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Abstract

On-Line Analytical Processing (OLAP) refers to the technologies that allow users to
eÆciently retrieve data from the data warehouse for decision-support purposes. Data ware-
houses tend to be extremely large - it is quite possible for a data warehouse to be hundreds
of gigabytes to terabytes in size [3]. Queries tend to be complex and ad-hoc, often requir-
ing computationally expensive operations such as joins and aggregation. Given this, we
are interested in developing strategies for improving query processing in data warehouses
by exploring the applicability of parallel processing techniques. In particular, we exploit
the natural partitionability of a star schema and render it even more eÆcient by apply-
ing DataIndexes { a storage structure that serves both as an index as well as data and
lends itself naturally to vertical partitioning of the data. Dataindexes are derived from
the various special purpose access mechanisms currently supported in commercial OLAP
products. Speci�cally, we propose a declustering strategy which incorporates both task
and data partitioning and present the Parallel Star Join (PSJ) Algorithm, which provides
a means to perform a star join in parallel using eÆcient operations involving only rowsets
and projection columns.

We compare the performance of the PSJ Algorithm with two parallel query processing
strategies. The �rst is a parallel join strategy utilizing the Bitmap Join Index (BJI),
arguably the state of the art OLAP join structure in use today. For the second strategy
we choose a well known parallel join algorithm, namely the pipelined hash algorithm. To
assist in the performance comparison, we �rst develop a cost model of the disk access and
transmission costs for all three approaches.

Performance comparisons show that the DataIndex based approach leads to dramatically
lower disk access costs than the BJI as well as the hybrid hash approaches, in both speedup
and scaleup experiments, while the hash-based approach outperforms the BJI in disk access
costs. With regard to transmission overhead, our performance results show that PSJ and
BJI outperform the hash-based approach. Overall, our parallel star join algorithm and
dataindexes form a winning combination.
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1 Introduction

On-Line Analytical Processing (OLAP) refers to the technologies that allow users to eÆciently

retrieve data from the data warehouse for decision-support purposes. A data warehouse can

be de�ned as an on-line repository of historical enterprise data that is used to support decision

making [15]. Data warehouses tend to be extremely large - it is quite possible for a data ware-

house to be hundreds of gigabytes to terabytes in size [3]. The information in a warehouse is

usually multidimensional in nature, requiring the capability to view the data from a variety of

perspectives. In this environment, aggregated and summarized data are much more important

than detailed records. Queries tend to be complex and ad-hoc, often requiring computation-

ally expensive operations such as joins and aggregation. Further complicating this situation is

the fact that such queries must be performed on tables having potentially millions of records.

Moreover, the results have to be delivered interactively to the business analyst using the system.

Given these characteristics, it is clear that the emphasis in OLAP systems is on query pro-

cessing and response times. OLAP scenarios in data warehousing di�er from standard OLTP

environments in two important ways: (1) the size of the data store, and (2) the underlying data

model of the warehouse. In terms of size, a data warehouse is typically orders of magnitude larger

than in standard operational databases (i.e., hundreds of GBs, even TBs). These databases store

historical data, not operational data, and are used primarily for decision support. Decision sup-

port requires complex queries, e.g., multi-way joins. In terms of the data model, most warehouses

are modeled with a star schema, i.e., a fact table and a set of data dimensions. Star schemas

have an important property in terms of join processing { all dimensions join only with the fact

table (i.e., the fact table contains foreign keys for each dimension). As a result, all join paths

lead through the fact table, which is typically the largest table by far { usually several times the

sum of the sizes of the dimensions.

Given the above, we note that joins in data warehouses are particularly expensive { the

fact table (the largest table in the warehouse by far) participates in every join, and multiple

dimensions are likely to participate in each join. Clearly, applying parallel processing to the join

operation in this case would be bene�cial.
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Parallel query processing techniques, such as those described in in [19] and [1] (as well as

others noted in Section 9), will clearly function in an OLAP environment. The question of

interest is this: \Can more eÆcient techniques be developed, given the particular characteristics

of the read-mostly OLAP environment?". For instance, the current state of the art in parallel

join techniques, as exempli�ed by the Pipelined Hash Join using right-deep trees [4, 5], requires

that either (a) all hash tables for participating build tables be co-resident in memory or (b) that

temporary results be spooled to disk, allowing reclamation of memory for the hash tables used

to build that intermediate result. Given the large data sizes in a data warehousing environment,

it is unlikely that suÆcient memory will be available, particularly in the case of multi-way joins.

In this paper, we propose a novel parallel processing technique to speci�cally address the large

data sizes inherent in OLAP query processing, and provide eÆcient query processing.

Performance in a parallel system is typically measured using these two key properties:

Property 1 : In system with linear scale-up, an increase in hardware can perform a propor-
tionately larger task in the same amount of time. Data warehouses tend to grow quite rapidly.
For example, AT&T has a data warehouse containing call detail information that grows at a rate
of approximately 18 GB per day [20]. Thus, a scalable architecture is crucial in a warehouse
environment.

