Chapter 11

An Optimal Priority Inheritance
Policy For Synchronization in
Real-Time Systems

Ragunathan Rajkumar, Lui Sha,
John P. Lehoczky, and Krithi Ramamritham

Hard real-time systems require predictable timing behavior, and priority-driven
preemptive scheduling is increasingly being used in these systems. Resources in
these enviroiments should ideally be allocated to the highest-priority task. Priority
inversion is a situation in which a higher-priority job is forced to wait for a lower-
priority job. Priority inversion degrades system schedulability. Hence, priority
inversion should be minimized in a hard real-time environment. Unfortunately, a
direct application of synchronization primitives such as semaphores, monitors, and
Ada rendezvous can cause uncontrolled priority inversion, a situation in which a
low-priority job blocks a higher-priority job for an indefinite period of time. In this
chapter we investigate policies belonging to the class of priority inheritance policies
that minimize priority inversion. We develop a priority inheritance policy called the
Optimal Mutex Policy (OMP) which has two desirable properties: deadlocks are
avoided and the worst-case blocking duration of a job is bounded by the duration
of execution of a single critical section of a lower-priority job.

11.1 Introduction

11.1.1 Real-Time Systems

Real-time systems operate under strict timing constraints and include applications
such as avionics systems, space-related systems like the Space Shuttle and Space
Station, production control, robotics, and defense systems. Timing constraints
of different tasks in real-time systems can be either hard, soft, or non-existent.

246

Sec. 11.1 Introduction 247

A timing constraint is considered to be hard if it must be met at all times, or
is considered to be soft if it must be met only most of the time. For example,
the processing of a reactor temperature reading can have a hard deadline if it
must be completed before the next reading becomes available. An operator query
typically has a soft deadline with a desired average-case response time. In addition,
background tasks such as on-line testing may have no associated timing constraints
at all. The failure to meet hard deadlines in these systems can potentially lead to
catastrophic results such as loss of life and/or property.

Real-time systems tend to be embedded systems which are not generally pro-
grammed by the end-user. Unlike traditional time-shared systems, tasks in hard
real-time systems are known « priori. In particular, the worst-case behavior of tasks
with hard deadlines and the average-case behavior of tasks with soft deadlines are
reasonably well-tested and understood. Given a set of tasks and their associated
timing constraints, two distinct approaches to the implementation of real-time sys-
tems are possible. One, called the time-line approach, is typified by the cyclical
ezeculive, where each segment of code to be executed is assigned a time slot for
execution. The time-line is typically handcrafted such that the timing and logical
constraints of the task set are met, and is repeatedly executed in cyclical fashion.
However, this approach is very ad hoc in nature, and leads to very inflexible sys-
tems that are difficult to maintain and modify [18]. The other approach is the
use of algorithmic techniques to schedule tasks using scheduling algorithms which
can be mathematically modeled and analyzed [10]. In this chapter, we focus on
this more powerful algorithmic approach to schedule real-time tasks to meet their
timing constraints.

Real-time systems are becoming increasingly popular with the advent of faster
and cheaper hardware which opens up newer application domains where automation
is more reliable and cheaper. Task scheduling is a significant area of research
in real-time computer systems. Both non-preemptive and preemptive scheduling
algorithms have been studied [6, 8, 9, 14, 15, 16]. An important performance
metric of many scheduling algorithms is the processor utilization below which tasks
are guaranteed to meet their deadlines. For example, consider the rate-monotonic
scheduling algorithm, which assigns a higher fixed priority to a task with a higher
frequency [10] and is the optimal static priority algorithm for independent periodic
tasks. A job (instance) of a periodic task must complete execution before the next
job of the task arrives. The utilization of a task set is defined as the sum of all C;/T;,
where C; is the worst-case execution time of a task 7; and T; is its period. The
rate-monotonic algorithm guarantees that it can schedule any periodic task set if
its total utilization is less than In2 (69%). If the periods of the tasks are harmonic,
the utilization bound is 100%. It has also been shown that the rate-monotonic
algorithm can schedule randomly generated periodic task sets up to 88% on the
average [7].

11.1.2 The Resource-Sharing Problem

An important problem that arises in the context of priority-based real-time systems
is the effect of blocking caused by the need for the synchronization of jobs that

Sec. 11.1 Introduction 248

share logical or physical resources. Mok [11] showed that the problem of deciding
whether it is possible to schedule a set of periodic processes is NP-hard when
periodic processes use semaphores to enforce mutual exclusion. One approach to
the scheduling of real-time jobs when synchronization primitives are used is to try
to dynamically construct a feasible schedule at runtime. Mok [11] developed a
procedure to generate feasible schedules with a kernelized monitor, which does not
permit the preemption of jobs in critical sections. It is an effective technique for
the case where the critical sections are short.

In this chapter, we investigate the synchronization problem in the context
of priority-driven preemptive scheduling. Unfortunately, a direct application of
synchronization mechanisms like the Ada rendezvous, semaphores, or monitors can
lead to uncontrolled priority inversion: a high-priority job being blocked by a lower-
priority job for an indefinite period of time. Priority inversion in real-time systems
cannot only cause deadlines to be missed at low levels of resource utilization but,
perhaps more important, render these systems less predictable. In this chapter,
we present an extension to the priority inheritance policies [17] and prove the
properties of an optimal policy belonging to this family of policies. The priority
inheritance policies, defined in the context of a uniprocessor, rectify the uncontrolled
priority inversion problem that can result from an injudicious use of traditional
synchronization primitives. The reader is encouraged to study related work in the
context of earliest deadline scheduling by Chen and Lin [2], Baker [1], and Jeffay

[4].

11.1.3 Organization of the Chapter

The chapter is organized as follows. We describe the priority inversion problem
and review the basic concepts underlying the priority inheritance policies in Sec-
tion 11.1.4. In Section 11.2, we define the Optimal Mutez Policy (OMP) and inves-
tigate its properties. We show that under the policy, the system becomes deadlock-
free, and a job can be blocked for the duration of at most one critical section of a
lower-priority job. We also present the impact of these policies on schedulability
analysis when the rate-monotonic algorithm is used. Finally, Section 11.3 presents
some concluding remarks.

11.1.4 The Concept of Priority Inheritance

Priority inversion is said to occur when a higher-priority job is forced to wait for the
execution of a lower-priority job. A common situation arises when two jobs attempt
to access shared data. If the higher-priority job gains access to the shared data first,
the appropriate priority order is maintained. However, if the lower-priority data
gains access first and then the higher priority job requests access to the shared data,
the higher-priority job is blocked until the lower-priority job completes its access
to the data.

