsystem in the WAP system.
2. Subject the gateway to varying number of simulated con-
current users requesting a web page.
3. Measure the average time for processing a request-response
pair at the gateway in each of the cases in Step (2).
4. Repeat the above procedure by disabling the recovery
subsystem.

Result
The data obtained in this experiment is plotted as shown in
Figure 7.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

A
vg

. i
Tx

 C
om

pl
et

io
n

Ti
m

e(
se

co
nd

s)

No. of Concurrent iTxs

Recovery Enabled
Recovery Disabled

Figure 5: Comparison of Average Time for an iTx

 0

 5

 10

 15

 20

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (N

o.
 o

f i
Tx

s
pe

r s
ec

on
d)

No. of Concurrent iTxs

Recovery Enabled
Recovery Disabled

Figure 6: Comparison of Throughput

Inference
From the Figure 7, it can be inferred that the overhead im-
posed by the recovery subsystem on the gateway is marginal,
even at high loads.

6.3.3 Experiment 3: Measurement of Average
Recovery Time by the Recovery Subsystem

Aim
To measure the average time taken by the recovery subsys-
tem for recovering an iTx

Procedure
1. Subject the recovery subsystem to varying number of
simulated concurrent users executing the iTx described in
Example 3.4.
2. In each case of Step (1), make all the users experience a
connection drop after obtaining the response R3.
3. On reconnection, restore the MRV response to each user
and measure the average time taken by the recovery subsys-
tem for recovering the iTx per user.

Result
A plot of the average time to recover an iTx is as shown in
Figure 8.

Inference
From the graph in Figure 8, it can be inferred that the time
for recovering an iTx increases linearly with the number of
concurrent users requiring recovery at the gateway.

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

A
ve

ra
ge

 S
er

vi
ce

 T
im

e
fo

r a
 W

A
P

 R
eq

ue
st

(s
ec

on
ds

)

No. of Concurrent Users

Recovery Enabled
Recovery Disabled

Figure 7: Overhead of Recovery Subsystem on Gate-
way

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

A
ve

. T
im

e
fo

r R
ec

ov
er

y
(s

ec
on

ds
)

No. of Concurrent Users

Figure 8: Performance of Recovery Subsystem

7. A FRAMEWORK FOR SPECIFYING AND
REASONING IN LOOSELY
COUPLED SOFTWARE SYSTEMS

Software systems built as collaborative systems consisting
of several subsystems designed to be compatible with a pre-
defined interface behaviour are known as Loosely-Coupled
Software Systems. The subsystems communicate through
asynchronous messages exchanged among them. The be-
haviour of such a software system largely depends on the
behaviour of the modules that constitute the system and
the interaction among these modules. These modules have
to interact in a predetermined manner for the required be-
haviour of the system. Precise specification of the interac-
tions is imperative to achieve this behaviour. This section
describes a framework[27] for specifying these interactions
among the components of a loosely-coupled software sys-
tem. The framework also supports reasoning about interest-
ing properties of such a system using these specifications. In
Section 9, the correctness of the recovery scheme discussed
in Section 4 has been proved using this framework.

The framework to be described for specifying and reason-
ing in software systems is based on the notion of actions,
protocols and guarantees. These concepts are explained in
the ensuing sections.

7.1 Actions
Interactions between subsystems in a system consists of

a set of messages exchanged between them. In the current
framework, these messages are represented with the notion
of action.

Definition: An action, in the current framework, is the
representation of a message despatched from one subsystem
to another subsystem.

The subsystem invoking an action is referred to as the
source subsystem of the action. The subsystem on which
the action is invoked is referred to as the destination subsys-
tem of the action. Each message also consists of parameters
required for the execution of the action at the destination
subsystem.

Notation: An action is denoted by a tuple consisting
of the initials of the subsystems involved in the action, the
message represented by the action and the parameters of the
message as given below:
<action name> : (<source subsystem>, <destination subsystem>,
<message> : <comma separated list of parameters>)

In this paper, the convention followed for naming actions
is the letter A followed by a serial number.

Example 7.1: Let a system C place an order for an item
n with a system M . Let the credit card number used for
the order be m. This can be represented by the action A1 :
(C,M,order:m,n).

All the executed actions in a system together constitute
the history of the system and is denoted by the set H.

Each action is associated with a pre − condition and a
post − condition. The condition that should hold in the
system for the action to execute is called its pre-condition.
The condition that will be satisfied following the execution
of the action is called its post-condition.

Example 7.2: If a bank authorizes a customer to a mer-
chant, the pre-condition is that the customer’s outstanding
balance should be less than his credit limit and the post-
condition is that the bank is obliged to pay the merchant.

In response to an action message, an operation is invoked
in the latter subsystem. Since this operation constitutes an
event in the system, an action is said to represent an event
in the system.

7.2 Protocols
In a system comprising of several subsystems that interact

through actions, the actions must execute in a pre-defined
order to accomplish the desired goal. In the current frame-
work, the sequence of actions is governed by protocols.

Definition: A protocol, in the current framework, is a
specification of the constraints on when an action may hap-
pen in the system. Thus, protocols specify the behaviour of
the system.

In this paper, the convention followed for naming a pro-
tocol is the letter P followed by a serial number.

7.2.1 Precedence Constraint
The precedence constraint that an action can execute after

another action in a system is denoted with a → between
these actions.

Example 7.3: (C,M,order) → (M,S,ship) specifies the prece-
dence constraint between ordering and shipping processes.
The merchant(M) can request the supplier(S) to ship an
item to a customer only after the customer(C) has placed
an order for the item with the merchant.

Concurrent Actions: Concurrency amongst several
actions is specified by lack of precedence constraining pro-
tocols amongst these actions.

Example 7.4: When a customer(C) places an order with a
merchant(M), the merchant can request for an authorization
from the bank and reservation of goods with the supplier
simultaneously. This can be specified as given below:

(C,M,order) → (M,B,auth)
(C,M,order) → (M,S,allot)

7.2.2 Forced Progress Assumption
If A1 and A2 are actions such that an occurrence of A1

should precede an occurrence of A2, denoted by A1 → A2,
it is assumed that the occurrence of A1 will eventually be
followed by the occurrence of A2, when the pre-conditions
of A2 are satisfied. This assumption is known as Forced
Progress Assumption. This is called forced progress, since
A2 is forced to execute after A1.

Example 7.5: The protocol (C,M,order) → (M,B,auth)
specifies that the merchant will eventually request for an
authorization from the bank after receiving an order from a
customer(C).

7.3 Guarantees
On execution of an action in a subsystem, certain amount

of data may become persistent and is recoverable even af-
ter failures. In the framework under study, an abstrac-
tion of this persistence property of the system is termed
as guarantee.

Example 7.6: On request from a merchant to authorize
a customer, the bank checks that the specified customer is
a valid customer and his outstanding balance is within his
credit limit. Then, it provides an authorization ID to the
merchant. Here, the bank is providing a guarantee that it
shall pay the merchant anytime in the future.