Property 2 : In a system with linear speedup, an increase in hardware results in a proportional
decrease in processing time. As we shall show, by partitioning data among a set of processors,
and by developing query processing strategies that exploit this partitioning, OLAP queries can
potentially achieve good speedup, signi�cantly improving query response times.

The �rst property is obvious, while the latter point is best illustrated using an example. Recall

that in a ROLAP environment, the data is stored in a relational database using a star schema. A

star schema usually consists of a single fact table and set of dimension tables. Consider the star

schema presented in Figure 1A, which was derived from the TPC-D benchmark database [27]

(with a scale factor of 1). The schema models the activities of a world-wide wholesale supplier

over a period of seven years. The fact table is the SALES table, and the dimension tables are the

PART, SUPPLIER, CUSTOMER, and TIME tables. The fact table contains foreign keys to each of the

dimension tables. This schema suggests an eÆcient data partitioning as we will soon show.

A common type of query in OLAP systems is the star-join query. In a star-join, one or more

dimension tables are joined with the fact table. For example, the following query is a three-
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Figure 1: A Sample Warehouse Star Schema and Projection Index

dimensional star-join that identi�es the volumes sold locally by suppliers in the United States

for the period between 1996 and 1998 [27]:

Query 1
SELECT U.Name, SUM(S.ExtPrice)

FROM SALES S, TIME T, CUSTOMER C, SUPPLIER U

WHERE T.Year BETWEEN 1996 AND 1998

AND U.Nation='United States' AND C.Nation='United States'

AND S.ShipDate = T.TimeKey AND S.CustKey = C.CustKey

AND S.SuppKey = U.SuppKey

GROUP BY U.Name

A set of attributes that is frequently used in join predicates can be readily identi�ed in the

structure of a star schema. In the example star schema, ShipDate, CustKey, SuppKey, and

PartKey of the SALES table can be identi�ed as attributes that will often participate in joins

with the corresponding dimension tables. We can thus use this information to apply a vertical

partitioning method on these attributes to achieve the bene�ts of parallelism. This paper shows,

in fact, that one can use a combination of vertical and horizontal partitioning techniques to

extract the parallelism inherent in star schemas.

Speci�cally, we propose a declustering strategy which incorporates both task and data parti-

tioning and present the Parallel Star Join (PSJ) algorithm, which provides a means to perform

a star join in parallel using eÆcient operations involving only rowsets and projection columns.
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To compare against PSJ, we consider two other parallel query processing strategies. The �rst

is a parallel join strategy utilizing the Bitmap Join Index (BJI), arguably the state of the art

OLAP join structure in use today. For the second strategy we choose the Pipelined Hash strategy

[4] (HASH), one of the best performing parallel query processing strategies from the traditional

OLTP literature.

Our performance results indicate that the PSJ approach leads to dramatically better perfor-

mance than the pipelined hash approach, with regard to disk access costs and transmission costs,

in both speedup and scaleup experiments. The pipelined hash approach, in turn, outperforms

the BJI approach in terms of disk access costs (although not in terms of transmission costs). A

full discussion of our results can be found in Section 8.

A large body of work exists in applying parallel processing techniques to relational database

systems (e.g., [8, 26, 28, 25]). From this work has emerged the notion that highly-parallel,

shared-nothing architectures can yield much better performance than equivalent closely-coupled

systems [24, 17, 9]. Shared-nothing architectures have been shown to achieve near linear speedups

and scale-ups in OLTP environments as well as on complex relational queries [10].

The primary contribution of this paper is in its basic theme, i.e., the exploration of parallel

processing with regard to OLAP. To the best of our knowledge, this is one of the initial endeav-

ors in this direction (we have not come across many such reports in the published literature).

Speci�cally, the contribution of this paper is manifold: (1) It proposes a parallel physical design

for data warehousing. (2) It proposes a parallel star join strategy based on this physical design

and evaluates its performance. (3) It demonstrates the applicability of parallel OLTP strategies

in the OLAP context. Note that some of the major DBMS vendors o�er products that support

various levels of parallel processing. We describe this work in more detail in Section 9 and con-

trast these to our work. Note also that integration with existing systems is a separate issue, and

outside the scope of this paper.

The remainder of the paper is organized as follows. In Section 2 we introduce an approach

to structure data warehouses by exploiting our proposed indexing strategies. The associated

physical design and star join processing strategies are discussed in Section 3. This is followed
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by a description of two competing strategies: the parallel BJI join approach in Section 4 and

the pipelined hash approach in Section 5. We then present a cost model of the disk access and

transmission costs of the three approaches in Section 6, and a system model for performance

comparison in Section 7. We compare the performance of these approaches in Section 8. Finally,

in Section 9 we discuss related work, and in Section 10 we conclude the paper.

2 A Physical Design Principle to Exploit Parallelism

In this section we show how, by judiciously using many of the indexing schemes proposed in the

literature, we can structure a data warehouse to make it amenable to parallel query processing.