Example 1: Let Ji, Jy, and Js be jobs listed in descending order of priority.
Assume that J; and Js share data guarded by a mutex S. Suppose that at time ¢;,

Sec. 11.1 Introduction 249

job J3 locks S and enters its critical section. During J3’s execution of its critical
section, Ji arrives at time ¢ and preempts Js and begins execution. At time t3, J;
attempts to use the shared data and gets blocked. We might expect that J;, being
the highest-priority job, will be blocked no longer than the time for job J3 to exit
its critical section. However, the duration of blocking can, in fact, be unpredictable.
This is because job Js can be preempted by the intermediate-priority job J;. The
blocking of Js, and hence that of J;, will continue until J» and any other pending
intermediate jobs are completed.

The blocking duration in Example 1 can be unacceptably long. This situation
can be partially remedied if a job is not allowed to be preempted within a critical
section. However, this solution is appropriate only for short critical sections. For
instance, once a low-priority job enters a long critical section, a higher-priority
job which does not access the shared data structure may be needlessly blocked.
Analogous problems exist with monitors and the Ada rendezvous. The priority
inversion problem was first discussed by Lampson and Redell [5] in the context of
monitors. They suggest that each monitor always be executed at a priority level
higher than all tasks that would ever call the monitor. This solution has the same
problem as the one discussed: a higher-priority job that does not share data may
be unnecessarily blocked by a lower-priority job. The priority inversion problem
in the context of earliest deadline scheduling has also been discussed by Clark [3].
The proposed solution is that a task with a longer deadline blocking a task with
a shorter deadline promotes its deadline to that of the latter. This technique is
referred to as deadline promotion and is analogous to the basic priority inheritance
policy described in [17].

The use of priority inheritance policies is one approach to rectify the priority
inversion problem inherent in existing synchronization primitives. The basic idea
of priority inheritance policies is that when a job J blocks higher-priority jobs, it
executes its critical section at the highest-priority level of all of the jobs it blocks.
After exiting its critical section, job J returns to its original priority level. To
illustrate this idea, we apply this policy to Example 1. Suppose that job J; is
blocked by J3. The priority inheritance policies stipulate that job Js execute its
critical section at Jy’s priority. As a result, job J; will be unable to preempt J3
and will itself be blocked. When J3 exits its critical section, it regains its original
priority and will immediately be preempted by J1. Thus, J; will be blocked only
for the duration of J3’s critical section.

The concept of priority inheritance, as defined, allows us to develop a family
of real-time synchronization policies based on when a job is defined to be blocked by
a lower-priority job. For instance, the simplest priority inheritance policy stipulates
that a lower-priority job inherit the priority of a higher-priority job when the latter
tries to lock a mutex already locked by the lower-priority job. Such a policy is called
the basic priority inheritance policy [17]. However, as we shall see, the basic priority
inheritance policy can still lead to avoidable priority inversion and/or deadlocks.
Our goal in this chapter is to develop a priority inheritance policy which leads to
the minimum blocking duration for each job.

In all subsequent discussions, when a lower-priority job Jr prevents a higher-
priority job Jg from executing, Jr is said to block Jg. When a higher-priority job

Sec. 11.1 Introduction 250

Jg preempts a lower-priority job Jr, Jg is not considered to be blocking Jr .

11.1.5 Assumptions and Notation

Before we investigate other priority inheritance policies, we define our terminology,
introduce the notation used, and state the assumptions which apply in the following
sections.

We assume a uniprocessor executing a fixed set of tasks. The highest-priority
job eligible to execute is scheduled to run on the processor. A currently executing
job is preempted by a higher-priority job that becomes eligible to execute. A jobisa
sequence of instructions that will continuously use the processor until its completion
if it is executing alone on the processor. A periodic task is a sequence of the same
type of job initiated at regular intervals. Each task is assigned a fixed priority, and
every job of the same task is assigned that task’s priority. If two jobs are eligible to
run, the higher-priority job will be run. Jobs with the same priority are executed
according to a FCFS discipline by order of job arrival time.

Notation: J; denotes a job, namely an instance of a periodic task 7;. P;, 15,
and C; denote the current executing priority, period and the worst-case execution
time of task 7;, respectively. The assigned priority of a job J; is the same as that
of task 7; and is denoted by p(J;).

We also assume that jobs Jy, Ja, ..., J, are listed in descending order of
assigned priority, with J; having the highest priority.

In this chapter, we develop policies assuming that each data structure shared
among jobs is guarded by a mutex. However, the principle underlying the policies
is also applicable when monitors or rendezvous are used for the synchronization of
jobs.

Similar to the common assumption in real-time systems that there exists a
worst-case execution time of a job, we assume that there is a worst-case execution
time within a critical section. We also assume that the mutexes that can be locked
by a critical section are known a priori. This assumption can be relaxed to obtain
policies which approximate the policy developed in this chapter. A critical section
of a task need not always be entered by any given job of the task. However, if a
job is already within a critical section, the locking policy developed in this chapter
assumes the worst case that all mutexes that may be potentially locked within the
critical section will be locked by the job.

Notation: A mutex guarding shared data and/or a shared resource is denoted
by Si. Lock(S;) and Unlock(S;) denote the indivisible operations lock (wait) and
unlock (signal), respectively, on the mutex S;. The section of code beginning with
the locking of a mutex and ending with the unlocking of the mutex is termed a
critical section.

A job can have multiple critical sections that do not overlap, e.g., - - - Lock(S1)
-+ Unlock(S1) - - - Lock(S3) - - - Unlock(S2) - --. A critical section can be nested, i.e.,
a job J; may make nested requests for mutex locks, e.g., -+, Lock(S1) - -+ Lock(Sz2)

Sec. 11.1 Introduction 251

-+ Unlock(S2) - Unlock(S1) ---. In this case, critical section z; ; is bounded by
Lock(S1) and Unlock(S1) and nests the critical section z; 5. The phrase “the dura-
tion of an (outermost) critical section” refers to the execution time bounded by the
outermost pair of lock and unlock operations, e.g.,, the execution time of the outer-
most critical section starting with Lock(S1) and ending with Unlock(S1). We shall
use the terms “critical section” and “outermost critical section” interchangeably.

The jth critical section in job J; is denoted by z; ; and corresponds to the
code segment of job J; between the jth Lock operation and its corresponding Unlock
operation. The mutex that is locked and released by critical section z; ; is denoted
by S; ;. We write z; ; C z; if the critical section z; ; is entirely contained in z; ;.
The worst-case duration of the execution of the critical section z; ;, denoted by d; ;,
is the time required to execute z; ; when J; executes on the processor alone.

We assume that critical sections are properly nested. That is, given any pair
of critical sections z; ; and z; 1, then either 2; ; C 25, 2zip C 25,01 235 N 251 = 0.
In addition, we assume that a mutex may be locked at most once in a single nested
critical section. This implies that a job will not attempt to lock a mutex that it
has already locked and thus deadlock with itself. In addition, we assume that locks
on mutexes will be released before or at the end of a job.