The guarantee abstraction helps
1. the requestor to proceed towards its goals inspite of fail-
ures in the guarantor. This is possible since guarantee rep-
resents persistence and hence, recoverability property of the
system.
Example 7.7: In Example 7.6, the merchant can proceed
with processing the order based on the guarantee provided
by the bank, irrespective of the failure status of the bank
subsystem.
2. to reason about the properties of the system irrespective
of the implementation of the persistence, as illustrated in
Section 7.3.4.

A guarantee involves two subsystems: requestor and guar-
antor. The requestor requests for a guarantee from the guar-
antor. In response, the guarantor enables the guarantee.

In this paper, the convention followed for naming a guar-
antee is the letter G followed by the initials of the guarantor
and the requestor systems.

Example 7.8: The guarantee provided by bank(B) to
merchant(M) in Example 7.6 is denoted as GBM.

7.3.1 Life-cycle of a guarantee
Each guarantee is associated with 4 actions:

1. enable
−

action: This action enables the guarantee and is
sent by the guarantor in response to the request from the
requestor.
2. trigger

−
action: This action is invoked by the requestor

and is used to request the guarantor to discharge the guar-

antee. This is termed as triggering the guarantee. In re-
sponse, the guarantor discharges the guarantee.
3. discharge

−
action: This action is executed by the guar-

antor when the guarantee is triggered.
4. disable

−
action: This action disables the associated guar-

antee. The guarantor does not have any obligation to dis-
charge the guarantee in the future.

A guarantee comes into existence in a system when the
guarantor executes the enable

−
action. Later, when the re-

questor executes the trigger
−

action, the guarantor will ex-
ecute the discharge

−
action. However, the guarantee can

be disabled anytime after enabling, but before being dis-
charged. These properties can be expressed formally as
given below:

Let enabledG, triggeredG, dischargedG and disabledG be
predicates that become true when the respective actions -
enable

−
action, trigger

−
action, discharge

−
action and disable

−

action - are executed.
Let ETD be a predicate that becomes true when the se-
quence (enable

−
action → trigger

−
action → discharge

−
action)

exists in the system.
Let ED be a predicate that becomes true when the sequence
(enable

−
action → disable

−
action) exists in the system.

Using the standard symbols of → and F used in formal the-
ory[11] to denote implication and future events, the proper-
ties of the guarantee are expressed as follows:
1. (enabledG ∧ ¬ disabledG) → (triggeredG → F (dischargedG))
This statement specifies that once a guarantee is enabled,
unless it is disabled, it will be discharged when it is trig-
gered.
2. discharge

−
action ∈ H → ETD

This specifies that if a guarantee has been discharged, it
must have been enabled first followed by being triggered be-
fore being discharged.
3. disable

−
action ∈ H → (ED ∧ discharge

−
action /∈H)

This specifies that if a guarantee has been disabled, it must
have been enabled followed by being disabled without being
discharged.

7.3.2 Illustrations of guarantee
1. In a database system, when a transaction T commits,
the updates performed by T shall remain permanent in the
database. The commitment of the transaction T is a guaran-
tee to the application invoking the transaction that updates
will always be available. The actions associated with the
guarantee are given in Table 1.
2. In an e-commerce application, while processing an order,
when the merchant requests the supplier to reserve goods
for the order and the supplier provides a confirmation for
the same, the merchant has the guarantee that there will
be enough stock with the supplier when required to ship
the goods later. Based on this guarantee, the merchant can
proceed with the order processing without any regard to the
failure status of the supplier.
As per our convention, the guarantee provided by the sup-
plier(S) to the merchant(M) can be denoted as GSM. The
actions associated with the guarantee are given in Table 2

7.3.3 Hierarchical composition of guarantees
Guarantees provided by a component is based on the guar-

antees provided by the subsystems of that component. This
allows for hierarchical composition of guarantees.

For example, consider the guarantee provided by the sup-

enable
−
action trigger

−
action discharge

−
action disable

−
action

Commitment of T Query for any value up-
dated by T

Availability of updated
value

Rollback of T

Table 1: Actions for guarantee in a database system

enable
−
action trigger

−
action discharge

−
action disable

−
action

(S,M,allotOK) (M,S,shipGoods) (S,C,shipOrder) (M,S,allotOff)

Table 2: Actions for guarantee GSM

plier to the merchant as illustrated in the previous section.
This guarantee is based on the guarantee provided by the
database subsystem of the supplier, that the information
about the stock allocation is persistent in the database. This
guarantee in turn, relies on the persistence guarantee pro-
vided by the recovery module of the database.

Similarly, when the merchant provides an order confirma-
tion to the customer, it is a guarantee from the merchant to
the customer that the goods shall be shipped. This guaran-
tee, in turn, relies on
1. guarantee from the bank that the payment shall be made
on demand
2. guarantee from the supplier that goods shall be available
at the time of shipping. Each of these guarantees are based
on the guarantees offered by their database systems. The
database system, in turn, depends on the guarantee offered
by its recovery component.

At each level of guarantee, the subsystems rely only on
the guarantee provided by the guarantor component and is
not concerned with the implementation of the guarantee.
This abstraction allows hierarchical treatment of the entire
system. Each level in the hierarchy has protocols governing
the interactions among the components in that level, which
together with the guarantees at that level allow the system
to achieve its goals.

7.3.4 Reasoning about properties
Since guarantee represents the persistence property of a

subsystem, guarantee along with forced progress protocol
can be used to prove interesting properties of the system.
In other words, guarantees at a certain level can be used
to reason about the functionalities of the system at that
level without being concerned about the implementation of
the guarantee. For example, such reasoning can be used
to reason about the money-goods atomicity property in an
e-commerce application as illustrated in Section 7.5.

7.4 Illustration of the framework
An e-commerce system consists of several subsystems hosted

in different organizations, which collaborate with each other
to form the complete system. Hence, this forms a good
example of a loosely-coupled software system. This sec-
tion illustrates the application of the framework to specify
basic order processing(where all requests succeed) in an e-
commerce system.

7.4.1 E-Commerce System
The e-commerce system considered for illustration in this

section consists of 4 subsystems:
1. Customer - The customer places the order with the mer-
chant and executes payment transactions with the bank.
2. Merchant - The merchant processes the order from the

customer. It collaborates with the bank for payments and
the supplier for handling shipping of goods.
3. Bank - The bank is responsible for transfer of money
from customer to merchant. The customer pays the mer-
chant through the credit card issued by the bank.
4. Supplier - The supplier is responsible for maintaining an
inventory of goods and shipping them to the customer based
on the instructions from the merchant.

Hereafter, these subsystems shall be referred to by their
initials when there are no ambiguities - C denotes Customer,
M denotes Merchant, B denotes Bank and S denotes Sup-
plier.