Four index types are shown in [22] to be particularly appropriate for OLAP systems: B+ trees,

indexes based on bitmaps [22, 21], projection indexes and bit-sliced indexes [22]. Consider the

division of the SALES table in Figure 1A, into seven smaller tables, as shown in Figure 1B. This

scheme is composed of 7 vertical partitions: one for each of the dimensional attributes and one

for the remaining columns from the original SALES table. With this division, a record in the

original SALES table is now partitioned into 7 records, one in each of the resulting tables. Each

of the 7 new tables is akin to a projection index. A projection index contains the copy of a

particular column, namely, the column being indexed. In this sort of partitioning, the columns

being indexed are removed from the original table and stored separately, with each entry being

in the same position as its corresponding base record. The isolated columns can then be used

for fast access to data in the table. When indexing columns of the fact table, storing both the

index and the corresponding column in the fact table results in a duplication of data. In such

situations, it is advisable to only store the index if original table records can be reconstructed

easily from the index itself. This is how Sybase IQ stores data [12, 22].

In what follows, we extend the original notion of the projection index to allow a single

projection index to contain multiple columns. A graphical representation of this structure is

shown in Figure 2. In this �gure, we show the actual storage con�gurations of the two cases: a

base table (Figure 2a) and the corresponding partitioned structure (Figure 2b). The base table

consists of the attributes TimeStamp, Tax, Discount, Status and two projection indices are
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Record
Base SALES Table

Projection Index on SALES.TimeStamp

Projection Index on (SALES.Tax, SALES.Discount, SALES.Status)

π π

TimeStamp Tax Discount Status TimeStamp Tax Discount Status TimeStamp Tax Discount StatusStatus TimeStampπ π

TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp TimeStamp

Tax Discount Status Tax Discount Status Tax Discount Status Tax Discount Status Tax

Conventional Relational Representation

(b)

(a)

π π

 Projection Index Representation

Status

Figure 2: Projection Index

constructed, one on the TimeStamp column, and another on the Tax, Discount and Status

columns. As indicated by the dotted lines joining records from the two indices, the order of the

records in the base table is conserved in both indices. This allows for an eÆcient mapping between

the entries in the two projection indexes. This mapping is accomplished through the use of

positional indexing, which refers to accessing tuples based on their ordinal position. This ordinal

mapping is key to the idea of positional indexing. For example, in the schema in Figure 1B, if we

need to determine the ShipDate for the third SALES record, we would do this by accessing the

third entry of the projection index for SALES.ShipDate. Positional indexing is made possible by

row identi�ers (RIDs), a feature provided by most commercial DBMS products [21, 6].

In decision support databases, a large portion of the workload consists of queries that operate

on multiple tables. Many queries on the star schema of Figure 1A would access one or more

dimension tables and the central SALES table. Access methods that eÆciently support join

operations thus become crucial in decision support environments [21]. The idea of a projection

index presented in the previous section can very easily be extended to support such operations.

Consider for instance, an analyst who is interested in possible trends or seasonalities in discounts

o�ered to customers. This analysis would be based on the following query:

Query 2
SELECT TIME.Year, TIME.Month, average(SALES.Discount)

FROM TIME, SALES

WHERE TIME.TimeKey = SALES.ShipDate

GROUP BY TIME.Year, TIME.Month

O'Neil and Graefe [21] introduced the idea of a bitmapped join index (BJI) for eÆciently

supporting multi-table joins. A BJI associates related rows from two tables [21], as follows.

7



Consider two tables, T1 (a dimension table) and T2 (a fact table), related by a one-to-many

relationship (i.e., one record of T1 is referenced by many records of T2). A bitmapped join index

from T1 to T2 can be seen as a bitmapped index that uses RIDs of T1 to index the records

of T2. (Further details of BJIs are presented in Section 4). In fact, we can further reduce the

number of data blocks to be accessed while processing a join by storing the RIDs of the matching

dimension table records { instead of the corresponding key values { in a projection index for a

foreign key column. Such an index from T2 to T1 is called a Join Index (JI) in the sequel. For

instance, the JI on SALES.ShipDate would consist of a list of RIDs on the TIME table. (One

can also achieve an equivalent, and sometimes more eÆcient, representation by storing actual

ordinal positions corresponding to the TIME table, rather than the RIDs). Such a JI is shown in

Figure 3. As before, we show both the conventional relational and the JI representations. In the

conventional approach, we show referential integrity links between the SALES and TIME tables as

dashed arrows. For the JI approach, we use solid arrows to show the rows to which di�erent RIDs

point and dotted lines to show that the order of the records in the JI and the SALES projection

index is preserved from the base table.1

Base TIME Table

Base TIME Table

Base SALES Table

Join Index on SALES.TimeStamp

Projection Index on (SALES.Tax,SALES.Discount, SALES.Status)

π π

TimeStamp Tax Discount Status TimeStamp Tax Discount Status TimeStamp Tax Discount Status ππ

Timestamp DoW DoM Month ... Timestamp DoW DoM Month ... Timestamp DoW DoM Month ... π...Month π Timestamp

Timestamp DoW DoM Month ... Timestamp DoW DoM Month ... Timestamp DoW DoM Month ... ππ Timestamp...Month

RowID RowID RowID RowID RowID RowID RowID RowID RowID RowID RowID RowID RowIDRowID

Tax Discount Status Tax Discount Status Tax Discount Status

RowID

Conventional Relational Representation

Status TimeStamp

π π

Status Tax Discount Status Tax

Join Index Representation

Figure 3: The Join Index

1Throughout the paper, the descriptions for the storage structures and the algorithms assume that referential
integrity is maintained. With simple extensions, our approach can be made to tolerate acceptable violations of
referential integrity.
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As can be seen in this �gure, instead of storing the data corresponding to the ShipDate

column, the JI provides a direct mapping between individual tuples of the SALES and TIME

tables. Because of this, the join required to answer Query 2 can thus be performed in a single

scan of the JI. This property of JIs is indeed attractive, since the size of this index is, of course,

proportional to the number of tuples in the table from which it was derived.