Definition: A job J is said to be blocked by the critical section z; ; of job J;
if J; has a lower-priority than J but J has to wait for J; to exit z ; in order to
continue execution.

Definition: A job J is said to be blocked by job J; through mutex S if the
critical section z; ; blocks J and S;; = 5.

An important feature of the policy that we propose is that it is possible to
determine the schedulability bound for a given task set when this policy is used.
If the utilization of the task set stays below this bound, then the deadlines of all
the tasks can be guaranteed. To develop such a bound, it becomes necessary to
determine the worst-case duration of blocking that any task can encounter. This
worst-case blocking duration will depend upon the particular policy in use, but the
following approach will always be taken.

Notation: 3; ; denotes the set of all critical sections of the lower-priority job
J; which can block J;. Thatis, 8; ; = {zj 5 | 7 > i and z; x can block J;}.! Since we
consider only properly nested critical sections, the set of blocking critical sections
is partially ordered by set inclusion. Using this partial ordering, we can focus our
attention on the set of maximal elements of f; ;, ;. Specifically, we have j7;
= {Zj,k | (Zj,k € ﬁi,j) A (/3 Zjim € Bi,j such that zik C Zj,m)}- The set 62‘7]»
contains the outermost critical sections of J; which can block J; and eliminates
redundant inner critical sections. For purposes of schedulability analysis, we will
restrict attention to 8 = {Ujs; ﬁ;j}, the set of all outermost critical sections that

can block J;.

! Note that the second suffix of 8;; and the first suffix of z; x correspond to job J;.

Sec. 11.2 The Optimal Mutex Policy 252
11.2 The Optimal Mutex Policy

The basic priority inheritance policy [17] stipulates that when a job J attempts to
lock a mutex S already locked by a lower-priority job Jr, Jr inherits J’s priority
until Jp releases the lock on S. However, this policy suffers from two problems.
First, a job J could be blocked for the duration of min(m,n) critical sections [17],
where n is the number of lower-priority jobs that attempt to lock a mutex also
accessed by tasks with a priority higher than or equal to p(J) and m is the number
of distinct mutexes that can be locked by lower-priority jobs. For instance, consider
the following example.

Example 2: Suppose that J; needs to sequentially lock S; and S;. Also suppose
that J, preempts J3 after J3 has locked S;. Later, J5 locks S3. Job J; arrives at this
instant and finds that the mutexes S; and Ss have been locked by the lower-priority
jobs Js and J,, respectively. As a result, J; would be blocked for the duration of
two critical sections, once to wait for J3 to release S; and again to wait for Js to
release S3. Thus, a job can be blocked for the duration of more than one critical
section. We refer to this as multiple blocking.

Second, the policy does not avoid deadlocks. For instance, consider jobs J;
and Js. J; will make nested requests to lock mutexes S; and Sy in that order.
Conversely, J, will lock Sy first and then S;. Suppose that J, arrives first and
locks S». However, before it locks S7, J; arrives and preempts J;. Then, J; locks
unlocked mutex S;. When J; attempts to lock Ss, it gets blocked and Js inherits
J1’s priority. But a deadlock situation occurs when Js tries to lock S;. Hence,
explicit deadlock avoidance techniques like total ordering of mutex requests may
have to be employed if the basic priority inheritance policy is used.

Intuitively, it can be seen that the basic priority inheritance policy runs into
its problems for the following reason. An unlocked mutex is allowed to be locked
at any instant irrespective of its relationship to the mutexes that have already
been locked. Hence, when a higher-priority job arrives, it can find that several
mutexes that it needs have been locked by lower-priority jobs. Furthermore, such
uncontrolled locking can potentially cause a deadlock as well. This situation can be
remedied by allowing mutexes to be locked only under selective conditions. In other
words, if the locking of a mutex may cause multiple blocking to a higher-priority
job, we should not allow the mutex to be locked. We use the information about the
mutex needs of each job and the job priorities to decide whether the locking of a
mutex can lead to multiple blocking and/or deadlock. Imposing conditions on the
locking of a mutex is the essence of the proposed policy.

In this section, we develop the Optimal Mutex Policy (OMP). The policy not
only minimizes the blocking encountered by a job to the duration of execution of
a single critical section but also avoids deadlocks. In this section, we shall present
the policy and prove its properties. We shall show that the locking conditions used
by OMP are both necessary and sufficient to limit the worst-case blocking duration
to a single critical section for any job. However, an implementation of this policy
may be expensive. Suboptimal but computationally simpler policies are discussed

in [13].

Sec. 11.2 The Optimal Mutex Policy 253

11.2.1 The Concept of the Optimal Mutex Policy

Definition: The priority ceiling of a mutex S is defined as the assigned priority
of the highest-priority task that may lock S. The priority ceiling of a mutex S
represents the highest-priority that a critical section guarded by S can inherit from
a higher-priority job. In other words, if a job J locks the mutex S, the corresponding
critical section of J can inherit at most a priority equal to the priority ceiling of S.

Notation: The priority ceiling of a mutex S; is denoted by ¢(S;).

Definition: The current critical section of a job J refers to the outermost
critical section that J has already entered.

Notation: When a job J requests the lock on an unlocked mutex S,

e S* is a mutex with the highest-priority ceiling locked by jobs other than J.
If there is no mutex currently locked, S* is defined to be a dummy mutex
Saummy Whose priority ceiling is less than the priorities of all jobs in the
system. If there is more than one mutex in the system with the same priority
ceiling, any one of them may be chosen. We shall later show that this choice
is immaterial, and that there can be at most two such mutexes with the
highest-priority ceiling.

e J* is the job holding the lock on S*. If S* is the dummy mutex Sgummy,
J* can be represented by the idle process that runs when there is no active
process ready to run.

e SL* is the set of mutexes already locked by the current critical section of job

J*?

o SR is the set of mutexes that the current critical section of J may lock later.3
For convenience, both SL and SR are defined to be the empty sets when J is
not inside a critical section. Also, once J is successful in obtaining the lock,
SL includes S. Otherwise, J will be blocked and S € SR.

e SR* is the set of mutexes that will be locked by the current critical section
of job J*. If the current critical section of job J* does not request any more
nested mutex locks, SR* = 0.

e zisthe (outermost) critical section that J has already entered, else the critical
section that J is trying to enter.

Remark: For any given job J, SLN SR = () and SL U SR = set of mutexes
that can be locked by the current critical section of J.

As already mentioned, OMP selectively grants locks on unlocked mutexes to
requesting jobs. Suppose that job J requests the lock on an unlocked mutex S.

2SI stands for “mutexes locked.”

3SR stands for “mutexes required” for completion of the current critical section.

Sec. 11.2 The Optimal Mutex Policy 254

OMP allows J to lock S if and only if at least one of the following conditions is
true.

