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Abstract

Typically, temporal validity of real-time data is maintained by periodic update transactions. In this paper, we examine the

problem of period and deadline assignment for these update transactions such that (1) these transactions can be guaranteed

to complete by their deadlines and (2) the imposed CPU workload is minimized. To this end, we propose a novel approach,

named the More-Less approach. By applying this approach, updates occur with a period which is more than the period

obtained through traditional approaches but with a deadline which is less than the traditional period. We show that the

More-Less approach is better than existing approaches in terms of schedulability and the imposed load. We examine the

issue of determining the assignment order in which transactions must be considered for period and deadline assignment so

that the resulting CPU workloads can be minimized. To this end, the More-Less approach is first examined in a restricted case

where the Shortest Validity First (SVF) order is shown to be an optimal solution. We then relax some of the restrictions and

show that SVF is an approximate solution which results in CPU workloads that are close to the optimal solution. Our analysis

and experiments show that the More-Less approach is an effective design approach that can provide better schedulability and

reduce update transaction CPU workload while guaranteeing data validity constraints.

Index Terms - Real-time database systems, temporal validity, deadline monotonic scheduling, fixed priority scheduling,

real-time transaction processing.
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1 Introduction

A real-time database (RTDB) is composed of real-time objects which are updated by periodic sensor transactions. An

object in the database models a real world entity, for example, the position of an aircraft. A real-time object is one whose

state may become invalid with the passage of time. Associated with the state is a temporal validity interval. To monitor

the states of objects faithfully, a real-time object must be refreshed by a sensor transaction before it becomes invalid, i.e.,

before its temporal validity interval expires. The actual length of the temporal validity interval of a real-time object is

application dependent. Sensor transactions are generated by intelligent sensors which periodically sample the value of real-

time objects. When sensor transactions arrive at RTDBs with sampled data values, their updates are installed and real-time

data are refreshed. So one of the important design goals of RTDBs is to guarantee that temporal data remain fresh, i.e., they

are always valid. RTDBs that do not keep track of temporal validity of data may not be able to react to abnormal situations

in time. Therefore, efficient design approaches are desired to guarantee the freshness of temporal data in RTDBs while

minimizing the CPU workload resulting from periodic sensor transactions.

In this paper, we propose the More-Less approach, a design approach which maintains the freshness of temporal data while

reducing the CPU workload incurred by periodic sensor transactions. In general, More-Less can be applied to multi-processor

systems. In this paper, however, we focus our study on single processor systems. It is shown that the More-Less approach

outperforms traditional approaches in terms of sensor transaction schedulability and imposed CPU workload. Using the

More-Less approach, transactions are considered in a given priority order and their periods and deadlines are assigned. So

an important issue is to determine the priority order so that the CPU workload imposed by transactions can be minimized. It

is demonstrated, through both analysis and experiments, that Shortest Validity First (SVF) is an efficient assignment order to

minimize CPU workload for update transactions.

This paper is organized as follows: Section 2 reviews traditional approaches and introduces the intuition underlying

the More-Less approach. The More-Less approach is formally introduced in Section 3, and compared with a traditional

approach. We also examine the issue of determining the assignment order. Specifically, we propose and analyze SVF, an

efficient transaction assignment order to minimize CPU workload. An application of the More-Less approach is discussed in

Section 4. Experimental results are presented in Section 5. We discuss related work in Section 6, and conclude the paper in

Section 7.

2 Design Approaches

In this section, traditional approaches for maintaining temporal validity, namely the One-One and Half-Half approaches,

are reviewed. The More-Less approach is then introduced through an example.

From here on, ���������	��
�
��� refers to a set of periodic sensor transactions �������	�������
����� 
 � and ������������
�
��� refers to a set

of temporal data. All temporal data are assumed to be kept in main memory. Associated with �����	 "!$#%!$&(' is a validity

interval of length ) � : transaction � � �* +!,#�!,&-' updates the corresponding data � � . Because each sensor transaction

updates different data, no concurrency control is considered for sensor transactions. We assume that a sensor always samples

the value of a temporal data at the beginning of its period, and all the first instances of sensor transactions are initiated at the
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Symbol Definition

� � Temporal Data

� � Periodic sensor transaction updating � �
� � Release time of the first instance of � �
� ��� The � th instance of ���
� ��� Response time of the � th instance of ���
� � Computation time of transaction ���
) � Validity interval length of � �
� � Validity interval slack of transaction � � , i.e.,

� � � ) �
	 � � .
� � Period of transaction � �
� � Relative deadline of transaction � �

 � Jitter (or arrival latency) bound of transaction � �
����� ��� In an assignment order, transaction ��� precedes transaction ��� .
� �����	' The cumulative demands on the processor made by transactions � � �	��� ���
�
������� over time � � ����� , i.e.,

� � ���	' ��� ������ � ��� �!#"%$ .& � The maximum laxity for transaction � � over time � � � � � � .
' ��� the number of times � � occurs before the first instance of � � completes.
( ��� Given an assignment order � � � � � of two adjacent transactions � � and � � , CPU workload of � �

and � � , i.e.,
( ��� �*)�+! +

, ) "! "

Table 1. Symbols and definitions.

same time. However, a sensor transaction generated by that sensor may arrive at a RTDB with an arrival latency, which is

also referred to as jitter. The jitter of transaction � � is defined as follows:

Jitter of ��� = Arrival Time of ��� - Sampling Time of ��� .

where arrival time of � � is the time when � � arrives the RTDB, and sampling time of � � is the time when the value of temporal

data ��� is sampled. We assume that the jitter of transaction � � is bounded by

 � . The jitter of each transaction is zero unless

specified otherwise.
� � , � � and

� � �	 �!�# !�&-' denote the execution time, relative deadline, and period of transaction ��� ,
respectively.

� � of sensor transaction ��� is defined as follows:

� � = Deadline of ��� - Sampling Time of ��� .

Deadlines of sensor transactions are firm deadlines. Formal definitions of some of the often-used symbols are given in Table

1. Our goal is to determine
� � and

� � such that all the sensor transactions are schedulable and CPU workload resulting from

sensor transactions is minimized.

We assume a simple execution semantics for periodic transactions: a transaction must be executed once every period.
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Figure 1. Extreme execution cases of periodic sensor transactions

However, there is no guarantee on when an instance of a periodic transaction is actually executed within a period. We also

assume that these periodic transactions are preemptable.

2.1 One-One Approach

We introduce the first approach, in which the period and relative deadline of a sensor transaction have to be equal to the

data validity interval. Because the separation of the execution of two consecutive instances of a transaction can exceed the

validity interval, data can become invalid under the One-One approach. So this approach cannot guarantee the freshness of

temporal data in RTDBs.

Example 2.1: Consider Figure 1: A periodic sensor transaction ��� with deterministic execution time
� � refreshes temporal

data � � with validity interval ) � . The period
� � and relative deadline

� � of � � are assigned the value ) � . Suppose
� ��� � and

� ��� ��� � are two consecutive instances of sensor transaction � � . Transaction instance
� ��� � samples data � � with validity interval

� � � � , ) � ' at time
�

, and
� ��� ����� samples data � � with validity interval � � , ) � � � ,�� ) � ' at time

� , ) � . From Figure 1,

the actual arrival time of
� ��� � and finishing time of

� ��� ����� can be as close as
� � � , and as far as

� � � , i.e.,
� ) � when the period

of � � is ) � . In the latter case, the validity of data � � refreshed by
� ��� � expires after time

� , ) � . Since
� ��� ����� cannot refresh

data ��� before time
� , ) � , �"� is invalid from

� , ) � until it is refreshed by
� ��� ��� � , just before the next deadline

� ,�� ) � . 	

2.2 Half-Half Approach

In order to guarantee the freshness of temporal data in RTDBs, the period and relative deadline of a sensor transaction are

each typically set to be less than or equal to one-half of the data validity interval [11, 6]. In Figure 1, the farthest distance

(based on the arrival time of a periodic transaction instance and the finishing time of its next instance) of two consecutive

sensor transactions is
� � � . If

� � � !�)�� , then the freshness of temporal data � � is guaranteed as long as instances of sensor

transaction ��� do not miss their deadlines.

Unfortunately, even though data freshness is guaranteed, this design approach at least doubles CPU workload of the

sensor transaction in the RTDBs compared to the One-One approach. Next, we introduce a new approach which guarantees

the freshness of temporal data but incurs much less CPU workload compared to the Half-Half approach.
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Figure 2. Illustration of More-Less approach

Approach
� � � � Workload

One-One ) � ) � (�� � )�+� + �
��

Half-Half
� +� � +� (�� � � ) +� + �

��
More-Less

� +� � � +� (

 � � ) +� � + �

�
���

Table 2. Comparison of three approaches

2.3 More-Less Approach: Intuition

The goal of the More-Less approach is to minimize the CPU workload of sensor transactions while guaranteeing the

freshness of temporal data in RTDBs. Recall that, for simplicity of discussion, we have assumed that a sensor transaction

is responsible for updating a single temporal data item in the system. In More-Less, the period of a sensor transaction is

assigned to be more than half of the validity interval of the temporal data updated by the transaction, while its corresponding

relative deadline is assigned to be less than half of the validity interval of the same data. However, the sum of the period

and relative deadline always equals the length of the validity interval of the data updated. Consider Figure 2. Let
� �	� � +� ,

� � ! � ��
 � � where
� � , � � � ) � . The farthest distance (based on the arrival time of a periodic transaction instance

and the finishing time of its next instance) of two consecutive sensor transactions
� ��� and

� ������� is
� � , � � . In this case,

the freshness of � � can always be maintained if sensor transactions make their deadlines. Obviously, the load incurred by

sensor transaction ��� can be reduced if
� � is enlarged (which implies that

� � is shrunk.). Therefore, we have the constraints
� � ! � � 
 � � and

� � , � ���$)�� which aim at minimizing the CPU workload of periodic transaction � � .

Example 2.2: Suppose there is temporal data � � with validity interval ) � in a uniprocessor RTDB system. � � updates � �
periodically. For simplicity of discussion, we assume that


 � � � . Our goal is to assign proper values to
� � and

� � given
� �

and ) � so as to reduce the CPU workload resulting from sensor transaction � � . Suppose
� � � �� ) � , possible values of

� � , � �
and the corresponding CPU workload according to the three different design approaches are shown in Table 2. 	

Only Half-Half and More-Less can guarantee the freshness of temporal data � � if all the sensor transactions complete before

their deadlines. We also notice that
(�� 
 (


 
 (��
(see Table 2). If

� � � 
�� �
 ) � , then
� � � �
 ) � , where ��� �

. The

freshness of temporal data in RTDBs is guaranteed if all sensor transactions complete before their deadlines. In such a case,

we also notice that
(

 � 
 ) +� 
�� ��� � + and

( � ! ( 
 

( �

. Theoretically, if � ��� ,
(

 �

( �
.
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Unfortunately, how close
(

 can get to

( �
depends on

� � since
� � � � � implies

� +)�+ � � . As N increases, relative

deadlines become shorter and sensor transactions are executed with more stringent time constraints.