The application of the above ideas to a data warehouse results in a physical design that

exploits parallelism. This design principle requires the storage of each foreign key column in the

fact table as JIs and the rest of the columns in the star scheme (for both dimension as well as

fact tables) as projection indexes.

In summary, the data warehouse structure discussed in this section takes the best aspects

of vertical partitioning, projection indexes, and join indexes and integrates them such that, as

shown in the next section, an e�ective parallel join algorithm can be developed. Performance

studies, discussed in Section 8, show that this join algorithm enhances the performance of star-

join queries in parallel environments compared to traditionally used approaches.

3 The Parallel Star Join

In this section, we describe a data placement strategy based on the physical design strategy out-

lined in the previous section assuming a shared-nothing architecture with N processors. Subse-

quently, we present an eÆcient Parallel Star Join Algorithm that exploits this placement strategy.

In Table 1, we show the various notations used throughout the paper.

3.1 Data Placement Strategy

Assume a d-dimensional data warehouse physically designed according to the strategy outlined

in the previous section. The basic approach to data placement is as follows: partition the N

processors into d + 1 (potentially mutually non-exclusive) processor groups. Assign, to proces-

sor group j, the dimension table j, i.e., Dj, and Jj, the fact table JI corresponding to the key

attribute of Dj. Inside processor group j, a hybrid strategy is used to allocate records to indi-
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Symbol Description Symbol Description

N Number of processors d Number of dimensions
Dj Dimension j F Fact Table
Jj Join Index on Dj Pcname Projection Index on attribute cname

Smd Aggregate size of metric data Sj Aggregate size of Dj

m Memory per processor (bytes) Gj Processor group for Dj

Pij Processor i of Gj Am
P

set of projection predicates on metric data

Ad
P

Set of projection predicates on dimensions P� Set of restriction predicates
P./ Set of join predicates Rglobal Global join rowset
Rdim;i Dimension restriction rowset for Di w(D) Width of a tuple in a dimension D
B Size of a disk block (bytes) R Size of a RID
aij Attribute j of dimension i AR Set of restriction attributes
aFj Metric attribute j of the fact table AJ Set of join attributes
Waij Width of attribute aij , in bytes AP Set of projection attributes

WJI Width of JI, in bytes DJ Number of Dimensions participating in join
Ni Number of processors in group i DP Number of Dimensions participating in output
NF Number of processors in the metric group Sm Size of available memory
SF Scale Factor (a�ects size of database) P Order of BI or BJI
V Number of distinct values indexed in BI or BJI f Bitmap compression factor
K Number of search key values per index node B Block Size
& Selectivity of dimension TB Tuples per block

Table 1: Table of Notation for Cost Model

vidual processors. The metric PIs (that is, PIs of columns not associated with foreign keys) are

allocated to group d+ 1.

There are three fundamental motivations behind this approach. (1) The task of data place-

ment can be hinted by the structure of the star schema. For example, the primary key of a

dimension table and its associated foreign key in a fact table can be the most appropriate can-

didates for the partitioning attributes, because they are expected to be used as join attributes

frequently. (2) The use of JIs makes it possible to co-locate the fact table with multiple dimension

tables at the same time by grouping each dimension table with its associated JI and partition-

ing them by the same strategy. (In general, with a traditional horizontal partitioning method,

a relation can be co-located with only one other relation.) Therefore, the join of a dimension

table and a fact table can be computed eÆciently without data redistribution, and completely

independent of other join computations that involve di�erent dimension tables and the same fact

table. (3) It is generally the case that the size of a dimension table is much smaller than that

of a fact table, and often small enough to be �t in main memory. Thus, given the number of

available processors and aggregate main memory capacity of a particular processor group, the

relative sizes of dimension tables can be used to determine an ideal degree of parallelism for each

dimension, that is, a dimension table and its associated JI.

Now we describe our strategy in detail. Essentially there are two phases: (a) a processor
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group partitioning phase, in which we partition the set of given processors into d+1 groups and

(b) a physical data placement phase where we allocate data fragments to individual processors.

3.1.1 Processor Group Partitioning

The �rst phase computes for each dimension j, the composition of the processor group (i.e., the

physical processors assigned to each group) where the jth dimension table and its associated JI

are stored. Since every JI has the same cardinality as the fact table and consequently identical

data volumes, the size (Sj) of the jth dimension table (in bytes) is used to determine the size of its

corresponding processor group. This is not just to balance the data distribution across available

processors but also to minimize the data accesses required to process a join computation between

a dimension table and its JI and thereby improve response times.