1. Condition C1: The priority of job J is greater than the priority ceiling of S*,
ie, p(J) > c(S*).

2. Condition C2: The priority of job J is equal to the priority ceiling of S* and
the current critical section of J will not attempt to lock any mutex already

locked by J*, i.e., (p(J) = ¢(S*)) A(SRN SL* = 0).

3. Condition C3: The priority of job J is equal to the priority ceiling of S and
the lock on mutex S will not be requested by J*’s preempted critical section,

ie, (p(J) = ¢(S)) A(S & SR*).

If none of these conditions is true, job J is blocked and J* inherits J’s current
executing priority. We refer to conditions C1, C2, and C3 as the locking conditions.

Under OMP, a job can be blocked for the duration of at most a single critical
section, and deadlocks cannot occur. Before we prove these properties, we illustrate
the policy with a few examples. We shall first apply OMP to the examples in the
preceding section, where multiple blocking occurs for a job.

Example 3: A job J; needs to lock S; and Sy sequentially, while J5 needs to lock
Si1, and Js needs to lock Sy. Hence, ¢(S1) = ¢(S2) = p(J1). At time tg, J3 locks
Ss. At time t1, Jo preempts J3 and later attempts to lock S;. Now, J* = J3 and
S* = S3. However, p(J) < ¢(S2) and p(J) < ¢(S1), so all three locking conditions
are false. Hence, Jy is blocked and J3 inherits Jy’s priority. When J; arrives
and attempts to lock Si, condition C2 is true (since J; does not make any nested
requests for mutex locks and SR =). Hence J; can obtain the lock on Sj. Later,
when J; attempts to lock the locked mutex S, J3 inherits J;’s priority. When J3
releases Sq, it resumes its priority before acquiring Sa (its original priority in this
case). Then, J; preempts Js and locks S3. J; now runs to completion followed by
Jo and J3, respectively.

It can be seen that both jobs J; and J; had to wait for a lower-priority job J3
for at most the duration a single critical section guarded by S5. Since .J; was blocked
because it needed a mutex locked by another job, the blocking encountered by J;
is called direct blocking. Direct blocking is necessary to guarantee the consistency
of shared data. However, Js is blocked when J3 inherits a priority higher than J5.
This type of blocking is referred to as push-through blocking. Push-through blocking
is essential to avoid multiple blocking as illustrated in Example 3, and to avoid the
uncontrolled priority inversion problem exhibited in Example 1.

Example 4: Consider the preceding example, where deadlocks could occur under
the basic priority inheritance policy. Job J; locks the mutex S;, and before it makes
a nested request for mutex Sy, Jy arrives and preempts Jo. We again have ¢(S7)
= ¢(S3) = p(J1). However, when J; attempts to lock S1, p(J) = ¢(S*) = ¢(S), but
SR = {S:}, SL* = {S2}, SR* ={S51}, and S = S, so that all locking conditions
are false. Hence, the lock on S; is denied to J; and Js inherits Ji’s priority. Thus,
the deadlock is avoided.

Sec. 11.2 The Optimal Mutex Policy 255

We now provide an example that illustrates each of the locking conditions of

OMP.

Example 5: Consider 5 jobs Jg, J14, J13, J2, and J3 in descending order of priority
except that jobs Jy, and Jy; have equal priorities. There are three mutexes Sy, Ss,
and Ss in the system. Suppose the sequence of processing steps for each job is as
follows:

Jo = {--Lock(Sp)---Unlock(Sy)---}

Jia = {--Lock(Sp)-- - Unlock(Sp)- -}

Jiw = {---Lock(S1) - -Unlock(S1)---}
Jy = {---Lock(S2)---Lock(S1) - - Unlock(S1) - -Unlock(S2) - -}
Js = {---Lock(Sy)---Unlock(Sy)- - Lock(Sz)---Unlock(Ss)---}.

Thus, ¢(So) = p(Jo), ¢(S1) = p(J1s) = p(J1a), and ¢(S2) = p(J2)

The sequence of events described below is depicted in Figure 11.1. A line at
a low level indicates that the corresponding job is blocked or has been preempted
by a higher-priority job. A line raised to a higher level indicates that the job is
executing. The absence of a line indicates that the job has not yet arrived or has
completed. Shaded portions indicate execution of critical sections. Suppose that:

e First, J3 arrives and begins execution. At time g, it locks the unlocked mutex
51 since there is no other mutex locked by another job.*

e At time ?1, Jo arrives and preempts J3.

o At time t5, Jo attempts to lock Sa. Since p(J2) < ¢(S1), conditions C1 and
C2 are false. But p(J2) = ¢(S2) and SR*=0. Hence, condition C3 is true and
Jo is allowed to lock Ss.

e At time t3, Jy arrives and preempts Js.

o At time t4, Jo attempts to lock Sg. Now, S* = S;. However, p(Jo) > ¢(S1)
and condition C1 is true. Hence, Jg is granted the lock on Sp.

e At time t5, Jg releases the mutex Sy. Jy4 arrives now but is unable to preempt

Jo.

o At time ts, Jy completes execution. Ji,, which is eligible to execute, begins
execution.

o At time t7, Ji, tries to lock Sp. S* = S;1. We have p(J14) = ¢(S1) and there
is no nested request for mutex locks. Hence condition C2 is true, and the lock
on Sy is granted to Jy4.

o At time tg, J14 releases the mutex Sp.

The locking can occur because the idle process has locked the dummy mutex S and

p(J3) > ¢(S™) by definition.

Figure 11.1 Sequence of Events Described in Example 5

Sec. 11.2 The Optimal Mutex Policy 257

e At time tg, J1, completes execution and J; resumes execution.

e At time t1g, Jo attempts to lock the locked mutex S; and is blocked. Js3,
which holds the lock on Sy, inherits Jy’s priority and resumes execution.

e At timet?;y, Jip arrives and preempts J3 executing at a lower-priority of p(J3).

e At time t15, Jyp attempts to lock locked mutex S;. Jip is blocked, and J3
now inherits Ji;’s priority.

o At time ¢13, J3 releases the mutex S; and resumes its original lowest priority.
J1p resumes execution and is now granted the lock on the mutex 57, since
condition C1 is satisfied w.r.t. Sy locked by Js.

o At time t14, Jqp releases the mutex Si.

e At time 15, J1p completes execution. Js resumes execution and locks S; since
there is no mutex locked by a lower-priority job.

o At time t16, Jo releases the mutex S.

o At time t17, Jo releases the mutex S,.

e At time t1g, Jo completes execution and J3 resumes.

e Finally, J3 locks Ss, releases S5, and completes execution at time 7.

In the above example, jobs Jy and Jy, do not encounter any blocking due to
lower-priority jobs. Jip is blocked by J3 during the interval ¢15—¢13, which corre-
sponds to at most one critical section of J3. Js is blocked by Js during the intervals
t10-t11 and t19-t13, which together correspond to at most one critical section of Js.