Therefore, given a set of sensor transactions in RTDBs, we need to find periods and deadlines of update transactions

based on the temporal validity intervals of data such that the CPU workload of sensor transactions is minimized and the

schedulability of the resulting sensor transactions is guaranteed. The More-Less approach achieves this, as shown in the next

section.

3 More-Less: Analysis and Results

In this section, we formally introduce the More-Less approach with three constraints: the Validity Constraint, the Deadline

Constraint and the Schedulability Constraint. We then show that the schedulability of transactions and data freshness are

guaranteed by More-Less. Next, the impact of jitter on Half-Half and More-Less is discussed. To understand the advantages

of More-Less, we then compare More-Less with Half-Half and show that More-Less is superior to Half-Half in terms of

schedulability and for minimizing CPU workload. We show that the assignment order, i.e., the order in which periods and

deadlines are assigned has an important impact on schedulability and CPU workload of solutions derived from More-Less.

Therefore, to find an optimal assignment order for More-Less, we investigate the issues of assignment order with the aid of a

concept named partitioning. We show that Shortest Validity First (SVF), an assignment order proposed in this paper, results in

an optimal solution under certain restrictions. With the relaxation of some of the restrictions, it is proved that SVF produces

an approximate solution within a certain bounded range of optimal solutions in general. SVF is shown to be a good heuristic

solution in many applications, especially, where validity interval lengths are much larger than transaction computation times.

3.1 The Design Approach

Although dynamic-priority scheduling is in general more effective than fixed-priority scheduling, it is also more difficult to

implement and hence can incur higher system overhead than fixed-priority scheduling. Moreover, for many applications, it is

possible to implement fixed-priority algorithms at the hardware level by the use of a priority-interrupt mechanism. Thus, the

overhead involved in scheduling tasks can be reduced to a minimal level [10]. Given this, we study fixed-priority scheduling

algorithms in this paper. Addressing this problem under dynamic-priority scheduling is left as future work.

In our previous discussions of Example 2.2, update sensor transactions are assumed to sample data at the beginning of

their periods, and those transactions arrive at the system without latency. That is, it is assumed that jitter is constrained to be

zero for update transactions to be available in the system. We relax this assumption here and discuss the impact of jitter on

the Half-Half and More-Less approach.

In real-time systems, arrival jitter can usually be bounded. We consider two cases for arrival jitter of update transactions.

In the first case, the arrival jitter of any update transactions is bounded by

 � � , i.e., the maximum arrival jitter of each update

transaction is a constant


. In the second case, each update transaction has its own arrival jitter bound, e.g., the maximum

jitter of transaction � � �	 ! # ! &(' is a value

 � � � . It should be noted that a jitter bound of each transaction should not be

larger than its deadline. Otherwise, the transaction is not schedulable. We first investigate transactions with the same arrival
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jitter bound because this is the simpler case to analyze. We then relax it and discuss the case in which transactions have

arbitrary jitter bounds.

Before More-Less is presented, some theoretical background for periodic tasks is reviewed in Section 3.1.1. It should be

noted that theorems relating to periodic tasks presented in Section 3.1.1 also hold for periodic sensor transactions.

3.1.1 Theoretical Background for Periodic Tasks

First, consider the longest response time for any instance of a periodic task ��� where the response time is the difference

between the task initiation time � � � , � � � ' � � � � �� � � ���
��� ' and the task completion time where
� � is the release time of the

first instance of � � .

Lemma 3.1: For a set of periodic tasks � � ��� � � 
��� � with task initiation time � � � , � � � ' � � � � �� � � ���
��� ' , the longest

response time for any instance of � � occurs for the first instance of � � when
� � � � � � �
��� � � 
 � � . [7]

For
� � � � �	 ! # ! &-' , the tasks are in phase because the first instances of all the tasks are initiated at the same time. It

should be noted that we only discuss in phase tasks in this paper. A time instant after which a task has the longest response

time is called a critical instant, e.g., time � is a critical instant for all the tasks if those tasks are in phase.

Further, Leung and Whitehead [10] introduced a fixed-priority scheduling algorithm, the deadline monotonic scheduling

algorithm, in which task priorities are assigned inversely with respect to task deadlines, that is, ��� has higher priority than ���
if
� � 
 � � [10].

Lemma 3.2: For a set of periodic tasks � � �����*� 
����� with
� � ! � � �* ! # ! &(' and

� � � � �	 ! # ! &-' , the deadline

monotonic scheduling algorithm is an optimal fixed priority scheduling algorithm. A task set is schedulable by this algorithm

if the first instance of each task after a critical instant meets its deadline.

Since the deadline monotonic algorithm is an optimal fixed priority scheduling algorithm for a set of tasks ��� � ��
�
��� with
� � ! � � �	 ! # ! &(' , it is used to maintain the schedulability of periodic transactions in our approach.

3.1.2 More-Less Definitions

More-Less is formally defined as follows.

Definition 3.1: More-Less: For a given set of transactions � � ��� � � 
����� , the More-Less approach determines deadlines and

periods of transactions such that the following three constraints are satisfied:

� Validity Constraint:
� � , � � ! ) �

� Deadline Constraint:

 , � � ! � � ! � �

� Schedulability Constraint: Without loss of generality, assume that for # 
 � , � ��� ��� (i.e., ��� precedes ��� when they are

considered for deadline and period assignment � ). Because the transactions are scheduled by the deadline monotonic
�
We use assignment order and priority order interchangeably in this paper. For example, �������
	 also means ��� has higher priority than ��	 .
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algorithm, the following inequality constraint must hold:

 , � ������ � ' ����� � � ' ! � � �* ! # ! &-' ,
where



is transaction jitter bound and ' ��� denotes the number of times transaction � � occurs before the first instance of

��� completes. Therefore, � ������ � ' ����� � � ' represents the response time of the first instance of ��� . It is easy to see that

for any # , ' �
���  .

The next theorem proves that data freshness can be guaranteed under More-Less.

Theorem 3.1: Given a set of update transactions � � ��� � ��
�
��� � & �  ' with deadlines and periods determined by More-Less,

the set of transactions is schedulable and data freshness is guaranteed.

Proof: We need to prove that the three constraints of the More-Less approach can guarantee the schedulability of transactions

and freshness of data. Because of the schedulability constraint, the first instance of every transaction can meet its deadline.

Combined with the deadline constraint, it follows from Lemma 3.2 that the set of transactions can be scheduled by the

deadline monotonic algorithm. Since transactions satisfy the validity constraint, data freshness can also be guaranteed.

Hence the set of transactions is schedulable and data freshness is guaranteed. 	

Given the More-Less approach, the optimization problem we need to solve is a non-linear programming problem: Deter-

mine
� � and

� � such that

(

 � � 
��� � ) +! +

is minimized subject to the three constraints above.

From the three constraints underlying More-Less, we know that
� ��! )�� 	 � ������ � ' ����� � ��' 	 
 . Let

� � � ) � 	 � ������ � ' ������ ��' 	 � � � � � � 
 ' . Now we transform the problem to an assignment order problem so that
(

 � � 
��� � ) +� + � � +"���� �
	 + "�� ) " � ��
 +

is minimized, where
� � � 
 �

It is easy to see that if
(

 is minimized, then

� � � 
 for all # �	 ! # ! &(' and
� � � 
 , � ������ � ' ��� � � � ' �* ! # ! &(' .

Now we have
� � � ) �
	 
 	

��
�����

� ' ��� � � � ' �	 ! # ! &(' � (1)

In particular, if
� � � � � is true for all # �* "! # ! &(' , the More-Less approach actually reduces to the Half-Half approach.

However, if there is at least one transaction � � �* ! # ! &(' with
� � 
 � � from More-Less, it is referred to as strict More-Less.

Definition 3.2: Strict More-Less: For a given set of transactions � � ��� � ��
�
��� , the strict More-Less approach determines

deadlines and periods of transactions such that the validity constraint, deadline constraint, as well as schedulability constraint

in More-Less can be satisfied, and ��� �� !�� ! & ,
��� 
 ��� .

Sets of transactions that are schedulable by strict More-Less or Half-Half are also schedulable by More-Less. We will show

later in Section 3.4, there exist sets of transactions that are schedulable by strict More-Less, but not Half-Half. In contrast,

there also exist sets of transactions that are schedulable by Half-Half, but not strict More-Less. Compared to More-Less,

strict More-Less can only schedule a strict subset of all the transaction sets that can be scheduled by More-Less. This will
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More−Less = Strict More−Less + Half−Half

Strict
More−Less

Half−Half

Schedulable by both
strict More−Less & Half−Half

Figure 3. Comparison of More-Less and Half-Half

be shown later in Section 3.4. Figure 3 illustrates the relationship of More-Less, strict More-Less and Half-Half in terms of

schedulable transaction sets. In the figure, the left oval represents sets of transactions schedulable by strict More-Less, and

the right oval represents sets of transactions schedulable by Half-Half. The intersection of the two ovals represents sets of

transactions schedulable by both strict More-Less and Half-Half. The union of the two ovals represents sets of transactions

schedulable by More-Less.

The crux of the problem then, is to determine an assignment order for a set of transactions such that
(

 is minimized. This

is left to be discussed later in Sections 3.5, and 3.6. Next, we investigate the impact of jitter on the Half-Half and More-Less

approaches, respectively.

3.2 Jitter Concerns for Update Transactions

With the same jitter bound of



for all transactions in a set � � �����	��
�
��� , it is important to know what the impact of jitter

is on deadlines and periods derived from Half-Half and More-Less. For later notational convenience, we define
� � ���	' ��� ���� � � � � �!%" $ ,
& � � &������ ��� �	��
 + � ��� 	

� � ���	'	' .
where

� �����	' denotes the cumulative demands on the processor made by transactions ��� �	���������
������� over time � � ����� when � is a

critical instant, and
& � denotes the maximum laxity for transaction ��� over time � � � � � � .

In the following, we analyze the impact of jitter on Half-Half. Impact of jitter on More-Less is discussed subsequently.

3.2.1 Jitter Concerns for Half-Half

In the case of Half-Half, assume that a fixed priority scheduling algorithm, e.g., the deadline monotonic scheduling algorithm

is used � . We have the following theorem.

Theorem 3.2: For a set of transactions � � �����*��
�
��� with a jitter bound

 � � , and ) ��! ) � for any # 
 � , the set

of transactions can be scheduled by the deadline monotonic scheduling algorithm with deadlines and periods derived from

Half-Half if and only if

 ! & # ' � � � � � 
 � �

& � ' (2)

where
& � �$&��
� � ��� �	� � +� � ��� 	 �

������ � � � �� "� $ ' in the case of Half-Half.

Proof: We prove it as follows:
�
Since the rate monotonic [7] scheduling algorithm is a special case of the deadline monotonic scheduling algorithm, deadline monotonic is assumed

here.
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1. Suppose that Eq. (2) is true, we need to prove that the set of transactions can be scheduled by the deadline monotonic

scheduling algorithm with deadlines and periods derived from Half-Half. Without loss of generality, we focus on

transaction ��� �* �! # ! &-' . In the case of Half-Half, we know that
� � � � � � � +� . Let � 
 � 
�� � !