Group d + 1, i.e, the group that houses the metric PIs uses a di�erent criterion than the

dimensional groups for determining its composition. There are two main reasons for this. First,

the metric attributes do not appear in any join predicates. (However, they may appear in

restrictions). Second, the volume of the metric data is largely independent of those of dimension

tables. Thus, we choose to use the metric data volume, Smd, relative to the volume of the entire

data warehouse, to determine the composition of the metric group.

Before delving into the precise details of our approach, we �rst enumerate a number of issues

that need to be considered in tackling this problem. Note that the optimization strategy described

below considers the size of dimensions in forming processor groups. Clearly, this could easily be

extended to include constraints based on knowledge of the query workloads on each dimension

in addition to dimension size, further improving the grouping.

(1)We �rst make a remark regarding the computation of the sizes of, i.e., the number of processors

in, the di�erent dimensional groups, denoted by N1; : : : ;Nd. The fundamental goal here is to

have group sizes large enough such that the entire dimension table �ts into the aggregate memory

of the processors comprising this group. Intuitively then, if the dimension table can be loaded in

the aggregate memory of its processor group, the join computation can be done with only a single

scan of the JI. It is, of course, possible that this goal cannot be achieved, given the available
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total number of processors. Then, based on the above mentioned criteria, the minimum size of

the jth processor group (i.e., Gj), 1 � j � d, is given by Nj = min (N ; dSj=me), where m is the

size of the main memory attached to each processor.2 This assumes that all the processors have

an equal amount of memory.

(2) Next we comment on the minimum size of the metric group, for which we use a di�erent

logic, as it does not participate in joins, unlike the dimensional groups. We choose to use the

metric data volume relative to the entire data warehouse in order to determine the minimum

size of Gd+1. In other words, Nd+1 = N � Aggregate Size of Metric PIs
Total Size of the Data Warehouse

(3) Note that a processor may participate in more than one group. There may be many reasons

for this. A trivial case would be when there are more dimensions than processors. A more likely

case would be when the data sizes (dimensional, metric or both) are signi�cant enough that the

sum of the sizes of di�erent groups (given the criteria outlined in items (1) and (2) above) may

exceed the number of processors available, which would mandate the assignment of the same

processor to di�erent groups. This phenomenon adds the following requirement to the problem {

the overlap of the processor groups must be minimized. We have developed an optimal solution

to the processor group partitioning problem by formulating it as a constrained optimization

problem solvable as a linear integer mathematical program. Due to space limitations, we are

unable to include it in this paper; however, readers are referred to [7] for full details.

In the context of a data warehousing environment, where star schemas are common, the above-

mentioned optimization strategy results typically results in the assignment of each processor to

two groups, (a) a single dimensionDi, and (b) the fact table. This scenario is depicted graphically

in Figure 4, and occurs because of the relative di�erence in the sizes of dimensions versus the size

P1 P2 P3 P4 P5 P6 P7 P8

G1:  Fact table

G2: D−Customer G3: D−Part
G5:

D−TimD−Sup
G4:

Figure 4: Example Processor Grouping for a Star Schema

2To be precise, the memory should have space for loading (at least) one block of the JI. This \ + 1" factor is
not included here so as to avoid clutter.
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of the fact table { the fact table is much larger than all the dimensions combined. The processor

allocation shown in Figure 4 allocates processors to dimensions based on the relative size of the

dimension; however, if query workload is known, processor allocation for dimensions could take

this into account. Note, however, that even in this case, the fact table would still be allocated

a full set of processors, since it is not only the largest table (by far), but it also participates in

every join (all join paths lead through it).

3.1.2 Physical Data Placement

In this phase, the actual data are placed on the individual processors in the groups. To state

our approach for data placement we will simply discuss the approach in the context of a single

group. Consider processor group j, denoted by Gj, consisting of Nj processors, P1; P2; : : : PNj
.

The exact processor to group assignment is done by solving the optimization problem described

previously. Clearly the contents of Gj include the PIs corresponding to the jth dimension table

and the associated JI, denoted by Jj, from the fact table.

We �rst horizontally partition the JI in round robin fashion among the Ni processors. Our

rationale for adopting the above-mentioned strategy has two salient features: (a) the JI parti-

tioning strategy and (b) the dimensional replication strategy. The dimensional strategy is easy to

understand. Replicating PIs across all processors in a group ensures that all JI records and their

associated primary keys are co-located. Thus, all matching records satisfying any join predicate

will be found on the same processor, ensuring that joins can be performed and outputs created

eÆciently in parallel. Note that this allocation scheme is not based on �xed sizes, but rather

on relative sizes. Even though table sizes may change, tables in data warehouses tend to retain

similar sizes relative to one another, thus allowing grouping on this basis.

An alternative dimensional strategy, partitioning the PIs across the processors of a group, was

considered. However, this strategy presented two problems. First, since many (not necessarily

co-located) JI records may point to the same PI record, some replication of PI data across

processors would be required to ensure co-location of matching PI and JI records. Second, the

RIDs in the PI records would change with partitioning, which would require updating the JI
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records to re
ect the new RIDs they point to.