11.2.2 Definition of the Optimal Mutex Policy
Having illustrated OMP with examples, we now formally define the policy.

1. Let J be the highest-priority job among the jobs ready to run. J is assigned
the processor and let S$* be a mutex with the highest-priority ceiling of all
mutexes currently locked by jobs other than job J. Let the job holding the
lock on S* be J*. Before job J enters its critical section, it must obtain the
lock on the mutex S guarding the shared data structure. If the mutex S is
unlocked, job J will be granted the lock on S if and only if at least one of
the locking conditions is true.

2. In this case, job J will obtain the lock on mutex S and enter its critical
section. Otherwise, job J is said to be blocked by J*. When a job J exits
its critical section, the binary mutex associated with the critical section will
be unlocked, and the highest-priority job, if any, blocked by job J will be
awakened.

Sec. 11.2 The Optimal Mutex Policy 258

3. A job J uses its assigned priority unless it is in its critical section and blocks
higher-priority jobs. If job J blocks higher-priority jobs, J inherits Pg, the
executing priority of the highest-priority job blocked by J. When J exits
its critical section, it resumes its previous priority. Finally, the operations
of priority inheritance and of the resumption of original priority must be
indivisible.

4. A job J, when it does not attempt to enter a critical section, can preempt
another job Jp if its priority is higher than the priority, inherited or assigned,
at which job Jp is executing.

11.2.3 Properties of the Optimal Mutex Policy

In this section, we prove that under OMP, each job may be blocked for at most the
duration of one critical section of a lower-priority job and, furthermore, deadlocks
are avoided.

We remind the reader that when the priority of a job J is being referred to, it
always refers to the priority which J is currently executing (unless explicitly stated
otherwise to be J’s assigned lower-priority). Note that a job outside a critical
section always executes at its own assigned priority, but a job’s executing priority
inside a critical section might change due to priority inheritance.

Lemma 11.2.1 A job J can be blocked by a job Jp with an assigned lower priority
only if Jp has entered and remains within a critical section when J arrives.

Proof: It follows from the definition of OMP that if Jz is not in its critical section,
it can be preempted by the higher-priority job J. Since priority inheritance is
in effect and the highest-priority job that is ready will always be run, Jr cannot
resume execution until J completes. The Lemma follows. a

Lemma 11.2.2 Once a job J begins execution, a job with an equal assigned priority
cannot begin until J completes.

Proof: This lemma follows directly from the fact that priority inheritance is in
effect, the highest-priority job is always run, and equal-priority ties are broken in

FCF'S order. 0O

Lemma 11.2.3 When a job J ezecutes, there can be at most one strictly lower-
priority job Jr that has locked a mutex Sy such that c¢(Sy)> p(J).

Proof: Suppose that there exists another lower-priority job J; that has locked a

mutex S; such that ¢(S;) > p(J). Without loss of generality, suppose that J; locked

S; first. When Jr attempts to lock Sg, it finds that S; has been locked by another

job J;, and that p(Jr) < p(J) < min(c(Sk),c(S;)). Hence, locking conditions Cl1,

C2, and C3 are false, and OMP will not permit Jr to lock Sk, contradicting our

assumption. The Lemma follows. a
Lemma 11.2.3 also leads us to the following corollary.

Sec. 11.2 The Optimal Mutex Policy 259

Corollary 11.2.1 Suppose that when J requests S, condition 1 is false (i.e., ¢(S*)
> p(J)). Then, J* must be unique.

Proof: This follows directly from Lemma 11.2.3. a

Remark: The above corollary gives us the following interesting result. When
a job must be blocked, J* needs to be identified as the blocking job. Corollary
11.2.1 shows that J* is unique whenever ¢(S*) > p(J). When ¢(S*) < p(J), J*
may not be unique, but condition 1 will be true. As a result, J cannot be blocked
by any of the J*’s, and the non-uniqueness of J* need not be resolved! In summary,
if condition 1 is true, the mutex will be granted and the non-uniqueness of J* need
not be resolved. If not, J* is guaranteed to be unique.

Remark: While J* may not be unique when ¢(S*) < p(J), there can still be
at most two jobs which have locked mutexes with the highest-priority ceiling. The
following lemma proves this result.

Lemma 11.2.4 There can be at most two jobs which can lock mutexes with the
same-priority ceiling.

Proof: Let Jg lock the mutex S;. Let J be another job that locks mutex S with
the same priority ceiling as Sp under OMP. We first show that p(J) = ¢(Sr) =
e(S). Since ¢(Sr) = ¢(S), p(J) < ¢(Sp). When J tries to lock S, there is at least
one mutex (Sz) locked by another job. Hence ¢(S*) > ¢(Sz) > p(J). Therefore,
condition C1 would evaluate to false. Since J does lock S, at least one of condition
C2 or condition C3 must be true. In either case, we have p(J) = ¢(S¢) = ¢(95).

Suppose that another job J' attempts to lock a mutex S’ such that ¢(S") =
¢(St) = ¢(S). There are three cases:

Case It p(J') > J. In this case, J' cannot lock a mutex such that ¢(S") =
¢(St): the definition of priority ceiling would be violated.

Case II: p(J') = J. However, by Lemma 11.2.2, J' cannot begin execution
until J completes—a contradiction.

Case III: p(J') < J. In this case, when J' requests S, Sp and S are locked,
and ¢(S*) > p(J). As a result, when J’ tries to lock ', all three locking conditions
evaluate to false. Hence, J' cannot lock S’.

The Lemma follows. ad

We now show that the OMP avoids deadlocks and minimizes the worst-case
priority inversion encountered by a job to the duration of a single critical section.

Lemma 11.2.5 Suppose that job J enters a critical section z by obtaining the lock
on muter S because condition C1 of the locking conditions s true. Then, job J
cannot be blocked by a lower-priority job until J completes.

Proof: Since condition C1 is true when J requests the lock on S, p(J) > ¢(S*),
whether S* is unique or not. That is, no job with equal or higher-priority than J
(including J) will lock the mutexes held by lower-priority jobs. Hence, no lower-
priority job can block J or any other higher-priority job, and inherit a priority >

Sec. 11.2 The Optimal Mutex Policy 260

p(J). Furthermore, no arriving job with priority lower than p(J) can even preempt
J. Thus, J cannot be blocked by lower-priority jobs before J completes. a

Remark: Lemma 11.2.5 provides the result that once a mutex S is locked by
a job J because condition C1 is true, then all subsequent requests for mutex locks
by job J will also satisfy condition C1, and hence all these locks will be granted.

Lemma 11.2.6 Suppose that job J enters a critical section z by obtaining the lock
on muter S because condition C2 of the locking conditions is true. Then, job J
cannot be blocked by a lower-priority job until J exits the critical section z.

Proof: Since condition C2 is true when J requests the lock on S, p(J) = ¢(S¥).
By Corollary 11.2.1, J* is unique. By Lemma 11.2.3, J* is also the only job which
has locked a mutex with priority ceiling = p(J).