7.4.2 Order Processing
The order processing in the basic scenario where all re-

quests succeed, proceeds as shown in Figure 9. The steps
involved are as follows:

Customer : Place Order

Merchant : Request Authorisation Merchant : Request stock allocation

Supplier : Reserve stockBank : Provide Authorisation

Merchant : Accept Order

Merchant : Pay supplier

Supplier : Supply goodsBank : Pay Merchant

Customer : Pay Bank

Figure 9: Order Processing in E-Commerce System

1. Customer places an order with the merchant
2. Merchant begins processing the order by requesting the
credit card authorization from the bank.
3. Bank provides the required authorization.
4. Merchant requests the supplier to reserve the ordered
goods.
5. Supplier reserves the goods and provides a confirmation
of the same.
6. Merchant accepts the order and provides the order con-
firmation to the customer.

Name Action Pre-

condition

Post-

condition

Comments

A1 (C,M,order:n,m) TRUE TRUE C places an order with M for item n. m is the credit
card number.

A2 (M,B,auth:ordid,m,x) TRUE TRUE Merchant requests the Bank for authorization of
amount x in the credit card m for the order ordid.

A3 (B,M,authOK:ordid,authid) enabledGCB∧
x≤limit(m)

enabledGBM Bank provides the necessary authorization for the mer-
chant

A4 (M,S,allot:ordid,n) TRUE TRUE Merchant requests the supplier to allot goods
A5 (S,M,allotOK:ordid) enabledGMS∧

n in stock
enabledGSM Supplier confirms reservation of goods

A6 (M,C,orderOK:ordid) TRUE enabledGMC Merchant provides the order confirmation to the cus-
tomer

A7 (M,S,ship:ordid) TRUE triggeredGMC

∧
triggeredGSM

Merchant requests the supplier to ship the goods

A8 (M,B,pay:authid) TRUE triggeredGBM Merchant requests payment from bank
A9 (S,M,pay:ordid) TRUE triggeredGMS Supplier requests payment from Merchant
A10 (B,C,pay:x) TRUE triggeredGCB Bank bills the customer
A11 (S,C,shipment:n) TRUE dischargedGMC

∧
dischargedGSM

Supplier ships the goods to the customer.

A12 (B,M,payment:x) TRUE dischargedGBM Bank pays the merchant
A13 (C,B,payment:x) TRUE dischargedGCB Customer pays the bank
A14 (M,S,payment:x) TRUE dischargedGMS Merchant pays the supplier

Table 3: Actions in E-Commerce System

7. Merchant instructs the supplier to ship the goods and
requests the bank to pay for the order.
8. Supplier ships the goods to the customer and requests
the merchant to pay for these goods.
9. Bank pays the merchant and notifies the customer to pay
the credit card bill.

Deviations from this basic scenario are considered in Sec-
tion 8.

7.4.3 Actions, Protocols and Guarantees
This section describes the actions, protocols and guaran-

tees involved in the order processing:
Actions
The actions involved in the e-commerce system under con-

sideration are as given in the Table 3. The pre-conditions
and post-conditions of the actions are as depicted in the ta-
ble. The comment provided for each action briefly explains
the action.

Protocols
The protocols governing the interaction of the subsystems

are as given in Table 4. The comments in the table briefly
explain the associated protocol. The parameters associated
with the actions are not specified to reduce clutter.

Guarantees
The interactions among the components in the e-commerce

system as explained in the preceding section leads to 5 guar-
antees being enabled and discharged in the system as sum-
marized in Table 5.

7.5 Money-Goods Atomicity
As specified in Section 7.3.4, guarantees can be used to

prove properties of systems. This is illustrated in this section
by proving the money-goods atomicity property of the e-
commerce system.

Money-Goods Atomicity Property: This property
states that each sub-system in the e-commerce system nei-
ther gains nor loses during the transaction. Each of them

either gets goods for the money paid or gets reimbursed for
the goods supplied.

Customer

Merchant

Bank
Supplier

discharge

discharge
GMS

GSMGCB
discharge

GBM
discharge

Figure 10: Money Goods Atomicity in E-Commerce
System

Proof: As shown in Figure 10, if the guarantees -
GSM,GCB, GBM, GMS - are eventually discharged, each
component either gets goods for the money paid or gets re-
imbursed for the goods supplied, i.e., money-goods atomicity
property is satisfied. Hence, we have to prove that each of
these guarantees are discharged after the merchant confirms
the order,i.e., after (M,C,orderOK).
Consider the guarantee GSM. Given (M,C,orderOK) ∈ H,
we prove GSM is enabled, triggered and discharged.
1. enable

−
actionGSM ∈ H: Since (M,C,orderOK) ∈ H, from

protocol P7, (S,M,allotOK) ∈ H, i.e.,
enable

−
actionGSM ∈H.

2. trigger
−

actionGSM ∈ H: Due to Forced Progress in pro-
tocol P8, (M,S,ship) will eventually take place following
(M,C,orderOK). Thus, trigger

−
actionGSM ∈H.

3. discharge
−

actionGSM ∈ H: Due to Forced Progress in

Name Protocol Comment

P1 (C,M,order) → (M,B,auth) Authorization should be requested after customer places an order
P2 (C,M,order) → (M,S,allot) Reservation of goods should be requested after customer places an order
P3 (M,B,auth) → (B,M,authOK) Bank provides the necessary authorization on request for the same.
P4 (M,S,allot) → (S,M,allotOK) Supplier confirms the reservation following a request for the same.
P5 (C,M,order) → (M,C,orderOK) Merchant can confirm an order only after the order has been placed
P6 (B,M,authOK) → (M,C,orderOK) Following the authorization provided by the bank, merchant should confirm the

order to the customer.
P7 (S,M,allotOK) → (M,C,orderOK) Following the confirmation of stock allocation, merchant should confirm the order

to the customer.
P8 (M,C,orderOK) → (M,S,ship) After confirming the order, merchant will instruct the supplier to supply the goods.
P9 (M,C,orderOK) → (M,B,pay) After confirming the order, merchant will request the bank to pay against the given

authorization ID.
P10 (M,S,ship) → (S,C,shipment) Supplier will supply the goods to customer on instruction from the merchant.
P11 (S,C,shipment) → (S,M,pay) Supplier will request for payment after shipping goods to customer.
P12 (M,B,pay) → (B,M,payment) Bank will pay the merchant following a request from the merchant for the same.
P13 (B,M,payment) → (B,C,pay) Bank will notify the customer to pay after paying the merchant.
P14 (B,C,pay) → (C,B,payment) Customer will pay the bank on notification
P15 (S,M,pay) → (M,S,payment) Merchant will pay the supplier on notification

Table 4: Protocols in E-Commerce System

Name enable
−
action trigger

−

action

discharge
−

action

disable
−

action

Comment

GBM (B,M,authOK) (M,B,pay) (B,M,payment) FALSE Guarantee that bank shall pay the merchant
GSM (S,M,allotOK) (M,S,ship) (S,C,shipment) FALSE Guarantee that supplier shall ship the goods
GMS TRUE (S,M,pay) (M,S,payment) FALSE Guarantee that merchant shall pay the supplier
GMC (M,C,orderOK) (M,S,ship) (S,C,shipment) FALSE Guarantee that goods shall be shipped to customer
GCB TRUE (B,C,pay) (C,B,payment) FALSE Guarantee that customer shall pay the bank

Table 5: Guarantees in E-Commerce System

protocol P10, (S,C,shipment) will eventually take place fol-
lowing (M,S,ship). It has been proved in (2) that (M,S,ship)
∈ H following (M,C,orderOK). Hence, (S,C,shipment)∈H,
i.e., discharge

−
actionGSM ∈ H.