The objective of the JI partitioning strategy is to preserve the ordinal position mapping

property which is threatened by partitioning JIs across di�erent processors. It is easy to see that

when the records are partitioned, it is important to regenerate the original ordinal position of

a record, i.e., given a partitioned JI record i in processor j for group k, we want to be able to

say that this record occupied the oth ordinal position in the original, unpartitioned JI. This is

important for several reasons, e.g., to form the �nal output of a join by putting together the

output from various processor groups. Of the well known horizontal partitioning mechanisms

(such as hash, range and round-robin), only the round robin policy is capable of naturally ensuring

this mapping.

3.2 The Parallel Star Join Algorithm

In this section we present our algorithm to perform star joins in parallel. We assume a physical

design strategy as described in Section 2 and a partitioning strategy as described in Section 3.1.

We represent a general k-dimensional star-join query as follows.

Query 3 SELECT Ad
P, Am

P FROM F, D1, : : :, Dk WHERE P./ AND P�

Here D1; : : : ; Dk are the k dimensional tables participating in the join. P� and P./ denote a set of

restriction and join predicates respectively. We assume that each individual restriction predicate

in P� only concerns one table and is of the form (aj hopi constant), where aj is any attribute in

the warehouse schema and hopi denotes a comparison operator (e.g., =;�;�). We assume each

join predicate in P./ is of the form al = at where at is any dimensional key attribute and al is

the foreign key referenced by at in the fact table.

Based on the partitioning strategy described earlier, a join query such as the one above will

reduce to a number of one dimensional joins in each processor group. These can be performed

in parallel. These smaller joins will produce local groupwise rowsets that will be processed to

generate a global rowset which will be used to produce the �nal output. Accordingly, to describe

our Parallel Star Join (PSJ) algorithm we will subdivide it into three phases: (a) The Local
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Rowset Generation (LRG) phase, (b) The Global Rowset Synthesis (GRS) phase, and (c) The

Output Preparation (OP) phase.

3.2.1 Local Rowset Generation

In the LRG phase, each dimensional processor group generates a rowset (with fact table cardi-

nality) representing the fact table rows that qualify based on the restrictions and join relevant to

that group. This proceeds as follows. Consider dimensional processor group i, which consists of c

processors and houses the PIs corresponding to Di and the associated JI from the fact table, Ji.

The restriction and join predicates that apply to dimension i, will be shipped to this group for

evaluation. Let us assume, for simplicity, that group i receives, in addition to a ith dimensional

join predicate, a restriction predicate for a dimensional PI (note that more than one restriction

predicate may be received in reality).

The �rst step of the LRG phase, Load PI Fragments, performed at each participating group

i generates a dimensional rowset, Rdim;i, based on the restriction(s). This rowset is a bit vector

of cardinality of Di in which bits are set corresponding to rows in Di that meet the restriction

criterion. This rowset is developed in the following manner. First, each processor is allocated a

range of the PI amounting to 1
c

th
of the dimensional PI. For example, the �rst processor in the

group loads records 1 to jDij
c
, the second loads jDij

c
+ 1 to 2jDij

c
and processor c loads (c�1)jDij

c
+ 1

to jDij. Then, each processor scans the fragment allotted to it, setting the corresponding bit(s)

in the rowset for rows meeting the restriction. This process can easily be expanded to handle

more than one restriction predicate by considering all the restrictions during the PI scan, and

setting the corresponding rowset bit only for those records meeting all the restriction conditions.

The second step of the local rowset generation process, Merge Dimension Rowset Fragments,

involves the merging of the restriction rowsets generated on each processor.

The restriction rowsets are merged in parallel via transmission through a binary tree structure

of c leaf nodes, one for each processor of the group. The restriction rowsets are �rst merged

pairwise, then the pairwise results are merged, and so on, until a �nal merged rowset is generated.

We now describe the actual merging operation. This operation takes as input two rowsets
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of cardinality of the dimensional PI. Since each processor is allotted a non-overlapping set of

PI records to examine for the restriction condition(s), each processor is responsible for a non-

overlapping set of bits in the �nal restriction rowset. Thus, merging two rowsets involves simply

OR-ing them together.

When the �nal restriction rowset has been generated, the next step, Distribute Dimension

Rowset, takes place. Here, the �nal dimension rowset is transmitted back to the individual

processors of the group through the same binary tree transmission mechanism through which

the merging process took place.

Once the dimensional restriction rowset has been constructed and distributed, the next step,

Load JI Fragments, loads the JI fragments allocated to group i in preparation for the creation of

the local fact rowsets, Rfact;i. This is a bit vector of cardinality of the fact table, where a bit is

set if the corresponding row of the fact table satis�es the join condition for this dimension. The

precise logic to set the bits in Rfact;i is given below. This procedure assumes that the rowset

structure is already de�ned and initialized (i.e., the insertion pointer points to the �rst bit of

Rfact;i). The above discussion, for expository ease, assumes a centralized join in group i. In

Algorithm 1 Load JI Fragments Algorithm

1: start scanning Ji from the top

2: for each row j in Ji (1 � j � jF j) do

3: read the value of the current element, which yields a RID

4: map this RID to an ordinal position in Di, say k

5: if the kth bit in Rdim;i is set then

6: set the jth bit of Rfact;i

reality, a segment of Rfact;i is generated at each processor of group i and then merged. Note

that in order to perform this merging, the system needs to map ordinal positions of fragments at

each physical processor into ordinal positions at the unpartitioned tables. This is done by simple

arithmetic transformations - the details of this are given later in this section.