� +� such that

� 
�� � 	
� � ��� 
�� � ' � � 	 � � ���	' for � 
 �"! � +� . Because Eq. (2) holds, we know that


 ! � 
�� � 	
� ����� 
�� � ' �

� 
�� � 	 �
������ � ��� � ������ "� $ . So we have


 , ��
�����

� � � � 
�� �� "
�
$ ! � 
�� � � (3)

With a jitter bound


, the first instances of all transactions arrive at the same time



in the worst case. Eq. (3) implies

that the first instance of ��� can be completed by time � 
�� � . Because � 
�� � !
� +� , we know that the first instance of ���

can make its deadline. Due to the fact that the longest response time of ��� occurs at its first instance, every instance of

��� can make its deadline if Eq. (2) holds.

Hence, all transactions in � are schedulable.

2. Suppose that the set of transactions can be scheduled by the deadline monotonic scheduling algorithm with deadlines

and periods derived from Half-Half, we need to prove that Eq. (2) is true.

Assume that Eq. (2) is not true. There must be transaction � � �	 "!$# !$&(' such that

 � & ��� � ��� �	�

� +� � ��� 	
� � ���	'�' .

That is,


 � &���� � ��� �	�
� +� � ��� 	 � ������ � � � �� "� $ ' .

Therefore, for all � 
 � ! � +� ,

 , � ���� � � � � �� "� $ ' � � . This implies that in the worst case when all transactions arrive

at the same time


, � � cannot be completed by time

� +� , which is its deadline in the case of Half-Half. It contradicts

our assumption that the set of transactions can be scheduled by the deadline monotonic scheduling algorithm with

deadlines and periods derived from Half-Half. Hence we have proved that Eq. (2) is true.

Therefore, the set of transactions can be scheduled by the deadline monotonic scheduling algorithm with deadlines and

periods derived from Half-Half if and only if Eq. (2) holds. 	

The derivation of the maximum jitter bound in Theorem 3.2 requires a maximization of ��� 	 � � ���	'	' over the continuous

variable � � � � � � +� � . As discussed in [9], � needs to be checked only a finite number of times. The function ��� 	 � � ���	'	' is

piecewise monotonically increasing except at a finite set of time values called scheduling points. When � is a multiple of one

of the periods
� � �* ! ��! #�' , ��� 	 � � ���	'�' has a local maximum, which is left continuously increasing and jumps to a lower

value to the right. Therefore, we need only test these local maxima to determine if � � can make its deadline.

3.2.2 Jitter Concerns for More-Less

Similarly, we have the following theorem for More-Less.

Theorem 3.3: For a set of transactions � � ��� � ��
�
��� with a jitter bound

 � � , and deadlines as well as periods derived

from More-Less (
� � ! � � for any # 
 � ), the set of transactions can be scheduled by the deadline monotonic scheduling
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algorithm if and only if

 ! & # ' � � � � � 
 � �

& � ' (4)

where
& � �$&��
� � ��� �	��
 + � ��� 	 �

������ � �
� �! " $ ' in the case of More-Less.

Proof: The proof is similar to that of Theorem 3.2. 	

3.3 Computation of Deadlines and Periods

We now investigate the problem of computing
� � and

� � with a given transaction order for a set of transactions with

known computation times and validity intervals. The following algorithm describes how to compute deadlines and periods

of transactions in the presence of jitters.

Input: A jitter bound

 � � , a set of update transactions ��� ��� � � 
����� � & �� �' with CPU computation times � � � ��
�
��� and

validity interval lengths ��) � � 
�
��� as well as an assignment order � � � � � � �
��� � � 
 .

Output: Deadlines � � ��� 
��� � and periods � � �	� 
�
��� .

Algorithm 3.1: Determine Deadlines and Periods according to More-Less

/* Compute the deadline and period of � � */
� � � 
 , � � ;
� � � )�� 	 � � ;
/* Compute

� � and
� � for the rest of the tasks in the

descending order of task priorities */

for # � �
to & do

�
� � � � 
 , � � ; /* Initialize

� � � , response time of
� � � */

do � /* Compute
� � � iteratively */

� � � � � � ; /* Keep
� � � for comparison */

� � � � 
 , � � ; /* Initialize
� � � to recompute it */

/* Next, recompute
� � � using

� � */

for � �� to # 	  do

/* Account for the interference of higher priority tasks */

� � � � � � � � , � 
 +! " $ � � ; �
� while � � � ���� � � ' and � � � � ! � +� ' ;
/* Computation of

� � � stops if
� � � does not change, or

� � � exceeds
� +� */

if � � � � � � +� '
then abort; /* Unschedulable case */

else
� � � ) � 	 � � ; /* Compute

� � */

11



# � � ) � More-Less Half-Half
� � � � � � � � � '

1 1 3 1 2 1.5

2 2 20 4 16 10

Table 3. Parameters and results for example 3.1

�

The next example illustrates how Algorithm 3.1 derives deadlines and periods of transactions.

Example 3.1: A set of transactions is given in Table 3 with transaction numbers, computation times, and validity interval

lengths. For simplicity, we assume the jitter of each transaction is zero. Half-Half and More-Less are applied to the transaction

set. The resulting deadlines and periods are computed from Algorithm 3.1 and shown in Table 3 with assignment order

��� � ��� , which is the same as the assignment order from the deadline monotonic algorithm for the deadlines resulting from

Half-Half. The CPU workload for More-Less is �� , ���� � � � � ��� , which is less than ���� � , ���� � � � � �	� , the CPU workload for

Half-Half.

Example 3.1 shows that More-Less can have lower CPU workload than Half-Half. Given any set of transactions, does

More-Less produce better schedulability than Half-Half when More-Less and Half-Half result in different solutions ? This is

answered in the affirmative next.

3.4 Comparison of More-Less and Half-Half

For clarity of presentation, let
��
� ���	' denote the cumulative demands on the processor made by transactions � � ��� � �����
�
�	� �

over time � � ����� under Half-Half when � is a critical instant, i.e.,

� 
� ���	' �
�
�
�����

� �� "
�
$ � � � (5)

The next theorem states that there are transaction sets that can be scheduled by Half-Half, but cannot be scheduled by strict

More-Less.

Theorem 3.4: Given any set of transactions ������� � ��
�
��� � & �  ' with � � � � � for any # 
 � and

 � � , if


 , � 
� � )
�
� ' � ) �

� �* !�� ! &(' (6)

and
� � 
 ) �

� � 
 , � 
� ���	' � � �* ! � ! &(' (7)

hold, then the set of transactions is schedulable by Half-Half, but not strict More-Less.
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Proof: In the worst case, the jitter of each transaction is equal to



because



is the jitter bound. Eq. (6) and (7) imply that

the first instance of any transaction � � �* ! ��! &(' cannot complete before time
���
� , but it can complete exactly at time

���
�

under Half-Half in the worst case. We now prove the theorem as follows:

1. Suppose

 � � . Eq. (6) reduces to

� 
� � )
�
� ' � ) �

� �* ! � ! &(' � (8)

Based on the definition of
� 
� ���	' (Eq. (5)), we have

�
�
�����

�
� �
�� "
�
$ � � � ) �

� � (9)

That is, �
�
�����

� )
�
) � $

� � � ) �
� �	 ! � ! &(' � (10)

Similarly, Eq. (7) reduces to

� � 
 ) �
� �

�
�
�����

� �� "�
$ � � � � �	 !�� ! &-' � (11)

We now prove that for all sets of transactions schedulable under Half-Half, transaction sets � � � ��� � � with
� � � � �

�
are the only transaction sets satisfying Eq. (6) and (7).

First, � � satisfies Eq. (10) and (11). It is also schedulable under Half-Half because
� � � � �

� where
� �
� is the deadline

and period for � � under Half-Half.

Secondly, we need to prove that � � is the only transaction set satisfying Eq. (10) and (11) that is schedulable under

Half-Half. We prove it by using contradiction. Assume there are other transaction sets � � � �����*��
�
��� � & �  �'
satisfying Eq. (10) and (11). When ���  , we have

� � � � �
� from Eq. (10). When � �  , we also have

�
� �
�� �
�
$ � � ,

�
�
��� �

�
� �
�� "
�
$ � � � ) �

� �* 
 � ! &(' (12)

from Eq. (10). We know that �
� ��� �� $

� � � ���
� because

� � � � �
� . Combined with Eq. (12), it implies that

�
�
����� �

� ��� "� $
� � � � �

� if � �  , which contradicts Eq. (10). Therefore, � � does not exist. This proves that � � is

the only transaction set satisfying Eq. (6) and (7) that is scedulable under Half-Half.

Because
� � � � �

� , if � � has to complete by its deadline,
� � � � � � � �

� must be true. Because
� � ��) � 	 � � , it

implies that
� � ! � �� , i.e.,

� � � � � must hold. Therefore, strict More-Less cannot be applied to � � because
� ��
 � �

cannot be true.

2. Suppose

 � � . Because of Eq. (6), the set of transactions is schedulable by Half-Half because transaction � �

�* ! � ! &(' can complete exactly at time
� �
� .

Let us assume that the set of transactions is also schedulable by strict More-Less. There must be one or more trans-

actions that have deadlines less than their corresponding periods. Suppose that � � �* ! � ! &-' is the highest

priority transaction with
� � 
 � �

, i.e.,
� � 
 � �

� , which implies that
� � � � � � � "

� (� 
 � ). We have
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 , �
� � ������ � 
 �� "� $

� � , � � ! � �
because � � is schedulable. Combined with the definition of

��
� ���	' (Eq. (5)), we

have

 , � 
� � � � '(! � �

. That is, � � 
 ���
� ,


 , � 
� ���	' ! � . This contradicts Eq. (7). Therefore, the set of

transactions is not schedulable by strict More-Less.

Therefore, a set of transactions satisfying Eq. (6) and (7) is schedulable by Half-Half, but not strict More-Less. 	

Based on Theorem 3.4, we define strict Half-Half transaction sets as follows:

Definition 3.3: Strict Half-Half transaction set: Any set of transactions � ����� �*��
�
��� � & �� �' satisfying Eq. (6) and (7) is a

strict Half-Half transaction set. In contrast, a non-strict Half-Half transaction set is a set of transactions that is schedulable

under Half-Half but does not satisfy Eq. (7).

From Figure 3, it can be observed that the part of right oval (i.e., the oval for Half-Half), which is not common to both

ovals, represents strict Half-Half. The intersection of the two ovals represents non-strict Half-Half. In terms of schedulable

transaction sets, strict Half-Half � Half-Half 	 strict More-Less. It should be noted that Half-Half is only a special case

of More-Less. So a set of transactions satisfying Eq. (6) and (7) can also be scheduled by More-Less. However, for non-

strict Half-Half transaction sets that are schedulable by Half-Half, the next theorem implies that strict More-Less always

outperforms Half-Half in terms of minimizing CPU workload.