From (1), (2) and (3), given (M,C,orderOK) ∈ H, GSM is
enabled, triggered and discharged.
Similarly, it can be proved that the guarantees GCB, GBM
and GMS will be discharged following (M,C,orderOK).
Thus, money-goods atomicity property is satisfied by the
system.

8. EXTENSIONS TO THE FRAMEWORK

8.1 Motivation
The framework discussed in Section 7 for specifying inter-

actions in loosely coupled software systems, although sup-
ports specification in basic scenarios, it suffers from the fol-
lowing limitations:
1. The framework doesn’t support specifying handling of ex-
ceptions due to deviations from normal processing path. For
example, in the e-commerce system considered in the previ-
ous section, an exception situation arises when the merchant
requests the supplier to ship the goods and the supplier does
not possess sufficient stock.
2. The framework doesn’t allow associating timing parame-
ters with actions. For example, there should be support for
specifying due date for a payment. On violation of this con-
straint, appropriate actions to be taken should be specified.
3. While specifying complete system, several actions in the
system may be optional subject to the needs of the subsys-
tems involved in the system. For example, cancellation pro-
cess in an e-commerce system is an optional process, which
may or may not be executed depending on the needs of the

customer subsystem. The forced progress assumption in the
framework doesn’t allow specification of these situations.
4. Explicit specification of the mutual exclusion among ac-
tions is more expressive of the behaviour of the system. The
framework doesn’t support such specification.
5. Consider the following scenario: The customer is allowed
to exchange an item with another item of the same cost.
Then, the guarantee provided by the supplier and the bank
to the merchant should be updated with the new product
ID. The framework doesn’t include any features for specify-
ing such scenarios.

This section proposes extensions to the framework to over-
come these limitations and increase the applicability of the
framework.

8.2 Actions
This section discusses the proposed extensions to the no-

tion of actions.

8.2.1 Exception Handling
The business processes constituting the subsystems usu-

ally execute independently in different trust domains. This
leaves many possibilities for failures. Hence, the destination
subsystem might generate exceptions in response to request
messages from source subsystem. These exceptions must be
handled at the source subsystem where the message is gen-
erated. Hence, several exception handlers may be associated
with an action.

Associating exception handlers with actions requires the
specification of actions to be modified as shown below:
<action name>: (<source subsystem>, <destination sub-
system>, <message>: <comma separated list of parameters>)
catch(<Exception Message>){<Exception Handling Actions>}

The actions for handling exceptions are separated by ;.
Example 8.1: Consider a scenario where a merchant(M)

requests a supplier(S) to ship items to a customer(C). If the
supplier doesn’t possess enough stock, it might generate an
exception ”Insufficient Stock”. Then, the merchant can re-
quest the supplier to perform partial delivery and notify the
customer about the same. This can be specified as given
below:

(M,S,shipItems)catch(”Insufficient Stock”){(M, S, partialDe-
livery); (M, C, partialDeliveryNotification)}

8.2.2 Timed Actions
In business systems, certain actions are time critical and

must execute within the specified time. These time con-
straints are usually imposed on the response time of an ac-
tion by the source subsystem. Such an action for which the
response from the destination subsystem is expected within
a specified time is called Timed Action.

Example 8.2: A notification from the bank(B) to a cus-
tomer(C) to pay the outstanding dues within 15/7/2004 is
a timed action.

The representation of an action can be modified to include
the timing constraint as given below:
<action name>: (<source subsystem>, <destination sub-
system>, <message>: <comma separated list of parameters>,
[response time]) catch(<Exception Message>){<Exception
Handling Actions>}

When the response time constraints are not met, the source
system will be notified through a ”T imerException” which
can be used to handle the time constraint violation as illus-
trated in the Example 8.3.

Example 8.3: In Example 8.2, if the due date violation is
to be handled by sending a reminder to the customer, it can
be specified as given below:
(B,C,pay,15/7/2004)catch(”Timer Exception”){(B,C,
reminder)}

8.3 Protocols
This section describes the extensions to the notion of pro-

tocols in the framework.

8.3.1 Optional Actions
With the forced progress assumption in the existing frame-

work, the action specified in the RHS of a protocol will even-
tually happen in the system. However, several actions may
be optional actions in a complete system. These actions
are not forced to occur in the system. The need for spec-
ifying such actions requires distinguishing forced progress
from non-forced progress protocol. Hence, the framework
can be modified to specify forced progress explicitly using a
new operator ⇒ in the protocols. The → operator specifies
basic precedence constraint.

Example 8.4: The protocol

(C,M,order) ⇒ (M,B,auth)

specifies the following: When the customer places an order,
the merchant should request the bank to provide an autho-
rization.
The protocol

(M,C,orderOK) → (C,M,cancelOrder)

specifies the following: Following an order acceptance by the
merchant, the customer may or may not request cancellation

of the order. But, requests for cancellation can happen only
after order acceptance.

8.3.2 Mutually Exclusive Actions
Actions that are mutually exclusive in a system can be

explicitly specified using the | operator.
Example 8.5: When a customer(C) places an order with

a merchant(M), the merchant can either accept the order or
reject the order. This can be specified as (C,M,order) ⇒
(M,C,orderOK)|(M,C,orderNo).

While specifying mutually exclusive actions, the actions
should be specified in the order of their exclusion. For exam-
ple, in Example 8.5, the action (M,C,orderNo) can happen
only if the action (M,C,orderOK) cannot happen.

8.4 Guarantees
This section explains the extensions to the notion of guar-

antees in the framework.

8.4.1 Pseudo-Guarantee
A guarantee based on future events is called a pseudo-

guarantee. For example, the guarantee provided by a sup-
plier to the merchant that the goods shall be available for
shipping on the delivery date based on the fact that the
goods will arrive by the delivery date is a pseudo-guarantee.

Axiom: Any guarantee based on a pseudo-guarantee is a
pseudo-guarantee.