Finally, a note regarding group d + 1, i.e., the metric group. If there exists one (or more)

metric restriction(s) in the submitted query, then these are evaluated at this group and a rowset,

i.e., Rfact;(d+1) constructed. Clearly, no join takes place here.

In the �nal step of the �rst phase, Merge Partial Fact Rowsets, the partial rowsets created
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on each processor are merged to form a local rowset, i.e., a rowset that represents the result of

the Local Rowset Generation phase of the algorithm, i.e., local to each group.

3.2.2 Global Rowset Synthesis

In �rst step of the GRS phase, Merge Local Fact Rowsets, a global rowset, denoted by Rglobal,

is constructed by combining the rowsets Rfact;i, for all i, generated in the LRG phase by each

group. We remind the reader that each such rowset is simply a bit vector of fact table cardinality

in which bits are set corresponding to records meeting the local restriction and join conditions.

For a record to participate in the output of the query, it must meet all the restriction and join

conditions, i.e., the corresponding bit must be set in all the rowsets Rfact;i. Thus, the global

rowset is simply the bitwise AND of all the local rowsets.

We generate the global rowset in a manner similar to the generation of the local restriction

rowsets. The local rowsets are transmitted and merged through a binary tree construct in which

the number of leaf nodes is equal to the number of dimensions participating in the join. The

transmission portion of this operation is virtually the same as that of the local rowset generation

operation, but the merge operation consists of a bitwise AND operation. The �nal rowset

contains bits set only for records that meet all the join and restriction conditions, and should

thus participate in the output of the query.

Once the global rowset has been generated, it is transmitted to those processor groups that

participate in the output phase of the query in the second and �nal step of the GRS phase,

Distribute Global Rowset to Groups. Each such group houses a dimension which contributes

to the �nal output. For example, if Customer.name is an output column (identi�ed by its

presence in the SELECT clause of the query), then the group housing the customer dimension

will participate in the OP phase.

3.2.3 Output Preparation

The OP phase is performed by each participating processor group (to be simply referred to as

participating group henceforth) contributing a column of output and the eventual \racking" of
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these individual columns to produce the �nal output. These groups receive the global rowset

computed in the GRS phase and in conjunction with the dimensional rowset already computed

in the LRG phase and the PI(s) that contribute to the output, construct the �nal output column.

For instance, consider the previous example where Customer.name is an output column. The

corresponding participating group houses the PIs for the Customer dimension as well as the

Customer JI from the fact table, denoted by Jcustomer. In this group, there will exist a PI on

the Customer.name column, denoted by Pcname. Furthermore, assume there exists a dimensional

rowset, denoted by RCustomer that was computed in the LRG phase3.

The �rst step in the OP phase, Distribute Global Rowset to Processors, involves the trans-

mission of the global rowset to all processors of a participating group. In the next phase, Load

PIs, the PI columns necessary for output are loaded.

When the global rowset, Rglobal, has been shipped to the customer dimensional group and

all necessary data loaded, the following procedure, Merge Output, is executed, to construct the

�nal output column. In describing this procedure we assume that the �nal output column will

be encapsulated in a structure called cust name. The procedure also assumes that the cust name

structure is already de�ned and initialized (i.e., the insertion pointer points to the �rst slot (or

row) in the structure).

Algorithm 2 Merge Output Algorithm

1: start scanning Rglobal from the top, i.e., the first bit

2: for each bit in Rglobal do

3: let the ordinal position of current bit in Rglobal be denoted by i

4: if the ith bit (i.e., the current bit) in Rglobal is set then

5: read the ith element of Jcustomer, which yields a RID of the primary key PI of the

customer dimension

6: map this RID to an ordinal position, say j

7: read the element in the jth position in Pcname

8: insert this element into the cust name structure

9: move the insertion pointer of cust name to the next insertion position

Again, note that the above description assumes (for ease of explanation), a \centralized"

structure. In reality, however, each physical processor in a participating group would execute the

above procedure and produce a fragment of the output column, which would then be merged to

3This is a valid assumption. If there were no restriction clauses in the submitted query based on the customer
dimension, one can assume that all bits in Rcustomer are set.
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produce the \real" �nal output column. Thus, from a cost perspective (for details, see Section

6), one can think of the following phases: (a) distributing global rowset to all processors, (b)

loading PIs and JIs at each processor in every participating group to produce the output (as

indicated in the procedure above), (c) merging the output fragments produced by each individual

processor in a participating group to produce a local output, i.e., one column of �nal output,

and (d) merging local outputs to produce �nal output.