Theorem 3.5: If any non-strict Half-Half transaction set � � ��� � ��
�
��� � & �  �' with a jitter bound

 ��� can be scheduled

to guarantee data freshness using any fixed priority scheduling algorithm based on deadlines and periods derived from Half-

Half, then the same set of transactions can also be scheduled by the deadline monotonic algorithm based on deadlines and

periods derived from strict More-Less.

Proof: If & �  , it is trivial. Let us look at the case of & �  .
Without loss of generality, assume that transaction priorities are assigned in the order of � � � � � � �
�
� � � 
 by Half-

Half. Let us assume that the same priority order is retained by strict More-Less. Let
� 
� and

� 
� denote the deadline and

period of transaction ��� in Half-Half, and
���� and

���� denote the deadline and period of transaction ��� in strict More-Less,

respectively. We know that
� 
� � � 
� � � +� . Since the set of transactions can be scheduled by a fixed priority scheduling

algorithm based on Half-Half, we will prove that
� 
� � � �� and

� 
� ! � �� for  ! #�!�& , and there is at least one

transaction � � �	 ! � ! &(' with
���� 
 ���� .

Assume that � � �* -! �+! &(' is the highest priority transaction that does not satisfy Eq. (7). For  -! � ! � 	  , let
���� � � 
� and

���� � � 
� . It is clear that � ��� 
 � �� ' such that

 , � � , �

� � ������ � � �!��" $ � � ' ! � , i.e.,

 , �

�
����� � � �� "� $

� � ' ! � .
Therefore, we have


 , � 
� ���	' ! � .
Let

���� � � . This implies that
���� 
 � �

� and
���� � � �

� , i.e.,
���� 
 ���� . For all � 
 � !�& , let

���� � � 
� and
���� � � 
� . Now we have deadlines and periods derived from strict More-Less for all transactions. It is obvious that the first

instance of � � �	 ! # ! &(' can make its deadline based on the deadline monotonic scheduling algorithm. It directly follows

from Lemma 3.2 that the set of transactions with deadlines and periods derived from strict More-Less can be scheduled by

the deadline monotonic in the presence of a jitter bound. 	
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# � � ) � Strict More-Less Half-Half
� � � � � � � � � '

1 1 4 1 3 2

2 1 5 2 3 2.5

3 1 8 3 5 4

4 1 20 9 11 10

Table 4. Parameters and results of Example 3.2

Time

t 1t 2 t 3 t 4
t 1 t 1t 2 t 2t 3 . . .

Transactions: 
t1, t2, t3, t4

0 3 6 9

Figure 4. A solution produced by More-Less

From Theorem 3.5, if there is a feasible solution based on Half-Half for a set of transactions and Eq. (7) does not hold,

there must be a feasible solution based on strict More-Less with lower CPU workload. However, the converse is not true.

This is illustrated by Example 3.2.

Example 3.2: Transactions are listed in Table 4 with transaction numbers, computation times, validity interval lengths.

Half-Half and strict More-Less are applied to the transaction set, and resulting deadlines and periods are shown in Table

4. For simplicity, we assume that jitter of a transaction is zero. It is clear from Table 4 that the transaction set resulting

from Half-Half is non-schedulable because its CPU workload is �� , �� � � , �
�
, �� � �  �� ��� �  �� � . However, transactions

with periods resulting from strict More-Less is schedulable by assigning priorities � � � � � � � � � � � . In this case, the

resulting CPU workload is �� , �� , �� , ���� � � � � � � . Figure 4 shows that the first instance of every transaction in the set can

meet its deadline, which indicates that the transaction set is schedulable according to Lemma 3.2. However, an assignment

order ��� � ��� � � � � � � under More-Less would not be able to produce a feasible solution according to Algorithm 3.1.

Specifically, the algorithm produces periods 4, 2, 4 for transactions ��� , ��� , and � � , respectively, and those three transactions

have higher priorities than � � . With such periods and transaction computation times, it is easy for readers to verify that

transactions � � , � � , and � � would consume 100% of the CPU time, and there is no CPU capacity left for � � . The algorithm

would fail to produce a feasible deadline for � � because
� � � exceeds

���
� . This indicates that assignment orders of transactions

can significantly affect the schedulability of transactions. 	

It is clear from Theorem 3.5 that any conditions sufficient to guarantee the schedulability of a set of transactions using

Half-Half while Eq. (7) does not hold must be sufficient to guarantee the schedulability using strict More-Less. The following

lemma gives a sufficient condition for the schedulability of transactions based on strict More-Less.
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Lemma 3.3: Given any set of transactions � � ��� � ��
�
��� � & �� �' with � � � � � for any # 
 � , let
� 
� ���	'%� � ���� � � �� "� $

� �
under Half-Half. If

� � ! ) �
� � 
 , � 
� ���	' ! � �	 ! # ! &(' (13)

and

�  !�� ! & � � � 
 ) �
� � 
 , � 
� ���	' ! � (14)

hold, then the set of transactions is schedulable by the deadline monotonic scheduling algorithm under strict More-Less.

Proof: It should be noted that if Eq. (13) holds, the first instance of transaction � � �* +! #�! &(' can complete at time

�%! � +� under Half-Half. Then � is schedulable by a fixed priority scheduling algorithm with deadlines and periods derived

from Half-Half with priority order ��� � ��� for any # 
 � . If Eq. (14) holds, there is at least one transaction � � whose first

instance can complete at time � 
 � �� . From Theorem 3.5, we know that the transaction set � is schedulable by the deadline

monotonic scheduling algorithm under strict More-Less. 	

Lemma 3.3 is interesting because it gives the sufficient condition for the subset of Half-Half that is also schedulable

under strict More-Less. It should be noted that conditions in Lemma 3.3 are only sufficient conditions for scheduling a set

of transactions based on strict More-Less; they are not the necessary conditions. However, Eq. (13) is both a necessary

and sufficient condition for scheduling a set of transactions with fixed priority scheduling algorithms based on Half-Half,

that is, if Eq. (13) does not hold, a set of transactions is not schedulable based on Half-Half. However, it may still be

schedulable using More-Less. As illustrated in Example 3.2, assignment orders in More-Less may have a significant impact

on the schedulability of transactions. How to choose an appropriate assignment order to determine deadlines and periods

remains a problem. An optimal assignment order is desirable for More-Less to guarantee schedulability and minimize the

CPU workload of transactions.

3.5 More-Less Approach: An Optimal Approach in a Restricted Case

As far as we know, there is no known solution to solve the previous non-linear programming problem corresponding to

producing optimal periods and deadlines under More-Less. The complexity arises from not only the non-linearity, but also

the permutation of & transactions (i.e., the assignment order of the & transactions), which is �"� &�� ' . If we enumerate all the

permutations of & transactions to find the one with minimized CPU workload, all &�� solutions would have to be examined.

It is obviously not efficient when the transaction set is large.

We now begin to examine the issue of finding an optimal assignment order for More-Less. For simplicity of presentation,

we assume that jitter of all transactions are constrained to be � (i.e.,

 � � ). However, our results can also be extended to the

situation in which

 � � . We first consider the problem with the following constraint:

Restriction (1): � 
�
��� � ��! & # ' � �
"
� ' �* ! ��! &-' �

Under this restriction, the first instance of all transactions can complete before half of the shortest validity interval. Given

any assignment order of transactions, this implies that no higher priority transactions can recur before the first instance of the

lowest priority transaction completes. Otherwise, suppose
� �
� (the 2nd instance of transaction � � ) �* ! # ! &(' is the first

16



recurring instance, and it occurs at time � before the first instance of the lowest priority transaction completes. It implies that

� � � � . Because
� � � � +� according to More-Less, we have � � � +� . Because not all the first instances from all transactions

have completed yet, � 
 � 
��� � � � . Therefore we can conclude that
� +� 
 � 
�
��� � � , which contradicts Restriction (1). Hence

' ��� �  %�	 ! # ! &��  ! ��! #*' , i.e., no higher priority transactions can recur before the first instance of the lowest priority

transaction completes. Due to the short execution time of sensor transactions and relatively long validity interval length in

many real applications (e.g., avionics system in [6], air traffic control, aircraft mission processor, and spacecraft control in

[8]), Restriction (1) is reasonable in many cases. In the rest of Section 3.5, we assume that Restriction (1) holds. In the rest

of the paper, we also assume that transactions are ordered so that � � � � � for # 
 � unless specified otherwise.

3.5.1 More-Less Approach: Optimal Assignment Order for Two Transactions

To motivate our approach to determining the ordering of transactions, we first study the characteristics of a set of two

transactions: � � and � � . The question we are trying to answer is, which one should precede the other? Two cases are

examined:

1. � � � � : � � � � �
�� � � �%�$)�� 	 � �
� � �$) � 	 � � � , � � '

(15)

2. � � � � : � � � � �
�� � � � �$) � 	 � �
� �%�$)�� 	 � � � , � � '

(16)

In the above two cases, it should be noted that the higher priority transaction only occurs once before the first instance

of the lower priority transaction completes because Restriction (1) holds. Let
( �	� and

( � � denote the CPU workload of

transactions � � and � � in cases � � � � and � � � � , respectively. Now we have�� � ( �	� � � ��
��� ) +! + � ) �� � � ) �
, ) �� � � � ) � � ) � �( � � � � ��
��� ) +! + � ) �� � � ) �
, ) �� � � � ) � � ) � �

(17)

Without loss of generality, assume we want to show that
( �	� ! ( � � , i.e.,

� �
) � 	 � �

, � �
) � 	 � � � , � � ' !

� �
) � 	 � �

, � �
) � 	 � � � , � � ' � (18)

We now study the conditions that satisfy Eq. (18).

Let
� � denote the validity interval slack of transaction � � , i.e.,

� � � ) � 	 � � . Also let � ) ��� � ) ��	 ) � , � � ��� � � ��	 � � ,
and � � ��� � � � 	 � � . It is obvious that � ) ��� � 	 � ) ��� , � � ��� � 	 � � ��� , and � � ��� � 	 � � ��� . Suppose an assignment

order � � � � � of two adjacent transactions � � and � � is given, let
( ��� denote CPU workload of � � and � � with � � � � � , i.e.,

( ��� � ) +! +
, ) "! " . We now introduce the following theorem.
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Theorem 3.6: Given any set of transactions � ����� � ��
 � � � � & � � ' , for two transactions � � and � � �	 ! # � � ! & � '�� # ��
� ' , if

1.Restriction (1) holds (i.e.,
� +� � � � , � � and

� "
� � � � , � � ).

2. � ) ��� � � and � � ��� ! � � ) ��� , i.e., for ) � � ) � , the increase of computation time is at most twice the increase in

validity interval length,

then
( ��� ! ( ��� , i.e.,

) +� + � ) +
, ) "� " � � )�+ � ) " � ! ) "� " � ) "

, ) +� + � � )�+ � ) " � .