Since the pseudo-guarantee is based on future events, the
subsystem offering such guarantee might not be able to dis-
charge the guarantee when triggered and exceptions may be
generated. Hence, the trigger actions for such guarantees
should have appropriate exception handlers.

Example 8.6: For the pseudo-guarantee explained above,
the trigger action - request to ship the goods to customer -
should have exception handler to handle the ”OutOfStock”
exception.
(M,S,ship)catch(”OutOfStock”){(M,C,notifyCustomer)}

8.4.2 Attributes of a guarantee
Real world environment supports several operations that

requires guarantees to be modified. For example, when a
customer requests to exchange an item with another item
of same cost, the guarantee provided by the supplier and
the bank should be updated to reflect the new product ID.
Specification of these scenarios is facilitated by associating
attributes to a guarantee. These attributes correspond to
the parameters passed by the requestor while requesting for
the guarantee.

An attribute associated with a guarantee can be accessed
using the dot operator. For example, the attribute ’ID’ as-
sociated with a guarantee G can be accessed as G.ID . More
examples involving querying and updating attributes of a
guarantee are illustrated in Section 8.5.

8.5 Illustrations
The e-commerce system considered in the Section 7.4 was

simple where all requests succeeded. However, the real world
is much more complex and will have several other complex
operations in the system. This section illustrates the exten-
sions proposed in this section by providing specifications of
such commonly encountered transactions.
1. Authorization refusal: Consider the scenario where
the bank refuses authorization. Hence, the order cannot be

Name Action Pre-condition Post-condition Comment

A15 (B,M,authNo) TRUE TRUE Bank refuses authorization to the merchant
A16 (M,C,orderNo) TRUE TRUE Merchant rejects the order placed by customer
A17 (M,S,allotOff) ¬dischargedGSM disabledGSM Merchant requests the supplier to cancel the reservation if

goods were already reserved

Table 6: Actions for refusal of authorization by bank

Name Protocol Comment

P16 (C,M,order) → (M,C,orderNo) Merchant can reject an order only after customer places the order
P17 (B,M,authNo) ⇒ (M,C,orderNo) Merchant will eventually refuse the order following refusal of authorization
P18 (M,C,orderNo) → (M,S,allotOff) Merchant can cancel the reservation only after rejecting the order

Table 7: Protocols for refusal of authorization by bank

Name Action Pre-condition Post-condition Comment

A18 (C,M,cancelOrd:ordId) TRUE TRUE Request to cancel order
A19 (M,C,cancelOK) ¬dischargedGSM ∧ ¬dischargedGBM disabledGMC Acceptance of cancellation request
A20 (M,C,cancelNo) TRUE TRUE Rejection of cancellation request
A21 (M,B,authOff: authId) ¬dischargedGBM disabledGBM Request to cancel the authorization

Table 8: Actions for order cancellation

Name Protocol Comment

P19 (M,C,orderOK) → (C,M,cancelOrd) Order can be canceled only after it has been confirmed
P20 (C,M,cancelOrd) → (M,C,cancelOK) Merchant can accept the cancellation only after it has been requested
P21 (C,M,cancelOrd) → (M,C,cancelNO) Merchant can reject the cancellation only after it has been requested
P22 (M,C,cancelOK) ⇒ (M,B,authOff) Following order cancellation, the authorization should be turned off.
P23 (M,C,cancelOK) ⇒ (M,S,allotOff) Following order cancellation, the reservation should be canceled.

Table 9: Protocols for order cancellation

Name Action Pre-condition Post-condition Comment

A22 (C,M,return: ordId) TRUE TRUE Request to return item
A23 (M,C,returnOK: ordId) TRUE TRUE Acceptance of return request
A24 (M,S,return:ordId) TRUE TRUE Merchant notifies the supplier that contents of the spec-

ified order will be returned
A25 (C,S,ship) TRUE TRUE Customer ships the goods to the supplier
A26 (M,B,payment:x,m) dischargedGBM TRUE Merchant pays amount ’x’ to the bank for the credit

account ’m’
A27 (S,M,payment:x) dischargedGMS TRUE Supplier re-pays amount ’x’ to the merchant

Table 10: Actions for return goods

Name Protocol Comment

P24 (S,C,shipment) → (C,M,return) An item can be returned only after it has been shipped
P25 (C,M,return) ⇒ (M,C,returnOK) Return acceptance follows return request
P26 (M,C,returnOK) ⇒ (M,S,return) Return acceptance should be followed by notification to supplier
P27 (M,C,returnOK) ⇒ (C,S,ship) Customer should return the items after getting acceptance
P28 (M,C,returnOK) ⇒ ((M,B,authOff) |

(M,B,payment))
Following acceptance of return request, merchant should turn off the authorization
if the bank has not paid the merchant. Else, the payment should be paid back to
bank.

P29 (C,S,ship) → (S,M,payment) After the supplier receives the goods from the customer, the supplier has to pay
back the merchant if the merchant has paid the supplier.

Table 11: Protocols for return goods

Name Action Pre-condition Post-condition Comment

A28 (C,M,exchg:ordID,
curPID, newPID)

TRUE TRUE Request to exchange items with ID curPID and new-
PID

A29 (M,S,exchg:ordID,
curPID, newPID)

TRUE TRUE Notify the supplier about exchange request

A30 (M,C,exchgOK:ordID,
curPID, newPID)

Cost(Current Item) =
Cost(New Item)

enabledGSC ∧
GBM.pID =
newPID

Acceptance of exchange request, under pre-condition
that costs of items are equal. The action
(M,C,exchgOK) enables a guarantee GSC - guarantee
that old item shall be exchanged for new item.

A31 (M,C,exchgNo:ordID,
curPID, newPID)

TRUE TRUE Rejection of exchange request

A32 (S,M,exchgOK) TRUE GSM.pID = new-
PID

Acceptance of exchange request by supplier

A33 (S,M,exchgNo) TRUE TRUE Rejection of exchange request by supplier

Table 12: Actions for exchange of goods

Name Protocol Comment

P30 (S,C,shipment) → (C,M,exchg) Exchange can be requested only after shipment
P31 (C,M,exchg) → (M,C,exchgOK) Acceptance of exchange request only after it has been requested
P32 (C,M,exchg) → (M,C,exchgNo) Rejection of exchange request only after it has been requested
P33 (C,M,exchg) ⇒ (M,S,exchg) Request for exchange should be forwarded to the supplier to check the inventory
P34 (M,S,exchg) → (S,M,exchgOK) Acceptance of exchange request only after it has been requested
P35 (M,S,exchg) → (S,M,exchgNo) Rejection of exchange request only after it has been requested
P36 (S,M,exchgOK) → (M,C,exchgOK) Acceptance of exchange request should be preceded by acceptance from supplier
P37 (S,M,exchgNo) ⇒ (M,C,exchgNo) Refusal of exchange by supplier should be eventually forwarded to the customer

Table 13: Protocols for exchange of goods

Name Action Pre-

condition

Post-condition Comment

A34 (C,M,correctShipment:
ordID, curPID, actPID)

TRUE TRUE Request to correct shipment

A35 (M,C,correctionOK) TRUE enabledGSC Acceptance of correction request. The action
(M,C,correctionOK) enables a guarantee GSC - guar-
antee from supplier to customer that the shipment shall
be corrected on return.