Also, no job with higher-priority than p(J) will lock a mutex already locked
by J* or any preempted job with lower-priority than p(J). Thus, J* cannot inherit
a priority higher than p(J*) unless it can lock additional mutexes. However, J*
can resume execution before J exits the critical section z only if J is blocked by
J*. However, the critical section z will not lock any mutexes already locked by J*.
Let the critical section z request a nested lock to mutex S. We again have p(J)
= ¢(S*), and still the critical section z cannot lock any mutexes already locked by
lower-priority jobs. Hence, OMP would allow J to lock S. Since this is true for
all requests for mutex locks nested within the critical section z, job J will exit the
critical section without being blocked by J*. o

Remark: Lemma 11.2.6 provides the result that if a job J has locked the
outermost mutex of a nested critical section because condition C2 is true, condition
C2 will always be true for all subsequent nested requests for mutex locks within
the critical section as well. Hence, no nested request to a mutex within this critical
section will be blocked.

Definition: When a job J is blocked by the job J*, let the mutex with the
highest-priority ceiling locked by J* be 5*. Then, S* is said to be used to block J.

Lemma 11.2.7 Suppose that job J enters a critical section z by obtaining the lock
on muter S, because condition 1 is false and condition C3 of the locking conditions
ts true. Then, the mutex S cannot be used by job J to block a higher-priority job.

Proof: Since condition 1 is false, by Lemma 11.2.1, J* must be unique. Since
condition C3 is true when J requests the lock on S, ¢(S) = p(J). Hence, no higher-
priority job Jg will lock S. J* is the only job that can inherit a priority higher
than or equal to J, but J*’s current critical section does not need S. Hence, J'’s
critical section guarded by S cannot inherit a priority that is higher than or equal
to Jg’s priority. Hence, S cannot be used by job J to block job Jg. The Lemma
follows. ad

Definition: If job J; is blocked by J; and J;, in turn, is blocked by Ji, J; is
said to be transitively blocked by Jy.

Sec. 11.2 The Optimal Mutex Policy 261

Lemma 11.2.8 The optimal mutex policy prevents transitive blocking.

Proof: Suppose that transitive blocking is possible. For some 2 > 2, let job J; block
job J;_1 and let job J;_1 block job J;_s, i.e.; job J;_» is transitively blocked by job
Ji. By Lemma 11.2.1, to block job J;_1, job J; must enter and remain in its critical
section when J;_; arrives at time tg. Similarly, to block J;_s, job J;_; must enter
and remain in its critical section when J;_» arrives at time t;. At time 1, let the
mutexes with the highest-priority ceilings locked by jobs J; and J;_; be S and S,
respectively. Since job J;_; is allowed to lock mutex S,, when job J; has already
locked S, one of the locking conditions must have been true. If one of conditions
C1 and C2 were true, by Lemmas 11.2.5 and 11.2.6, job J; will be unable to block
job J;_1. Since J; does block job J;_; by assumption, condition C3 must have been
true when J;_; locked S,. However, according to Lemma 11.2.7, the mutex S,
cannot be used by job J;_; to block job J;_s, contradicting our assumption. The
Lemma follows. a

Theorem 11.2.1 The optimal mutex policy prevents deadlocks.

Proof: First, by assumption, a job cannot deadlock with itself. Thus, a deadlock
can be formed only by a cycle of jobs waiting for one another. Let the n jobs
involved in this cycle be Jy, ..., J,. Since a job not holding any mutexes cannot
contribute to the deadlock, each of the n jobs must be in its critical section. By
Lemma 11.2.8, the number of jobs in the blocking cycle can only be 2, i.e., n = 2.
Suppose that job Jo’s critical section was preempted by job Ji, which then enters its
own critical section. For J; to enter its critical section, one of the locking conditions
must be true. If conditions C1 and C2 were true, by Lemmas 11.2.5 and 11.2.6,
job Js cannot block J;. Hence, condition C3 must have been true and by Lemma
11.2.3, J* = Js. Since condition C3 is true, each of the critical sections of jobs J;
and J» is guaranteed not to have mutually locked mutexes that are expected by the
other. Hence a deadlock cannot occur. The Theorem follows. ad

Remark: The above theorem leads to the useful result that programmers can
write arbitrary sequences of nested requests for mutex locks when OMP is used.
As long as each job does not deadlock with itself, the system is guaranteed to be
deadlock-free.

We now prove that under OMP, a job can be blocked for at most the duration
of one critical section of lower-priority jobs.

Theorem 11.2.2 A job J can be blocked for at most the duration of one critical
section of lower-priority jobs.

Proof: When the job J arrives, by Lemma 11.2.3, there can exist at most a single
job J' that has locked a mutex Sy such that ¢(Sg)> p(J). If no such job exists, no
lower-priority job can inherit a priority higher than J, and condition 1 will always
evaluate to true when J requests a mutex. As a result, J will run to completion
without being blocked.

Sec. 11.2 The Optimal Mutex Policy 262

If there does exist such a job, we have J' = J*. That is, J’ is the only lower-
priority job that can inherit a priority higher than that of J. Suppose that J’ does
inherit a higher priority than J. By Lemma 11.2.8, J* will exit its critical section
without being blocked by a lower-priority job. Once J* exits its critical section, by
Lemma 11.2.1, J* can no longer block J. Since there exists no other job that can
block J and no arriving lower-priority job can block J, the Theorem follows. a

The following corollary can be derived from Theorem 11.2.2.

Corollary 11.2.2 A job J which voluntarily suspends itself k times can be blocked
for at most the duration of k + 1 critical sections of lower-priority jobs.

Proof: The Corollary follows from Theorem 11.2.2 and the fact that a job that
suspends k times can be considered to be k + 1 jobs. a

11.2.4 Necessity and Sufficiency of the Locking Conditions

We now prove that a worst-case blocking duration of a single critical section can be
guaranteed if and only if the locking conditions of OMP are used.® In the preceding
section, we have shown that the locking conditions are sufficient to avoid deadlocks
and to reduce the blocking duration of a job to at most a single critical section.

We first prove that a lock on an unlocked mutex S can be granted to a job J
only if at least one of the locking conditions is true in order to prevent deadlocks
and obtain the worst-case blocking of a single critical section for each job.

Lemma 11.2.9 A job can be blocked for the duration of more than one critical
section if a lock on an unlocked mutex S is granted to a job J when the following
two conditions are true:

condition (a) p(J) < ¢(S*)
condition (b) p(J) < ¢(S)

Proof: When J tries to lock S, suppose that conditions (a) and (b) are true. If
S=25* J is attempting to lock a locked binary mutex S and has to be blocked.
Hence, J can possibly be granted the lock on S only if S # S*. Then, there exist
jobs J; and J; with higher-priority than J such that J; will lock S* and J; will lock
S.