Theorem 3.6, proved in Appendix, is generalized in Section 3.5.2 to provide restrictions under which optimal solutions

can be easily produced. It has the following properties under Restriction (1): stability and transitivity as described below.

Definition 3.4: Stability: No matter how many transactions are assigned higher priority than two adjacent transactions � � and

� � (i.e., no other transactions exist with priority between � � and � � ), the ordering of � � and � � is stable which means
( ��� is at

most equivalent to
( ��� .

For a set of transactions � � ��� � ��
 � ��� � & � � ' , it should be noted that
( ��� ! ( ��� may be affected by higher priority

transactions. This is because higher priority transactions have impact on the derived periods of � � and � � . For example, if
� � and

� � are changed because of changes of transaction priorities,
( ��� ! ( ��� may not always hold. But in general, the

following property holds.

Property 1. If transactions � � and � � satisfy the two conditions in Theorem 3.6, then the ordering of � � and � � is stable, i.e.,
( ��� ! ( ��� always holds.

Proof: To prove that
( ����! ( ��� always holds, we need to prove that no matter how many transactions have been assigned

higher priorities than ��� and ��� , ( ��� ! ( ��� always holds.

Suppose � transactions, � � �	� � ���
���
�	� � , have been assigned higher priorities than � � and � � . The sum of their computation

times is �
�
� ��� � � � �

(
� � � ). Assume that

( ��� ! ( ��� holds when
� �*� , i.e., there are no transactions with priority

higher than � � and � � . We want to prove that
( ��� ! ( ��� also holds when

� � � , i.e., ) +� + � ) � )�+
, ) "� " � � ) � )�+ � ) " � !) "� " � ) � ) "

, ) +� + � � ) � ) + � ) " � . Consider a new transaction system with ���� and ���� Let )��� � ) � 	 � and )��� � ) � 	 � , but
�
�� � � � and

�
�� � � � thus � ) ���� �$) �� 	 ) �� �$) � 	 ) � � � ) ��� � (19)

We know that � � ��� ! � � ) ��� for
� � � because of Condition 2 in Theorem 3.6. Combined with Eq. (19), � � ��� ! � � ) ���	�� � ��� ! � � )����� . Replacing � ) ��� , ) � and ) � with � )����� , )��� and )��� , respectively, in the conditions of Theorem 3.6, we have

) +��
+
� )�+

, ) "��
" � � ) + � ) " � ! ) "��
" � ) "
, ) +��
+

� � ) + � ) " � . That is,
( ��� ! ( ��� also holds when

� � � . 	

Definition 3.5: Transitivity: If � � preceding � � results in
( ��� ! ( ��� , and � � preceding � � results in

( � � ! ( � � , then � �
preceding � � results in

( � � ! ( � � .

Property 2. Transactions satisfying conditions in Theorem 3.6 maintain transitivity.

Proof: Given transactions ��� , ��� and � � , suppose � � ��� ! � � ) ��� and � � � �-! � � ) � � . Because
� � ) � � � � � ) � 	 )�� ' �

� � ) � 	 ) � ' , � � ) � 	 ) � ' � � � ) � � , � � ) ��� � � � � � , � � ��� � � � � � , we have
( � � ! ( � � . 	
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Determining the conditions necessary from Theorem 3.6 for
( ��� ! ( ��� is computationally efficient because � ) ��� and� � ��� are computable in polynomial time.

Discussion

In Theorem 3.6, � ) ����� � and � � ��� ! � � ) ��� include two cases:

1. � ) ��� � � and � ) ��� � � � ��� , which implies ) � ! ) � and ) �
	 � � !$) � 	 � � , i.e., ) � and ) � 	 � � order transaction

priorities in the same way.

2. � ) ��� � � and
� � ) ��� � � � ��� � � ) ��� , which implies ) � !$) � and ) � 	 � � !$) � 	 � � , i.e., ) � and ) � 	 � � do not

order transaction priorities in the same way.

��� preceding ��� produces lower CPU workload in the above two cases. Thus, ) � 	 � � values of transactions may not produce

the best assignment order. Said differently, the Least Slack First assignment algorithm may not produce the lowest workload.

3.5.2 More-Less Approach: Optimal Assignment Order for & Transactions

To generalize the comparison of two transactions, we need to examine a set of transactions �����	��
�
��� with & � �
. We first

introduce the second restriction in this paper.

Restriction (2):�� � ) � ! ) � ! �
��� ! ) 
� � � ��� � � ! � � ) � ��� � � � # �  �� � ���
����& 	  '
The next theorem proposes an optimal solution under Restrictions (1) and (2).

Theorem 3.7: Given a set of transactions � � ��� � � 
����� , if Restrictions (1) and (2) hold then an assignment order named

Shortest Validity First(SVF), which assigns orders to transactions in the inverse order of validity interval length and resolves

ties in favor of a transaction with less slack
�
, results in the optimal CPU workload among all possible assignment orders of

the More-Less approach.

Proof: It should be noted that there may be more than one transaction order resulting from SVF if some transactions have

the same validity interval length and computation time. But the transaction orders resulting from SVF have the same CPU

workload.

We need to prove that the transaction ordering scheme from SVF results in the minimal CPU workload. From Restriction

(2) and Theorem 3.6, we know that
( ��� � ��� ! ( � ��� � ���* "!$# !$& 	  ' , and this is stable and transitive. Suppose there is an

optimal assignment ordering
� ���

� resulting from an order different from SVF. But order
� ���

� can always be achieved by a

sequence of swappings of priorities of two adjacent transactions in our SVF scheme. From the stability and transitivity of

Theorem 3.6, we know that every swap of orders of two adjacent transactions in the SVF scheme would result in higher CPU

workload if these two transactions do not have the same validity interval length and computation time. For all the swaps of
�
As in Table 1, slack � � for transaction � � is defined as � ����� � .

19



# � � ) � More-Less Half-Half
� � � � � � � � � '

1 1 8 1 7 4

2 1 10 2 8 5

3 1 12 3 9 6

Table 5. Illustration of an optimal solution

( �*� � ( � � � ( � � � ( � � � ( � �	� ( � � �
0.379 0.386 0.389 0.411 0.400 0.416

Table 6. CPU workload of all possible orderings

orders of two adjacent transactions in the SVF scheme, there must be at least one swap of two transactions that do not have the

same validity interval length and computation time. Otherwise, order
� ���

� is only one of the SVF orders, which contradicts

the assumption that
� � �

� results from an order different from SVF. Thus order
� ���

� has higher CPU workload than the SVF

scheme. This contradicts the assumption that
� � �

� is optimal. Therefore we have proved that transaction ordering scheme

based on SVF results in the optimal CPU workload. 	

Example 3.3: In Table 5, a set of transactions is shown that satisfies Restrictions (1) and (2), therefore an assignment order

��� � ��� � � � results in an optimal solution for More-Less. Half-Half and More-Less are applied to the transaction set,

respectively, and the resulting deadlines and periods are shown in Table 5. The resulting CPU workload of the solution from

More-Less is �� , �� , �� � � � � � � . This is an optimal CPU workload among all the priority assignments of More-Less, and

it is much lower than the CPU workload of the solution from Half-Half, which is �� , �� , �
� � � � � � . CPU workloads of all

possible assignment orders are listed in Table 6 in which
(����
	

represents workload of assignment order � � � � � � � 	 .

We can see that SVF does result in the optimal CPU workload in this case. 	

The next example illustrates that SVF does not produce an optimal solution if Restriction (2) does not hold.

Example 3.4: In Table 7, it is obvious that the set of transactions does not satisfy Restriction (2) because
� ) � �� � � � � � � �� � � ��� �

� � �
, although Restriction (1) holds. In this case, an assignment order according to SVF ( � � � � � ) does not result in

an optimal solution for More-Less. Resulting deadlines and periods from different assignment orders under More-Less are

shown in Table 7. In this case, the resulting CPU workload of SVF is �� , �

� � � � � � � , and the other order results in a CPU

workload of �� , �
� � � � ���  . 	

So, clearly, when Restriction (1) holds but Restriction (2) does not hold, SVF may not be an optimal solution. But it is

interesting to note that SVF produces a CPU workload which is close to the optimal in such situations. This is the issue that

is examined next.
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# � � ) � ��� � ��� ��� � ���
� � � � � � � �

1 1 10 1 9 5 5

2 4 11 5 6 4 7

Table 7. SVF is non-optimal case

3.6 More-Less Approach: An Approximate Solution and Its Bound

In this subsection, we explore the implication of using SVF even when Restriction (2) in Theorem 3.7 does not hold, but

Restriction (1) holds. We will show that SVF can provide a CPU workload bounded within a certain range of that of the

optimal solution. This is analyzed through the help of transaction partitioning, a powerful technique which can help derive

the CPU workload bound when using SVF as an approximation of the optimal assignment order.

Definition 3.6: Partition: Given a set of transactions � � ��� �*� 
��� � � & �  �' , if a transaction � � �	 ! � ! &(' is

partitioned into ' � ' �  �' independent subtransactions ��� � � � 	����� with computation time � � � � � 	��� � ���
	
� � � � � � � ' , and

validity interval length � ) � � � 	����� � ) � � � ) � ' , then the set of transactions ��� � � � 	����� is a partition of � � , and the resulting set

of transactions ��� � �
� � ��
����� ��� � � �

	
����� � ��� � ��
�
� � ��� is a partition-transformed set of the original transaction set.

It should be noted that partition-transformation is transitive. For example, if transaction set ��� is a partition-transformed

set of transaction set ��� , and transaction set ��� is a partition-transformed set of transaction set ��� , then transaction set ��� is

a partition-transformed set of transaction set ��� .

We now investigate the impact of partitioning on minimizing the CPU workload of a transaction set. We want to under-

stand whether partitioning transactions into smaller subtransactions with shorter computation times would produce optimal

solutions with lower CPU workload. The following theorem holds even when Restriction (1) is not satisfied.

Theorem 3.8: Given any set of transactions ��	 �,�����*��
�
��� , assume that a transaction � � �* �! �+!�&-' can be partitioned

into ' ( ' � �
)independent subtransactions ��� � � � 	��� � with

� � � �
	
����� � � � and ) � � � ) � �* �! �(! ' ' . Let the partition-

transformed transaction set be ��
 . Then for any solution generated by More-Less, the optimal CPU workload of ��
 is less

than the optimal CPU workload of ��	 .