A36 (M,C,correctionNo) TRUE TRUE Refusal of correction request
A37 (M,S,confirm) TRUE TRUE Obtain confirmation from the supplier that incorrect ship-

ment was sent
A38 (S,M,confirmationOK) TRUE GSM.amount =

Cost(actPID)
Confirmation of incorrect shipment. On acceptance, the
guarantee from supplier should be updated to account for
the cost of the actual item.

A39 (S,M,shipmentCorrect) TRUE TRUE Supplier confirms that the shipment was correct

Table 14: Actions for shipment correction

Name Protocol Comment

P38 (S,C,shipment) → (C,M,correctShipment) Request for correcting shipment only after original shipment
P39 (C,M,correctShipment) →

(M,C,correctionOK)
Acceptance of correction request only after request

P40 (C,M,correctShipment) → (M,C,correctionNo) Refusal of correction request only after request
P41 (C,M,correctShipment) ⇒ (M,S,confirm) Correction request should be forwarded to the supplier for verification
P42 (M,S,confirm) → (S,M,confirmationOK) Confirmation of incorrect shipment only after receiving the request
P43 (M,S,confirm) → (S,M,shipmentCorrect) Confirmation of correct shipment only after receiving the request
P44 (S,M,confirmationOK) ⇒ (M,C,correctionOK) Confirmation of incorrect shipment should be followed by accepting the

correction request from the customer
P45 (S,M,shipmentCorrect) ⇒ (M,C,correctionNo) Following confirmation of correct shipment, the correction request should

be rejected

Table 15: Protocols for shipment correction

Name Action Pre-condition Post-condition Comment

A40 (C,M,cancel:ordId) TRUE TRUE Order cancellation request
A41 (M,S,allotOff) ¬dischargedGBM ∧

¬dischargedGSM

GBM.amount =
GSM.amount

Cancel the reservation of goods with the supplier

A42 (M,C,cancelOK) TRUE disabledGMC Acceptance of cancellation request
A43 (M,C,cancelNo) TRUE TRUE Rejection of cancellation request

Table 16: Actions for order cancellation with cancellation charge

Name Protocol Comment

P46 (M,C,orderOK) → (C,M,cancel) Cancellation be requested only after order confirmation
P47 (C,M,cancel) → (M,S,allotOff) Reservation cancellation only after order cancellation
P48 (M,S,allotOff) ⇒ (M,C,cancelOK) Confirm cancellation only after cancellation of reservation
P49 (C,M,cancel) → (M,C,cancelNo) Rejection of cancellation only after cancellation request

Table 17: Protocols for order cancellation with cancellation charge

accepted by the merchant. This requires additional actions
and protocols given in Tables 6 and 7.
2. Self-Authorization: Consider the scenario where
the bank allows the merchant to authorize charges below
a specific threshold(maxSelfAuth). This requires following
changes to the specification:
The enable

−
actionGBM should be modified as given below:

enable
−

actionGBM : (B,M,authOK) ∨ (x ≤ maxSelfAuth)
The protocol P1

P1: (C,M,order) → (M,B,auth)
now implies that the merchant, on receiving an order from
the customer, is not forced to request authorisation from the
bank.
3. Order Cancellation: Consider the scenario where a
customer requests the merchant to cancel an order. If the
merchant is to accept the request only if the bank has not
paid the merchant and the supplier has not shipped the
goods, the actions and protocols listed in Table 8 and Table
9 respectively should be added to the specification.
4. Return Goods: If the customer is allowed to return
items that have been shipped to him, then the specification
should include the actions and protocols given in Table 10
and Table 11.
5. Exchange of goods: Exchange of goods is a commonly
occurring transaction. Tables 12 and 13 detail the actions
and protocols required to specify the exchange transaction,
where the customer is allowed to exchange goods of same
value.
6. Shipment correction: On having shipped an incorrect
item, based on notification from the customer, the merchant
can instruct the supplier to correct the shipment. The ac-
tions and protocols for this transaction are as given in Tables
14 and 15.
7. Order cancellation with cancellation charges: While
processing an order, let the merchant request reservation of
goods followed by collection of payment from the customer
through the bank. Subsequently, when the customer can-
cels the order and if the supplier charges a fee for cancel-
lation, the cancellation sequence should consist of canceling
the allotment followed by refund, unlike the normal reverse
chronological sequence of refund followed by allotment can-
cellation. This is expressed as given in Tables 16 and 17.

Note: This example illustrates that the rollback of a trans-
action can be explicitly defined by the user and need not be
reverse chronological sequence of the transaction.
8. Incorrect payment by customer: When the cus-
tomer sends an incorrect payment to the bank, the bank
will generate an exception to the customer. In response, the
customer should send the correct payment to the bank. This
can be specified as given below:
(C,B,payment) catch(”Incorrect Amount”){(C,B,payment)}
9. Forcefully disabling a guarantee: On customer val-
idation, if the bank finds that a particular customer is an
invalid customer, then it can generate an exception to the
merchant. The merchant can then terminate the order re-
lated to the customer if the order has not been completed.
The protocol is as given below:
(B,B,chkCustomerValidity) catch(”Invalid Customer”){(B,
M,invalidCustomer)}
(B,M,invalidCustomer) → (M,C,orderNo)
(B,M,invalidCustomer) → (M,S,allotOff)

Here, ¬dischargedGSM should be the pre-condition for
(M,C,orderNo) and (M,S,allotOff).

The guarantee GMC is disabled (action (M,C,orderNo))
by the guarantor without any request from the requestor.

8.6 Uses of the framework
The specification and reasoning framework discussed in

this section and the preceding section helps to achieve the
following benefits when employed in the development of a
software system:
1. Since usage of this framework consists of recursively ap-
plying it to the components of a system, it helps to view the
system at different levels of abstraction.
2. The process of formally specifying the interactions among
the components in the system helps to alleviate any ambi-
guities in the specification of requirements of the system.
3. Reasoning about properties of the system helps to iden-
tify any missing specifications in the system.
4. Proving properties based on the specification before im-
plementation will help to eliminate software errors in the
early stages of the software development and hence, reduce
design, development and testing costs due to regression.

9. CORRECTNESS OF THE RECOVERY
SCHEME

The mobile computing environment discussed in Section
2 consists of subsystems - User Agent, MSS, Gateway, Web
Server - with a pre-defined interface behaviour governed by
the mobile computing protocol such as WAP. These sub-
systems communicate with each other through messages.
Hence, the system readily qualifies as a loosely-coupled soft-
ware system.