Only three cases arise.

Case I: J; = J; = Jg. In other words, there exists a higher-priority job Jg
that will lock both S and S*. If the lock on S is granted to J, Jg can arrive now
and will find that both the mutexes S and S* that it requires are locked. Hence,
Jg will be blocked for the duration of two critical sections, once to wait for J to
release S and again to wait for J* to release S*.

“For the worst-case blocking to be a single critical section, the system should be free
from deadlocks since a deadlock contributes to prolonged blocking of two or more jobs.

Sec. 11.2 The Optimal Mutex Policy 263

Case II: J; # J; and without loss of generality, J/; has higher-priority than J;.
Suppose that the lock on S is granted to J. Job J; arrives now and preempts J.
Immediately, J; can be preempted by J;. Job J; will be block for one critical section,
waiting for J* to release S*. However, this constitutes push-through blocking for
J; as well. When J; resumes after J; completes, J; will be blocked for the duration
of one more critical section, waiting for J to release S. Thus, job J; can be blocked
for the duration of two critical sections.

Case Ill: J; # J;, but both jobs have equal priority. Suppose that the lock
on S is granted to J. Job J; arrives now followed by J;. However, J; is unable to
preempt J;. J; attempts to lock S and is blocked by J, which inherits J;’s priority
until the release of S. This constitutes blocking for J; as well. After J; completes,
Ji begins execution and will again be blocked by J* when it attempts to lock S*.
Thus, J; can be blocked for the duration of two critical sections.

Thus, if both conditions (a) and (b) are true, a job can be blocked for the
duration of more than one critical section. a

Remark: Suppose that a worst-case blocking of at most a single blocking has
to be ensured. Hence, when a mutex is requested, and conditions (a) and (b) are
satisfied, a job should be blocked. Thus, for a job J to be granted the lock on
a mutex S, the negation of Lemma 11.2.9 must hold. Since p(J) > ¢(S) is not
possible by definition, at least one of the following conditions must be true:

p(J) > ¢(S*)
p(J) = ¢(S)

We refer to the above conditions as necessary locking conditions. Thus, Theorem
11.2.9 states that for a worst-case blocking duration of a single critical section, at
least one of the necessary locking conditions must be true for a job to be granted
the lock on a mutex. However, the necessary locking conditions are only necessary
but not sufficient to guarantee a worst-case blocking of a single critical section.

Remark: If there are no nested requests for mutex locks at all, the necessary
locking conditions are equivalent to the locking conditions. Thus, the additional
checks in the locking conditions are needed to avoid deadlocks and to prevent a job
from being blocked for multiple critical sections.

Remark: The necessary locking conditions provide us with the insight to
construct policies that are computationally simpler but suboptimal. Note that
if both the necessary locking conditions are false, then it follows that the locking
conditions are also false.

Lemma 11.2.10 Suppose that job J attempts to lock mutexr S. If all three locking
conditions are false, at least one of the following conditions must be true:

(F1) (p(7) < ¢(S)) ANp(]) < ¢(5*)).°
(F2) (p(J) < ¢(S)) Mp(J) = ¢(S*)) N(SR N SL™ #10).

SThat is, the necessary locking conditions are false.

Sec. 11.2 The Optimal Mutex Policy 264

(F3) (p(7) = ¢(S)) Np(]) < ¢(5*)) (S € SE*).
(F4) (SR N SL* # 0) A(S € SR*).

Proof: The Lemma follows directly from the negation of the locking conditions.
O

Theorem 11.2.3 Deadlock can occur or a job can be blocked for the duration of
more than one critical section if the lock on a mutex S is granted to a job J when
all the locking conditions are false, i.e., (-Cy A=Cy A=Cs = 3 J, which can be
blocked for more than one critical section) V (~Cy1 A—~Cy A—Cs = 3 a deadlock).

Proof: Suppose that all the locking conditions are false. By Lemma 11.2.10, one
of the following cases must be true.

Case I: (F1) The necessary locking conditions are false. It follows from Theo-
rem 11.2.9 that at least one job can block for the duration of more than one critical
section.

Case II: (F2) (p(J) < ¢(S9)) A (p(J) = ¢(S*)) A (SR N SL* # 0). That is,
there exists a job Jg with higher-priority than J that will try to lock S. Moreover,
the current critical section of J will try to lock a mutex S; that has already been
locked by the current critical section of J*. Suppose that the lock on S were granted
to J. However, Jg can arrive now and later attempt to lock S already locked by J.
In order to release S, J would need to lock S; held by J*. Consequently, Jg will be
blocked until J releases S. But J will be blocked until J* releases S;. Effectively,
Jg would be blocked for the duration of two critical sections. Thus, a job can block
for the duration of multiple critical sections.

Case IIT: (F3) (p(J) = ¢(S)) A (p(J) < ¢(S*)) A (S € SR*). That is, there
exists a higher-priority job Jgy that will try to lock S*. Moreover, the current
critical section of J* will try to lock S. Suppose that the lock on S is granted to
J. However, Jg can arrive now and later attempt to lock S$* already locked by J*.
Consequently, Jg will be blocked until J* releases S*. But, J* will be blocked until
J releases S. Effectively, Jg would block for the duration of two critical sections.
Thus, a job can block for the duration of multiple critical sections.

Case IV: (F4) (SR N SL* # 0) A (S € SR*). Clearly, if the lock on S were
granted to J, jobs J and J* will deadlock, with one waiting for the other to release
a mutex. Since these jobs are deadlocked, two jobs will be blocked for an infinite
duration of time.

Thus, if all the locking conditions were false and the lock on mutex S is granted
to job J, in the worst case, a deadlock can occur or a job can block for the duration
of multiple critical sections. a

The above theorem leads us to the necessity and sufficiency of the locking
conditions.

Theorem 11.2.4 The locking conditions are necessary and sufficient to obtain the
worst-case blocking duration of a single critical section and to avoid deadlocks.

Proof: The Theorem follows from Theorems 11.2.1, 11.2.2, and 11.2.3. a

Sec. 11.2 The Optimal Mutex Policy 265

11.2.5 Schedulability Analysis

OMP places an upper bound on the duration that a job can be blocked. This prop-
erty makes possible the schedulability analysis of a task set using rate-monotonic
priority assignment and OMP. We also show that it is possible that OMP can po-
tentially lead to better schedulability than previously known priority inheritance
policies since it is possible for a task 7; to encounter a better worst-case block-
ing duration from lower-priority tasks under OMP. We quote below the following
theorem due to Sha, Rajkumar, and Lehoczky [17].

Theorem 11.2.5 A set of n periodic tasks can be scheduled by the rate-monotonic
algorithm if the following conditions are satisfied [17]:

Ci Oy Cn Bi .. iy

bt I A R S TR AR |

<1< mn, T1+T2+ -I-Tn—i-Ti_l()

where C;, T;, and B; are the worst-case execution time, period, and worst-case
blocking time of a periodic task, respectively.