Proof: For an optimal solution �
	
� �
� of ��	 generated by More-Less with assignment order � � � ��� � ���
� � � 
 , if a

transaction � � � ��	 �* !�� ! &(' can be partitioned into ' subtransactions � � � ���
���
�	� � 	 , ��	 is transformed into a transaction

set ��
$� ���
�
� ���
�����

�� � � ���
�� � ���
���
�	�

�� 	 �	�
��
��� ���
���
�	�

�

 � where �

�
� � ��� � � �� � ' and �

�� � � � � � �* "! # ! ' ' . Based on More-Less,
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we can obtain a feasible solution � 
 from � 	
���
� immediately with��������

�������
� �� � � � � � 
 � '
� ���� 
 � � � � � � �� ! # ! ' 	  �'
� ���� � � � � � � � � #�� ' '
� �� � � � � � � � '

(20)

by assigning priorities in the order of �
�
� � �
�
� � �

�� � � � �
�� � � �
��� � �

�� 	 � �
��
��� � �
�
� � �

�

 . Thus, we know that��������

�������
� �� � � � � � 
 � '
� ���� � � � � � � � �� ! # ! ' 	  �'
� ���� � � � � � � � � #�� ' '
� �� � � � � � � � '

(21)

We know that ��
 with the above � � �� � and � � �� � can be scheduled because deadlines and periods are produced from a

feasible solution, � 	
� �
� . Considering that

( � � ���� �

�
�
���

� �� � � (22)

and
( ��� �

� � ��
�
���

� �� �
,

	�
�����

� �� �� �� �
, 
�
�
� � ���

� �� � � (23)

we know that
( � � ���� � ( ��� . Because

( ��� ���� , the optimal CPU workload of � 
 , is less than or equal to
( ��� , we can conclude

that
( � � ���� � (

���
���� . This proves the theorem. 	

Theorem 3.8 is important because it says that a partition-transformed set has lower optimal CPU workload than the

optimal CPU workload of its original transaction set. Theorem 3.8 can be applied repeatedly to every transaction in � 	 . This

generates a “finer” transaction set with even lower optimal CPU workload. We will show later in this paper how partitioning

can be used to analyze More-Less.

Given a set of transactions � which satisfies Restriction (1) but does not satisfy Restriction (2), we can partition transac-

tions which violate Restriction (2) into a set of subtransactions such that the partition-transformed transaction set � 
 satisfies

Restriction (2). The optimal CPU workload of the partition-transformed transaction set (
( ��� ���� ) can be obtained from Theorem

3.7, and this is less than the optimal CPU workload of the original transaction set (
( ��� �� ) as per Theorem 3.8. Thus, for any

given solution � of � and its CPU workload
(��

,
(�� 	 (

� �
�� ! (�� 	 (

� �
���� because

( ��� �� � (
���
���� .

Definition 3.7: Partition/Merge: Given any set of transactions ������� � �	� � ���
����� 
 � with ) � ! ) � ! �
��� ! ) 
 , if Restriction

(1) holds but Restriction (2) does not hold for � , we can reconstruct the transaction set by partitioning the computation time

of transactions so that Restriction (2) holds.

1.Partitioning of one transaction: If there is one transaction � � with ) � � � !�) � and
� � � � � � � , � � ) � 	 ) � � ��' ,

in which case Restriction (2) does not hold, we can partition the computation time
� �

into ' ( ' � �
) parts that

satisfy ) �	 ! � � � � , � � ) � 	 ) � � ��' (which again implies � � � � � � � ! � � ) � � � � � ). We can consider � � to consist

of a set of ' subtransactions: �
	 � � ��� � � �	� � � �����
�	� � 	 � , in which ) � � � ) � and
� � � � ) �	 �	 $! # ! ' ' . We
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denote � 	 � � � � � � ' . Let us substitute the set of transactions � � � �	� � � ���
�
�	� � 	 for transaction � � and form a new set

of transactions � � � ���������
����� � � � �	� � ����� � � ���
����� � 	 ��� � ��� ���
�
�	� 
 � . If we assign orders of transactions in � � according to

SVF and derive periods based on Eq. (1), it is easy to see that
� � ��! � � , that is,

� � ��� � � .
2.Partitioning of more than one transaction: If there are multiple adjacent transactions that do not satisfy Restriction (2),

they are partitioned in the same way and the set of old transactions is transformed into a set of new transactions � 
 �
��� � �	� � �����
�	� 
�� � � &

� � &-' . Transactions in � 
 now satisfy Restriction (2), thus the optimal solution of transaction set

� 
 can be achieved by applying theorem 3.7.

Merge (denoted as
� � � ) is the inverse function of Partition. If � � � � � � � ' , then � � � � � � � � � ' .

Let
( ��� �� and

( � � ��
� denote the optimal solution of � and � � , respectively. It is obvious that

( � � ��
� �

� � ��
�
���

� �� �
, 
�
��� � ���

� �� �
,

	�
�����

) �	��� � � (24)

As per Theorem 3.8,
( � � ��

� ! (
���
�� . Applying Theorem 3.8 repeatedly to � , we know that the CPU workload of the optimal

solution of � 
 ,
( ��� ���� , satisfies

( ��� ���� ! (
���
�� � (25)

Theorem 3.9: Given a set of transactions � which satisfies Restriction (1), let
( � � �� ,

( ��� �� � , and
( �


 denote the CPU workload

of an optimal solution of � , the optimal solution of � 
 , and the approximate solution � � of � derived from Shortest Validity

First (SVF), respectively. The following inequality holds:

( �

 � (

� �
�� � (

���
���� � (26)

Proof:
( �


 � (
� �
�� because

( ��� �� is the optimal CPU workload of the same set of transactions. We know
( ��� �� � (

���
���� from

Eq. (25). So the theorem follows. 	

Definition 3.8: CPU workload bound with respect to the optimal solution : Given a set of transactions ��� ��� � �����������
�	� 
 �
and its optimal CPU workload

( ��� �� , the CPU workload bound of any solution � with respect to its optimal solution, � � , is

defined as

� � � ( � 	 (
� �
�� � (27)

where
( �

is the CPU workload of solution � .

Theorem 3.10: Given a set of transactions � � ����������� �����
�	� 
 � with )�� ! )�� ! �
��� ! ) 
 , suppose that � satisfies

Restriction (1) but not Restriction (2). Let � � be a solution from the SVF algorithm. Assume that � is a set of subscripts

of all the transactions in � that are partitioned in a partition-transformation after which the resulting set of transactions � 

satisfies Restriction (2). The CPU workload bound of � � with respect to the optimal solution of � , � � 
 , satisfies

� � 
 
 � �
���	� �

� �
) � '

� � (28)
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Proof: Let
( ��� �� ,

( � � ���� , and
( �


 denote the CPU workload of an optimal solution of � , the optimal solution of � 
 partition-

transformed from � , and the solution � � from the SVF algorithm, respectively. It follows from Theorem 3.9 that

� � 
 � ( � 
 	 (
� �
��

! ( � 
 	 (
� �
�� �

We prove the theorem in two steps:

1. Assume ��
 ����� �� ��� �� �����
�	� �
 � � with ) �� ! ) �� ! �
��� ! ) �
�� . Without loss of generality, assume � � � � and � � � � is

the lowest priority transaction that has been partitioned into ' � subtransactions ���� � ������ � ���
�������� 	 � ( � � � � � 
 �	# �  ��� ' � ).
We know that

�
�� � � � �� � ����� � �

�� 	 � � ) �	 � and ) � � )��� � � )��� � ����� � )��� 	 � . When these ' � subtransactions are

merged into one transaction �
��

with
� �� � � �

and )
� � � ) � , �

��
inherits the priority of � �� 	 � in the assignment order.

So we have a new set of transactions � � � � 
 	 ������ � �	���� � �����
�	���� 	 � � , ���
�� � . Let

( � 
� denote the CPU workload from

the SVF solution � �� of � � . Then

(�� 
� 	 (
� �
����

� )
�
�� � � � � � � �
�

+ � � )
�
+ �
� )
�
�

	 �
	
�

� ���
� �
�

� �

� � � � � � � �
�

+ ��� )
�
+ �
��� � ��
� �

� �
	
�

� ��� �
� �
�

� �� � � � � � � �
�

+ ��� )
�
+ �
� )
�
�

	
� �
�

� �

� � � � � � � �
�

+ � � )
�
+ �
� � � ��
� �
'

� �
	
�

� ��� �
� � ��
� � � � �
	 � ��� �

� � � � � � � � �
�

+ � � )
�
+ �
� )
�
� � � � � � � � � � �

�
+ ��� )

�
+ �
� � � ��
� � �

'

! �
	
�

� ��� �
� � ��
� � � � � 	 � ��� �� � � � � � � � �

�
+ � � )

�
+ �
� )
�
� � � '

��� )
�
�	
� ' � � � � � � � �

�
	
� � ���� � � � � � �

+ � � )
�
+ �
�

��� )
�
�	
� ' �

	
�
� 	
�
� ���

� � � � � � � �

+ ��� )
�
+ �
�

Because ' � � ' � 	  �' 
 ' � � , we have

( � 
� 	 (
� �
�� � 
 �� � )

�
�� � � � � �

+ � � )
�
+
' �

Because )
� � 	 �

�
�
��� �

�
� � �

��
, we have

( � 
� 	 (
���
���� 
 �� � )

�
�! �
�
' � .

Since
� �� � � � and

� �� � � �� , we have
(�� 
� 	 (

� �
���� 
 � �

� �
) � '

�
(29)

2. With new solution � �� and all the transactions in � � , let �
�
� � 	 � � � . Similarly, for the lowest priority transaction

� � � � � � # � �
�
' , we can merge all the subtransactions in � � that are partitioned from � � into one transaction as what

24



we have done for � � in step 1. This results in another new set of transactions, � � . Let
( � 
� denote the CPU workload

of � �� , a SVF solution from � � , we have
( � 
� 	 (�� 
� 
 � �

� �
) � '

� (30)

Assume there are ' transactions in � , repeat these steps for all the transactions in � . We have��������
�������
( � 
� 	 (

���
�� � 
 � � ) �� � ' � � � � �

( � 
� 	 ( � 
� 
 � � ) +� + '
� �	# � �

���
�
(��


� 	 (�� 
� � � 
 � � ) "� " ' � ��� � �

(31)

It is obvious that � �	 is
�
� of the approximate solution. Thus, for all transactions with subscripts in � , we have

� � 
 ! (�� 
 	 (
���
���� 
 � ���	� � � ) �� � ' � � � � ���	� � ) �� � ' � . 	

Theorem 3.10 says that the CPU workload from SVF is within
� � � �	� � ) �� � ' � of that of an optimal solution if Restriction

(1) holds. In many real applications, e.g., the avionics application [6] discussed later in Section 4, sensor transaction compu-

tation time is in the range of milliseconds, validity interval length is in the range of hundreds of milliseconds and seconds.

Thus � ) �� � ' � for a sensor transaction � � is about �� ��� to �� � � . The number of transactions which may belong to the transaction

set � is usually very limited. Therefore, this bound is actually very small and can be ignored in many situations, thus SVF

becomes a near optimal solution.

The optimal solution for the general case of More-Less, i.e., when both Restrictions (1) and (2) are relaxed, is left as an

open issue. However, as we shall show in Section 5, SVF is a good heuristic solution even in these situations.