While discussing the recovery scheme in Section 4, it was
stated that the scheme restores the Most Recent and Valid
(MRV) Response to the user upon reconnection. This sec-
tion proves this correctness property of the recovery scheme
using the framework described in Section 7 and Section 8.

9.1 Recovery Validity Property
The recovery scheme described in Section 4 restores the

most recent and valid(MRV) response to the user upon re-
connection. This property is known as Recovery Validity
Property.

Definition: Upon reconnection, the recovery scheme will
restore the MRV response from the website requested by the
user while reconnecting.

9.2 Modeling of Mobile Computing
Environment

The mobile computing environment described in Section
2 with the recovery scheme discussed in Section 4 can be
modeled using the reasoning framework by establishing the
actions, protocols and guarantees in the system as given in
Tables 18, 19 and 20 respectively.

Here, C, G and S represent the user agent, gateway and
the web server respectively.

MRV (i, R) is a predicate that is true if the response respi

is the MRV response w.r.t. the response R.
This model and the proof below assumes that the user is

involved in a single iTx. However, the scenario of multiple
iTxs can be proved with extensions to the model.

9.3 Proof of Recovery Validity Property
The proof of recovery validity property requires that, upon

reconnection, i.e., on execution of the message (C,G,reconnect:

Name Action Pre-condition Post-condition Comment

A1 (C,G,reqi) TRUE TRUE Request reqi from a mobile device to gateway
A2 (G,S,reqi) TRUE TRUE Forwarding of the request reqi from gateway to web server
A3 (S,G,respi) TRUE enabledGGCi

Response respi from web server to gateway
A4 (G,C,respi) TRUE TRUE Forwarding of response respi from gateway to user agent
A5 (C,G,reconnect:

url)
TRUE TRUE Reconnection from user agent to gateway. The iTx with the

website given by the parameter url will be recovered to the
user

A6 (G,C,restorei) MRV(i,R) dischargedGGCi
Restore the response respi if it is the MRV response w.r.t. R,
where R is the last response logged at the gateway for the user
agent C before disconnection.

A7 (G,G,invalidatei) Current Time >
TTLrespi

disabledGGCi
Invalidate the response respi beyond its TTL. This can be done
at intervals determined by the implementation.

Table 18: Actions in Mobile Computing Environment

Name Protocol Comment

P1 (C,G,reqi) ⇒ (G,S,reqi) The gateway should eventually forward the request from the user agent to the web server.
P2 (G,S,reqi) ⇒ (S,G,respi) A request to web server is followed by an appropriate response from the server. Here, it is

assumed that the server will always provide a response to a request.
P3 (S,G,respi) ⇒ (G,C,respi) The gateway should eventually forward the response from the web server to the user agent.
P4 (C,G,reconnect) ⇒

(G,C,restorei) | (G,S,reqi)
Reconnection request should be followed by restoration of a previous response or the request
should be forwarded to the web server

P5 (S,G,respi) → (G,C,restorei) Response respi must have been received by the gateway before restoring it to the user agent.

Table 19: Protocols in Mobile Computing Environment

Name enable
−

action

trigger
−
action discharge

−

action

disable
−

action

Comment

GGCi (S,G,respi) (C,G,reconnect: url) (G,C, restorei) (G,G,
invalidatei)

Guarantee that the response respi shall be restored
to the user

Table 20: Guarantees in Mobile Computing Environment

url), the MRV response belonging to the iTx with the web-
site given by url should be restored to the user.
Let R be the last response received by the user in the iTx
with the website given by url before disconnection.
The action (C,G,reconnect: url) triggers the guarantees GGCi

corresponding to all the responses respi from the website
given by url. A guarantee GGCi can be discharged only if
it is enabled and the pre-condition of its discharge

−
action is

satisfied.
All guarantees corresponding to responses for which (TTL
> current time) are enabled.

(2)

The pre-condition for the discharge
−

action of the guarantee
GGCi, namely (G,C,restorei), requires that
MRV (i, R) be TRUE. From the definition of MRV in (1),
MRV (i, R) can be true for atmost one response Ri.

(3)

If there is one such response Ri, then, from (2) and (3), the
guarantee corresponding to the response Ri, namely, GGCi

is enabled(since TTL > current time for a MRV response)
and the pre-conditions of its discharge

−
action are satisfied.

Therefore, it can be discharged. The discharge
−

action,
(G,C,restorei), restores the response Ri to the user. This
response Ri is the MRV response that can be restored to
the user since MRV (i, R) is true for Ri w.r.t. the response
R.

(4)

If no response satisfies this property, all the responses in
the log corresponding to the transaction to be recovered are

invalid. From protocol P4, the action (G,S,reqi) will be ex-
ecuted. From protocol P2, (G,S,reqi) will be followed by
(S,G,respi). From protocol P3, (S,G,respi) will be followed
by (G,C,respi). This sequence of actions results in the re-
sponse being served directly from the server. Clearly, this re-
sponse is valid. Since the entire transaction is restarted, the
response satisfies the property of being most recent. Hence,
the response served to the user is most recent and valid.

(5)

From (4) and (5), the most recent and valid(MRV) response
will be restored to the user upon reconnection. Thus, the
Recovery Validity Property is proved.

10. CONCLUSION
With e-business becoming increasingly popular, several

interfaces to web portals are being introduced. The mo-
bile interface is one such important development. However,
internet access in mobile environment is significantly expen-
sive. Moreover, the probability of disconnection is higher
in wireless networks. Any disconnection, during the course
of an internet transaction, will require the user, upon re-
connection, to redo all the steps in the transaction. This
not only increases the cost incurred, but also demands more
computational power.

In this paper, a recovery scheme has been proposed to re-
store the Most Recent and Valid(MRV) response from the
previous session, so that the user can continue from that re-
sponse without restarting from the beginning of the trans-
action. The objective is to minimise the amount of rework
upon reconnection.

This recovery scheme is based on the recovery scheme in
[31]. The notion of most recent and valid(MRV) response
defined in [31] has been extended for transactions in which
a response is dependent on multiple responses. In order to
perform recovery, the requests and the responses belong-
ing to a transaction should be logged at the gateway, for
reasons discussed in this paper. Unlike the mechanism sug-
gested in [31] where the recovery related information for all
the responses have to be logged, the scheme suggested in
this paper defines transaction boundaries and logs only the
responses that belong to a transaction, thus optimising the
storage requirements for the log in the gateway. Also, the de-
pendencies among the responses have to be established in or-
der to be able to restore the MRV response to the user. The
recovery scheme also requires unique identification of the
responses. The role of web application in defining the trans-
action boundaries, tagging the responses with identifiers and
establishing the dependencies has been laid out. Upon re-
connection, the dependencies among the logged responses
have to be analysed to determine the most recent and valid
response. The dependency analysis technique given in [31]
cannot analyse the dependencies in transactions in which a
response is dependent on multiple responses. This technique
has been extended to handle such multiple dependencies.