Again, C; is the computation time of periodic task 7; and 7; is its period. B;
is the worst-case blocking encountered by jobs belonging to 7;. Just like the priority
ceiling policy, OMP also avoids deadlocks and produces a worst-case blocking of at
most the duration of one critical section. Hence, the above theorems are applicable
to OMP as well. The value of B; for each job J; is computed as follows.

Definition: Jobs J; and J; are said to be active together if J; and J; can both
be ready to execute on the processor at some instant in time.

For instance, in Example 5, jobs J, and Js are said to be active together since
both are ready to execute at time ¢;. However, jobs Jy, and Jy;, in reality, can be
the execution of a single instance of task 73 with an intervening suspension (mostly
for communication or I/O activities). That is, job J; actually consists of two jobs
J1qa and Jip. Since Jy, always precedes the initiation of job Jip, jobs Ji4 and Jyp
are not said to be active together.

A job can be blocked only by jobs with lower-priority. Then, a critical section
z; of a lower-priority job J; guarded by a mutex S; ; can block J; if

o p(Ji) < c(Sj)-

e p(J;) = ¢(Sj) A Ji (or an equal-priority job that is active with J;) may lock
Sj k-

The set of maximal elements of §; j, 7 ;, is formed by eliminating those critical
sections nested inside other elements of 3; ;. Then, B; is equal to the length of the
longest critical section in 7 = U;s; 7 ;, the set of all outermost critical sections
that can block J;.

Worst-Case Superiority of OMP over Previous Policies

If only condition 1 of the OMP locking conditions is used, we obtain the priority
ceiling policy (PCP) defined in [17], where the use of condition 1 is shown to be

Sec. 11.3 Conclusions 266

a sufficient condition to obtain the deadlock prevention property and a worst-case
blocking of at most one critical section of a lower-priority task.

Consider the use of the priority ceiling policy on Example 4. Both jobs J; and
J14 would not have been allowed to enter their respective critical sections when Sy
is locked. This example illustrates the fact that OMP can lead to lower worst-case
blocking relative to the priority ceiling policy. In particular, consider the case where
each job Jy of task 7 voluntarily suspends itself once (say for I/O) such that it
executes as sub-jobs Ji, and Ji;. Under the priority ceiling policy, both of these
sub-jobs can be blocked when they try to lock Sy and S7, respectively. Hence, each
job of 7, will be blocked for the duration of two critical sections of lower-priority
tasks. However, under OMP, whenever Jy, tries to lock Sy, it will always find that
either condition 1 or condition 2 of OMP will be true. Thus, J1, is never blocked
and B; under OMP will be shorter than in the case of the priority ceiling policy.
As a result, it is possible for OMP to lead to a better worst-case schedulability
analysis than PCP.

11.3 Conclusions

Synchronization primitives used in real-time systems should bound the blocking
duration that a job can encounter. Unfortunately, a direct application of com-
monly used primitives like semaphores, monitors, and Ada rendezvous can lead to
unbounded priority inversion, where a high-priority job can be blocked by a lower-
priority job for an arbitrary amount of time. Priority inheritance policies solve this
unbounded priority inversion problem and bound the blocking duration that a job
can experience. We have presented an optimal priority inheritance policy that not
only bounds the worst-case blocking duration of a job to that of a single critical
section but also prevents deadlocks. It can also be shown that this policy is also
optimal in the sense that no other priority inheritance policy can guarantee a better
worst-case blocking duration [13]. Other approximations to the policy which can
be easier to implement are also possible.

Acknowledgments

The authors wish to thank Ted Baker for pointing out that J* may not be unique,
and for his many comments on this chapter. The authors would also like to thank
many reviewers, including Prashant Waknis and Joo Yong Kim, for their valuable
comments. This chapter is based on work reported in [12, 13].

References

[1] Baker, T. P. A stack-based resource allocation policy for real-time processes.
IEEE Real-Time Systems Symposium, December 1990.

References 267

[2] Chen, M. 1., and Lin, K.-J. Dynamic priority ceilings: a concurrency control
protocol for real-time systems. UIUCDCS-RE9-1511, Technical Report, De-
partment of Computer Science, University of Illinois at Urbana-Champaign,

1989.

[3] Clark, D. D. The structuring of systems using upcalls. The Tenth Symposium
on Operating System Principles, 1985.

[4] Jeffay, K. Scheduling sporadic tasks with shared resources in hard real-time
systems. TRY0-038, Technical Report, Department of Computer Science, Uni-
versity of North Carolina at Chapel Hill, November 1989.

[5] Lampson, B. W., and Redell, D. D. Experience with processes and monitors
in mesa. Communications of the ACM, 23(2):105-117, February 1980.

[6] Lehoczky, J. P., and Sha, L. Performance of real-time bus scheduling al-
gorithms. ACM Performance Evaluation Review, Special Issue, 14(1), May
1986.

[7] Lehoczky, J. P., Sha, L., and Ding, Y. The rate monotonic scheduling al-
gorithm: exact characterization and average-case behavior. IEEE Real-Time
Systems Symposium, December 1989.

8] Leinbaugh, D. W. Guaranteed response time in a hard real-time environment.
g
IEEE Transactions on Software Engineering, January 1980.

[9] Leung, J. Y., and Merrill, M. L. A note on preemptive scheduling of peri-
odic, real time tasks. Information Processing Letters, 11(3):115-118, November
1980.

[10] Liu, C. L., and Layland, J. W. Scheduling algorithms for multiprogramming
in a hard real time environment. Journal of the ACM, 20(1):46-61, 1973.

[11] Mok, A. K. Fundamental design problems of distributed systems for the hard
real time environment. Ph.D. thesis, M.I.'T., 1983.

[12] Rajkumar, R. Task synchronization in real-time systems. Ph.D. thesis,
Carnegie Mellon University, August 1989.

[13] Rajkumar, R., Sha, L., Lehoczky, J. P., and Ramamritham, K. An optimal
priority inheritance protocol for real-time synchronization. Technical Report,
IBM Thomas J. Watson Research Center, 1991.

[14] Ramaritham, K., and Stankovic, J. A. Dynamic task scheduling in hard real-
time distributed systems. IEEE Software, July 1984.

[15] Sha, L., Lehoczky J. P., and Rajkumar, R. Solutions for some practical prob-
lems in prioritized preemptive scheduling. IEEE Real-Time Systems Sympo-
stum, 1986.

References 268

[16] Sha, L., and Goodenough, J. B. Real-time scheduling theory and ada. Com-
puter, May 1990.

[17] Sha, L., Rajkumar, R., and Lehoczky, J. P. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Computers,

pages 1175-1185, September 1990.

[18] SofTech Inc. Designing real-time systems in ada. Final Report 1123-1, SofTech,
Inc., January 1986.