3.7 Discussion of Arbitrary Jitter Bounds

In this case, the jitter bound

 � � 
 � ��� ' of transaction � � �* "! # ! &(' can have an arbitrary value. The problem can be

transformed to one with the same jitter bound by replacing



with &��
� � � � � � 

� � 
 � � . Similarly, by replacing



in Algorithm

3.1 with &������ � � � � 

� � 
 � � , a transaction set with deadlines and periods derived from Algorithm 3.1 is still schedulable by

the deadline monotonic scheduling algorithm. More investigation is necessary for better solutions in this case. This is left for

future work.

4 Application of More-Less: Similarity-Based Load Adjustment

In this section, we consider the similarity-based load adjustment [6] as an application of More-Less. The basic idea

of similarity-based load adjustment is to skip the executions of transaction instances which produce similar outputs. The

approach taken in [6] is to modify the execution frequencies of transactions such that only one instance of a transaction is

executed for multiple periods. As a result, the system workload is reduced. View r-serializability [6] is a criterion used to

justify the correctness of transactions. Readers are referred to [4, 6] for details of similarity and view r-serializability.

In similarity-based load adjustment, a similarity bound is derived for each data object based on application semantics.

Two write events of the same data objects are similar if their sampling times differ by an amount of time no greater than the
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similarity bound. In other words, write events on the same data occurring within the similarity bound are interchangeable as

input to a read without adverse effects. Therefore, some write or read events can be dropped in order to reduce system load

without affecting data temporal correctness. Here, validity interval length is replaced by similarity bound to constrain the

arrival time of an update transaction instance and finishing time of its next instance.

Update and View principles are proposed in [6] to adjust the system load. Their update principle is based on the Half-Half

approach. Based on More-Less, we derive new update and view principles to reduce the system load even further.

Suppose �
� � is the similarity bound for data object � � . For any two conflicting write events on � � occurring within

�
� � , they are interchangeable as input to a read event. Let

� � denote the period of transaction � � refreshing � � before load

adjustment. Let
� 
� and

���� denote the period of transaction � � refreshing � � after load adjusted by Half-Half and More-

Less, respectively. Also let
� 
� and

���� be the deadline of transaction � � after load adjusted by the Half-Half and More-Less

approaches, respectively.

Update Principle:
� �� , � �� !�� � �

In [6], the Half-Half approach is used to derive their update principle, which is
� � 
� !�� � � . However, our update principle

derived from More-Less is
� �� , � �� !�� � � . As shown in Figure 5, any read event will read from similar write events in

both cases after load adjustment. In addition, because
� �� !��

� "
� , we know that

���� ��� � "� � � 
� , which reduces the system
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# � � � � Case 1 Case 2 Case 3
���� ���� � 
� ���� ���� � 
� ���� ���� � 
�

1 1 3 12 3 6 9 3 6 3 3 3

2 2 5 5 5 5 10 10 10 15 15 15

Table 8. Parameters and results of Example 4.1

workload factor for � � by an amount of ) "!��" 	 ) "!��" compared to the previous update principle. Therefore, the update principle

derived from More-Less reduces load even further without sacrificing similarity-based data correctness.

View Principle:
� �� , � �� , � �� !�� � �

Suppose transaction � � with period
� � reads data object � � . Let

� 
� and
���� denote the period of transaction � � adjusted

by Half-Half and More-Less, respectively. The View principle in [6] is defined as
� � 
� , � 
� ! � � � . In contrast, our view

principle from More-Less is defined as
� �� , ���� , ���� !�� � � . Because

���� , ���� � � � 
� , we know
� 
� � ���� , i.e.,

periods of read transaction ��� adjusted by Half-Half and More-Less are the same. As shown in Figure 6,
� �� , � �� , � �� is the

maximum temporal distance among the write events which might be read by instances of � � and their representatives before

and after load adjustment. Therefore, the view principle derived from the More-Less approach can guarantee similarity-based

data correctness.

The following example clearly indicates that the update and view principles derived from More-Less can reduce system

load more than the update and view principles from Half-Half.

Example 4.1: We use an example in [6] to illustrate the effectiveness of the More-Less approach. Suppose there are two

periodic transactions � � and � � in a single processor environment. Their computation times and periods are given in Table

8. ��� periodically refreshes a data object � and ��� periodically reads the same data. The similarity bound �
� �

of � is 22.

According to update and view principles corresponding to the More-Less and Half-Half approaches, the following inequalities

must hold, respectively. �� � � �� , � �� ! � �

���� , ���� , ���� ! � � (32)

�� � � � 
� ! � �

� � 
� , � 
� ! � � (33)

It is obvious that there are multiple solutions. Three different results after load adjustment are shown in Table 8. Let
( 
 and

(
� denote the system CPU workload after load adjustment based on the Half-Half and More-Less approaches,

respectively.
( 
 	 ( � , the difference in adjusted system load, is ��*� and �� � in Cases 1 and 2, respectively. In Case 3,

� 
� � ���� �  � , the system load adjusted from both approaches are the same. This indicates that our update principle

provides solutions with lower CPU workload than the previous update principle. 	
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Parameter Class Parameters Meaning

System
�������

No. of CPU
���

No. of temporal data groups
��	
�

No. of non-temporal data
� � (ms) Validity length of each temporal data groups

Sensor Trans. � � (ms) CPU time for updating a temporal data group

Length No. of temporal data groups updated

Triggered Trans. ��
���������� (ms) CPU Time for each data access

Length No. of data accessed

Slack Factor Triggered transaction slack factor


 �
Probability to access a temporal data


�� Write probability for a non-temporal data access

Table 9. Experimental parameters.

5 Experiments

We begin this section with the experimental setup and the assumptions made in our experiments. We also present a table

of important parameters and their values. Finally, we describe each set of experiments and an analysis of the results. All

our experiments are conducted for a main memory database setting. The primary performance metric we use in our paper is

Missed Deadline Ratio (
& � �

), which is a traditional metric used to evaluate performance in real-time database systems. Let

� 
 � � � denote the number of transactions that miss deadlines, and �
��������� �

! denote the number of transactions that succeed.

The MDR is given by the following expression:

& � �
=

� 
 � � �� 
 � � �
, �
���"�������

!

In our paper, a transaction is aborted as soon as its deadline expires. This corresponds to a firm real-time transaction. This

policy assumes that finishing a transaction after its deadline expires does not impart any value to the system.

A performance model of a real-time database,
�$# �&% � [14], was developed for our experimental studies. In the following,

only statistically different results are discussed.

5.1 Simulation Model and Parameters

In this section, two sets of experimental results are presented to quantitatively compare More-Less and Half-Half. In the

first set of experiments, it is shown that More-Less produces solutions with better schedulability and lower CPU workload

than the Half-Half approach. In the second set of experiments, mixed transaction workloads are scheduled: a class of

sensor update transactions that maintain the validity of temporal data, and a class of transactions that are triggered by the

updates of sensor transactions. Triggered transactions access both temporal and non-temporal data. Sensor transactions

are periodic transactions scheduled by the deadline monotonic scheduling algorithm. Triggered transactions are aperiodic
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Parameter Class Parameters Value

System
� � ��� �
��� ���������
	��
� 	 � �������
� � (ms) 
 � �����������������

Sensor Trans. � � (ms) 
 	�����	��
Length

�
Triggered Trans. ��
�������� � (ms)

	
Length 
 	�����	��
Slack Factor

�

 � ��� 	

�� ��� �

Table 10. Experimental settings.

transactions scheduled by the earliest deadline first scheduling algorithm. Given transactions belonging to different classes,

sensor transactions are given higher priorities than triggered transactions. For simplicity of simulation, only one version of

temporal data is maintained. Upon refreshing a temporal data, the older version is discarded. A triggered transaction always

copies a temporal data into its local working area before it reads the data. Thus concurrency control for temporal data is not

considered. A triggered transaction that cannot commit before the validity of any temporal data read by it expires has to be

aborted, and restarted later if it has not missed its deadline. In such a case, a data-deadline [14] is imposed on the triggered

transaction due to the temporal constraints resulting from data validities. Informally, data-deadline is a deadline assigned to

a transaction due to the temporal constraints (i.e., validity interval length) of the data accessed by the transaction. For details

of the concept of data-deadline, readers are referred to [14].

A summary of the parameters and default settings used in experiments are presented in Tables 9 and 10. The values are

similar to the values used in the experiments of [6] and data presented in the study of air traffic control system in [8]. Three

classes of parameters are presented: system parameters, sensor transaction parameters and triggered transaction parameters.

For system configurations, we only consider a system with a single CPU. The number of non-temporal data is fixed at 1000,

while the number of temporal data groups is varied from  � � to
� � � . It is assumed that each group of temporal data has

the same validity interval length, and validity interval length of each group is uniformly varied from � �%� � to � �%�%� ms. For

sensor transactions, it is assumed that each sensor transaction updates one group of temporal data, and the CPU time for each

transaction is uniformly varied from
�

to  � ms. For triggered transactions, it is assumed that the number of data accessed by

each transaction is uniformly varied from
�

to  � , while each data access takes
�

ms of CPU time. The slack factor determines

the slack of a transaction before its deadline expires. The slack factor of each triggered transaction is fixed at � . Let
# � � � � ' ,

% � � ��� ' , and
��� � ��� # ' � � ��� ' denote the arrival time, total execution time and deadline of triggered transaction ��� , the deadline

of ��� can be calculated as follows:
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For each data access of a triggered transaction, the probability to access a temporal data is
���

. For each non-temporal data

access of a triggered transaction, the probability to update that data is determined by
�
	

.

5.2 Experiment 1: Comparison of CPU Workloads

In the first set of experiments, the CPU workloads of sensor update transactions with deadlines and periods produced by

More-Less and Half-Half are quantitatively compared. A set of sensor transactions is generated randomly: computation time

of a sensor transaction is uniformly generated from 5 to 15 milliseconds, and the validity interval length of a temporal data

group is uniformly generated from 4000 to 8000 milliseconds. The number of sensor transactions are varied to change the

workload in the system.

The resulting CPU workload generated from the One-One, Half-Half and More-Less with SVF ordering are presented in

Figure 7. When the number of transactions is less than
� � � , the CPU workload falls into the restricted case, i.e., Restriction

(1) is satisfied. This is because the sum of computation times of all the transactions is less than half of the minimum of all

the validity interval lengths. It is observed that the CPU workload produced by More-Less is very close to that of One-One,

and much less than that of the Half-Half approach. We would like to remind readers that One-One is used only as an artificial

baseline – it does not guarantee the validity of temporal data. In this case, as we explained in Section 3.6, More-Less is very

close to the optimal solution. This is clearly substantiated by the small difference in the CPU workload between One-One

and More-Less: the CPU workload of an optimal solution under More-Less should be between those for One-One and More-

Less with SVF ordering. When the number of transactions is more than
� � � , the CPU workload falls into the general case

because Restriction (1) is not satisfied. In this case, we observe that CPU workload of More-Less is still much less than that

of Half-Half. However, the difference in CPU workload of One-One and More-Less increases as system workload increases.