The feasibility of the extended recovery scheme has been
demonstrated by implementing it in a WAP system. Sev-
eral experiments have been conducted to measure the per-
formance of the recovery subsystem and assess the benefits
that can be obtained by using this system.

Finally, the correctness of the recovery scheme has been
established using an extended version of the reasoning frame-
work in [27].

Based on the results of the experiments conducted with
the recovery subsystem, the use of recovery scheme proposed
in this paper will provide definite performance benefits when
executing internet transactions in mobile environment. Be-
sides reducing the cost incurred by the user, this also de-
creases the time and computational power required for exe-
cuting internet transactions in mobile environment.

11. REFERENCES
[1] Hypertext Transfer Protocol – HTTP/1.1.

www.w3.org/Protocols/rfc2616/ rfc2616.html, 2004.

[2] Kannel WAP Gateway. http://www.kannel.org, 2004.

[3] WAP 2.0 Technical White Paper.
http://www.wapforum.org/what/WAPWhite

−
Paper1.pdf, 2004.

[4] WAP Architecture Overview.
http://www.ericsson.com/mobilityworld/sub/open/
technologies/wap/about/wap

−
architecture

−
overview,

2004.

[5] WAP for Java Developers. http://developers.sun.com,
2004.

[6] Winwap Micro Browser. www.winwap.org, 2004.

[7] Wireless Application Protocol.
http://www.openmobilealliance.org/tech/affiliates/
wap/wapindex.html, 2004.

[8] Wireless Markup Language(WML).
http://www.softsteel.co.uk/tutorials/wmltut, 2004.

[9] T. Andrews and et.al. Business Process Execution
Language for Web Services. http://www-06.ibm.com

/developerworks/webservices/library/ws-bpel,2003.

[10] R. Barga and D. Lomet. Measuring and Optimizing a
System for Persistent Database Sessions. In
Proceedings of International Conference on Data
Engineering, 2001.

[11] R. S. Boyre and J. S. Moore. Computational Logic.
New York Academic Press, 1979.

[12] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and
J. Schiller. Connecting Wireless Sensornets with
TCP/IP Networks. In Lecture Notes in Computer
Science, volume 2957/2004. Springer-Verlag GmbH,
2004.

[13] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A survey of rollback-recovery protocols in
message-passing systems. ACM Computing Survey,
34(3):375–408, 2002.

[14] A. Fekete, P. Greenfield, D. Kuo, and J. Jang.
Towards a Framework for Capturing Transactional
Requirements of Real Workflows. Proceedings of the
Second International Workshop on Cooperative
Internet Computing, 2002.

[15] A. Fekete, P. Greenfield, D. Kuo, and J. Jang.
Compensation is not enough. 7th IEEE International
Enterprise Distributed Object Computing Conference,
2003.

[16] A. Fekete, P. Greenfield, D. Kuo, and J. Jang.
Expressiveness of workflow description languages. The
First International Conference on Web Services, 2003.

[17] A. Fekete, P. Greenfield, D. Kuo, and J. Jang. Just
What Could Possibly Go Wrong In B2B Integration?
Workshop on Architectures for Complex Application
Integration, 2003.

[18] A. Fekete, P. Greenfield, D. Kuo, and J. Jang.
Transactions in Loosely Coupled Distributed Systems.
Proceedings of the Fourteenth Australasian Database
Conference, 2003.

[19] A. Fekete, P. Greenfield, D. Kuo, and J. Jang. What
are the consistency requirements for B2B systems?
High Performance Transaction Systems Workshop,
2003.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Pearson Education, 2003.

[21] M. M. Gore and R. K. Ghosh. Recovery of Mobile
Transactions. In DEXA ’00: Proceedings of the 11th
International Workshop on Database and Expert
Systems Applications. IEEE Computer Society, 2000.

[22] L. L. B. III, S. Baajun, and M. Garuba. A ubiquitous
stable storage for mobile computing devices. In SAC
’01: Proceedings of the 2001 ACM symposium on
Applied computing, pages 401–404, New York, NY,
USA, 2001. ACM Press.

[23] W. H. Kohler. A Survey of Techniques for
Synchronization and Recovery in Decentralized
Computer Systems. ACM Computing Survey,
13(2):149–183, 1981.

[24] S. D. Milner, S. Thakkar, K. Chandrashekar, and
W.-L. Chen. Performance and scalability of mobile
wireless base-station-oriented networks. SIGMOBILE
Mobile Computing and Communications Review,
7(2):69–79, 2003.

[25] T. Park, N. Woo, and H. Y. Yeom. An efficient

recovery scheme for mobile computing environments.
In Eighth International Conference on Parallel and
Distributed Systems, 2001.

[26] D. K. Pradhan, P. Krishna, and N. H. Vaidya.
Recoverable mobile environment: design and trade-off
analysis. In FTCS ’96: Proceedings of the The
Twenty-Sixth Annual International Symposium on
Fault-Tolerant Computing (FTCS ’96). IEEE
Computer Society, 1996.

[27] K. Ramamritham and C. Pedregal-Martin.
Guaranteeing Recoverability in Electronic Commerce.
In Proceedings of the Third International Workshop on
Advanced Issues of E-Commerce and Web-Based
Information Systems, 2001.

[28] K. Ramamritham and C. Pedregal-Martin. Support
for Recovery in Mobile Systems. IEEE Transactions
on Computers, 51(10):1219–1224, 2002.

[29] A. S. Tanenbaum. Computer Networks. Prentice Hall
India Pvt. Ltd.

[30] T.H.Cormen, C.E.Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. Prentice Hall
India Pvt. Ltd.

[31] D. VanderMeer, A. Datta, K. Datta,
K. Ramamritham, and S. B. Navathe. Mobile User
Recovery in the Context of Internet Transactions.
IEEE Transactions on Mobile Computing,
2(2):132–146, 2003.

[32] Vineet Agarwal. Automating Proof Procedures for
Loosely Coupled Systems. Technical report, IIT
Bombay, 2005.

[33] B. Yao and W. K. Fuchs. Proxy-Based Recovery for
Applications on Wireless Hand-Held Devices. In SRDS
’00: Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems (SRDS’00), page 2,
Washington, DC, USA, 2000. IEEE Computer Society.

[34] B. Yao and W. K. Fuchs. Message Logging
Optimisation for Wireless Networks. In 20th IEEE
Symposium on Reliable Distributed Systems
(SRDS’01) . IEEE Computer Society, 2001.

[35] B. Yao and W. K. Fuchs. Recovery Proxy for Wireless
Applications. In ISSRE ’01: Proceedings of the 12th
International Symposium on Software Reliability
Engineering (ISSRE’01), page 112, Washington, DC,
USA, 2001. IEEE Computer Society.