The highest workload in our experiments is produced when the number of transactions is
�	� �

, and the corresponding CPU

workload under One-One, Half-Half and More-Less is about
� ���

,  � � � and
� ���

, respectively. Half-Half cannot produce

a feasible solution when the number of transactions exceeds
� � � because the corresponding CPU workload exceeds  � � � .
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But More-Less can still produce feasible solutions even when the number of transactions increases to
� � �

.

In summary, when both the Half-Half and More-Less approaches can be used to schedule a set of sensor update transac-

tions, the More-Less approach can be used to produce solutions with much lower CPU workload, thus more CPU capacity

can be used by other transactions in the system. In addition, More-Less can be used to provide feasible solutions even when

Half-Half cannot be applied. In such situations, More-Less provides better schedulability.

5.3 Experiment 2: Co-scheduling of Mixed Transaction Workloads
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Figure 9. MDR comparison with fixed number of sensor transactions

In this set of experiments, the quantitative performances of sensor transactions and triggered transactions under Half-Half

and More-Less are compared. We conduct experiments in two scenarios: (1) the arrival rate of triggered transactions is fixed,

and (2) the number of sensor transactions is fixed.
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Figure 8 presents the missed deadline ratio of sensor transactions and triggered transactions under Half-Half and More-

Less, respectively, while the arrival rate of triggered transactions is fixed at 10 transactions per second. The number of sensor

update transactions is gradually increased from 100 to 350. As observed from Figure 8, some of the sensor transactions

under Half-Half miss their deadlines when the number of sensor transactions is greater than or equal to 300. This is because

the CPU workload resulting from sensor transactions already exceeds CPU capacity, as shown in Figure 7. However, none

of the sensor transactions under More-Less miss their deadlines even when the number of sensor transactions is 350. This

clearly demonstrates that More-Less provides better schedulability than Half-Half. Furthermore, the missed deadline ratio of

triggered transactions under Half-Half is much higher than that under More-Less. For example, when the number of sensor

transactions is 200, only  � � triggered transactions miss their deadlines under More-Less, but more than
� � � triggered

transactions miss their deadlines under Half-Half. This is because the CPU workload of sensor transactions under Half-

Half is much higher than that under More-Less. In Figure 8, it is also observed that all of the triggered transactions miss

their deadlines under Half-Half when the number of sensor transactions is 300. In this case, as mentioned earlier, the CPU

workload resulting from sensor transactions already exceeds CPU capacity. Since the class of sensor transactions is assigned

higher priority than the class of triggered transactions, none of the triggered transactions can complete before their deadlines.

Figure 9 presents the missed deadline ratio of triggered transactions under Half-Half and More-Less, respectively, while

the number of sensor transactions is fixed at 150. The arrival rate of triggered transactions is gradually increased from 5 to

30 transactions per second. As observed from Figure 9, the missed deadline ratio of triggered transactions under More-Less

is much lower than that under Half-Half. For example, when the arrival rate of triggered transactions is 15 transactions per

second, more than � � � triggered transactions miss their deadlines under Half-Half, whereas only  � � triggered transactions

miss their deadlines under More-Less with the same arrival rate of triggered transactions. This also results from the lower

CPU workload of sensor transactions produced by More-Less.

In summary, More-Less also provides better performance in mixed workloads scenario. In particular, other workloads can

benefit from CPU workload reduction of sensor transactions by using More-Less.

6 Related Work

Database systems in which time validity intervals are associated with the data are discussed in [14, 13, 6, 5, 4, 2, 11, 12].

Such systems introduce the need to maintain data temporal consistency in addition to logical consistency.

In the model introduced in [13], a real-time system consists of periodic tasks which are either read-only, write-only or

update (read-write) transactions. Data objects are temporally inconsistent when their ages or dispersions are greater than the

absolute or relative thresholds allowed by the application. Two-phase locking and optimistic concurrency control algorithms,

as well as rate-monotonic and earliest deadline first scheduling algorithms are studied in [13].

In [4, 5], real-time data semantics are investigated and a class of real-time data access protocols called SSP (Similarity

Stack Protocols) is proposed. The correctness of SSP is based on the concept of similarity which allows different but

sufficiently timely data to be used in a computation without adversely affecting the outcome.

Data-deadline is proposed in our previous work [14]. We proposed data-deadline based scheduling, forced-wait and

similarity based scheduling policies to maintain temporal consistency of real-time data and meet transaction deadlines in
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RTDBs.

A design methodology for guaranteeing end-to-end requirements of real-time systems is presented in [2]. Their approach

guarantees end-to-end propagation delay, temporal input-sampling correlation, and allowable separation times between up-

dated output values. However, their solution is based on the assumption that all the periodic tasks have harmonic periods.

However, we do not make the assumption that all the periods are harmonic.

The work presented in our paper is also related to the work of [6]. But, as we showed, the schedulability of More-

Less is better than Half-Half used in [6]. It is noted that More-Less guarantees a bound on the arrival time of a periodic

transaction instance and the finishing time of the next instance. This is different from the distance constrained scheduling, a

dynamic scheduling mechanism, which guarantees a bound of the finishing times of two consecutive instances of a task [3].

Distance constrained scheduling is also used in [16] to provide temporal consistency guarantees for real-time primary-backup

replication service.

Very recently, we came across a paper by Burns and Davis [1] where what we refer to as SVF is proposed as a heuristic

to determine periods. As we show in this paper, SVF in fact provides an optimal task assignment order when Restrictions (1)

and (2) are met and is a tight approximate ordering criterion when only Restriction (1) is met.

7 Conclusions

In this paper, we examined the problem of deadline and period assignment in systems where data freshness should be

guaranteed. More-Less, a novel approach based on the validity constraint, deadline constraint and schedulability constraint

is proposed and analyzed. The solution for More-Less is constructed according to the deadline monotonic scheduling algo-

rithm, which is the best algorithm for fixed priority scheduling. We proved the correctness of the More-Less approach, and its

superiority to the traditional approach, the Half-Half approach. We further examined the issue of optimal assignment order

under More-Less approach and found that Shortest Validity First (SVF) is an optimal order in situations in which both Restric-

tions (1) and (2) hold. With the relaxation of Restriction (2), we proved that SVF is an approximate solution within a certain

bound of the optimal solutions. We showed, through analysis, that this bound is tight in real world applications. We have

also found in experiments that More-Less with the SVF assignment order produces solutions with much better schedulability

as well as lower CPU workload than Half-Half even in general cases, i.e., when Restriction (1) does not hold. However, the

problem of searching for optimal assignment orders in the general case remains open.

Our experimental results demonstrate that More-Less is a very effective approach for scheduling sensor transaction work-

loads with validity constraints. It is also demonstrated that More-Less can also provide better performance for triggered

transactions by reducing the CPU workloads of sensor transactions. Because of its simplicity and effectiveness, the More-

Less approach can be applied in practical real-time applications.
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8 Appendix

To prove Theorem 3.6, we first introduce the following lemma.

Lemma 8.1: Suppose
� "
� � � ��
��� � � �* ! ��! � ' . Eq. (18) is satisfied iff

� ) � 	 � � ' � 	 � ) � 	 � � ' � ! � � � ) � 	 � � ' 	 � � � ) � 	 � � ' � (34)

Proof: ) �� � � ) �
, ) �� � � � ) � � ) � � ! ) �� � � ) �

, ) �� � � � ) � � ) � �
� ) �� � � � ) � � ) � � 	 ) �� � � ) � ! ) �� � � � ) � � ) � � 	 ) �� � � ) �
� � ) � 	 � ��'�� )�� 	 � � 	 � ��' ! � )�� 	 � ��'�� ) � 	 � � 	 � � '
� � ) � 	 � � ' � 	 � � � ) � 	 � � ' ! � ) � 	 � � ' � 	 � � � ) � 	 � � '
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� � ) � 	 � � ' � 	 � ) � 	 � � ' � ! � � � ) � 	 � � ' 	 � � � ) � 	 � � ' � 	

Proof of Theorem 3.6: � � ��� ��� ) � 	 � � ' 	 � ) � 	 � ��' � � )�� 	 � � ' � � )
� 	 � ��' , � � ��� .
Thus,

� � � � � , � � ��� , � ) ��� � (35)

Let
� � ) �
	 � � � , � � ' , combined with Eq. (35), we have ) � 	 � � � � � , � , � ) ��� .

We know that

� ) �
	 � � ' � 	 � ) � 	 � � ' �
� �	� )
� 	 � � ' , � � ��� '�� ) � 	 � � ' 	 � ) � 	 � ��' �
� � ) � 	 � ��'��	� ) � 	 � � ' 	 � )
� 	 � ��'�' , � � ��� � ) � 	 � � '
� � � � , � , � )
����' ��� ) � 	 � � ' 	 � ) � 	 � � '�' , � � ��� � )�� 	 � � '
� � � � , � ) ��� , � � ��� '�� ) � 	 � � ' 	 � � � ) � 	 � � ' , � � � ��� 	 � ) ��� � ) � 	 � � '
� � � � ) �
	 � � ' 	 � � � ) � 	 � � ' , � ) � 	 � � � , � � '�' � � ��� 	 � ) ��� � ) � 	 � � ' �
Now we have � ) �
	 � � ' � 	 � ) � 	 � � ' � �

� � � ) � 	 � � ' 	 � ��� )
� 	 � � ' , � )�� 	 � � � , � ��'�' � � ��� 	 � ) ��� � ) � 	 � ��' � (36)

By Lemma 8.1, it suffices to show that

� ) � 	 � � ' � 	 � ) � 	 � � ' � ! � � � ) � 	 � � ' 	 � � � ) � 	 � � ' , i.e., we want to prove that � ) � 	 � � � , � � '	' � � ����	 � ) ��� � ) � 	 � � ' ! �
from Eq. (36).

Since � ) ����� � , we know ) ��! )
� . It is true that

� 
 ) � 	 � � � , � ��'
) � 	 � � 
  (37)

� If � � ��� ! � , then
� + � � ) + � ) " �� " � ) " � � ��� ! � . We have � ) ��� � ��� � + � � ) + � ) " �� " � ) " � � ��� , i.e.,

� ) � 	 � � � , � � '	' � � ��� 	 � )
��� � )
� 	 � ��' ! � .
� If � � ��� � � , because � � ��� ! � � ) ��� � � )�� 	 ) ��' , � � � 	 � � ' ! � ) ��� , we have

� � ��� ! � ) ��� � (38)

Combining Eq. (38) and Eq. (37), we have � )���� � � � ��� � � + � � )�+ � ) " �� " � ) " � � ��� . Therefore, we know � ) ��� �� + � � ) + � ) " �� " � ) " � � ��� , i.e., � ) � 	 � � � , � ��'	' � � ��� 	 � )
��� � )
� 	 � ��' 
 � .
Therefore we have

� ) � 	 � � ' � 	 � ) � 	 � � ' � ! � � � ) �
	 � � ' 	 � � � ) � 	 � � ' � (39)

From Lemma 8.1, we know that ) +� + � )�+
, ) "� " � � ) + � ) " � ! ) "� " � ) "

, ) +� + � � )�+ � ) " � � 	
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