In a centralized system, a query is executed as a series of disk accesses { which load the

relevant portions of the database to memory { interleaved with bursts of CPU activity, when

the loaded data is operated upon. Mapping functions are required to determine the speci�c

disk block that needs to be accessed and these depend on the index structure used. With this

strategy, in most cases, the delays associated with the mapping computations will be negligible

compared to the much slower storage access times [6]. This expectation is corroborated by other

studies [22], which have shown that I/O related costs (disk access plus I/O related CPU costs)

are several orders of magnitude more than other CPU costs relating to query processing. Based

on these �ndings, in a centralized system one can focus on analyzing the query performance with

respect to disk access delays.

In a parallel system, while the focus is still on the delays in obtaining needed data blocks,

the di�erence (from centralized systems) arises from the fact that the required data can come

from other nodes/processors as well as from the disk. Hence, in this paper, we are interested in

response time (as measured in disk I/O delays as well as delays in obtaining the data from other

nodes) and the volume of data transmitted between processors.

To aid the reader in understanding how the response time is computed, we provide a pictorial

example of the PSJ algorithm at work. Consider a 2-dimensional join query that will be executed

across two processor groups, G1 and G2, consisting of 2 processors each as shown in Figure 5

below. Essentially, this �gure shows the various stages that occur in PSJ and the associated

operations and time instants when each operation starts and ends. Note that we assume all

processors start execution at the same time (time t0 in the �gure). Note further that we only

consider those operations which result in data blocks arriving at a processor (either from disk or
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LPF:  Load PI Fragments
MDRF:  Merge Dimension Rowset Fragments
DDR:  Distribute Dimension Rowset
LJF:  Load JI Fragments
MPFR:  Merge Partial Fact Rowsets
MLFR:  Merge Local Fact Rowsets
DGRG:  Distribute Global Rowset to Groups
DGRP:  Distribute Global Rowset to Processors
LP:  Load PIs
MOF:  Merge Output Fragments
MLO:  Merge Local Output

LEGEND

G2G1P1 P2 P1 P2

LPF1 LPF2 LPF3 LPF4

MDRF

DDRMDRF

DDR

LJF1 LJF2

LJF3 LJF4

MPFR

MPFR

MLFR

DGRG

DGRP DGRP

LP1 LP2
LP3 LP4

MOF

MOF

MLO

TIME TIME

t2

t4

t6

t9

t0

t11

t12

t13

t16

t

t19 t19

t17

t15

t14

t8

t7

t5

t3

t1

t0t0

18

Figure 5: Response Time Computation Example for the PSJ Strategy

other processors) or leaving a processor.

Let us examine this process in detail by considering a speci�c processor in the �gure, say

P3. P3 �rst loads its PI fragment (denoted by LPF3) { this activity ends at time t1. Then it

performs some CPU activity, as described before in the algorithm, to produce a dimensional

rowset fragment based on the PI fragment fetched in the LPF step. This CPU activity does not

show up in the �gure for reasons already explained. The next cost phase consists of the merging

the dimensional rowset fragments (MDRF) and subsequently distributing the full dimensional

rowset (DDR) to all processors in G2. This ends at t5. Upon receipt of the full dimensional

rowset, P3 loads the JI fragment allocated to it (LJF3). This step, �nishing at t7, is used to

produce a partial fact table rowset (cost ignored as this is CPU activity) which is then merged

with the other partial fact table rowsets produced by the other member of G2, namely P4.

This shows up in the �gure as the transmission cost MPFR. Note that until this time, P3 was

continuously busy either fetching data from disk or receiving/sending transmissions. At this

point though, according to the scheme of �gure 5 it must wait until the other group, namely

G1 �nishes producing its local fact rowset. This occurs at time t10, which signals the end of the
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Local Rowset Generation phase for this query. Now starts the Global Rowset Synthesis (GRS)

phase, which requires the merging of the di�erent local fact table rowsets (MLFR) into a global

rowset and the subsequent distribution of this global rowset (DGRG) to the di�erent groups. The

DGRG phase ends at t12, and indicates the end of the GRS phase. The Output preparation (OP)

phase starts now where P3 goes through the speci�c steps outlined in the algorithm. This consists

of loading dimensional PI (LP3), producing an output fragment which is then merged with the

output fragments produced by other group members, producing a complete output column. The

only non-CPU cost for this step is a transmission cost for merging the output fragments (MOF).

Finally, all the individual output columns produced by the di�erent participating groups are

racked together to produce the �nal output, which requires a transmission step (MLO). The

query �nishes at t19, which is the response time for the query.

We simulate this exact process in the performance experiments reported later (for varying

number of dimensions and processors, of course). In order to extract the total I/O cost of the

query we need to compute the costs for the various steps outlined (e.g., LPFi, LJFi, etc.). We

have developed cost models for these steps, which are detailed in Section 6.

4 The Parallel BJI Join

We now consider a warehouse environment utilizing Bitmapped Join Indexes (BJIs). Join pro-

cessing with BJIs is described in [22], and an overview is provided in [7]. Due to space limitations,

we must refer the reader to this paper for a description of BJI join processing. Of interest in this

area, however, is the memory requirement for BJI join processing. Here, all relevant columns

and rows from the dimension tables (including the primary key column) are extracted from the

dimension tables and pinned in memory. In [6], we have shown that the memory requirement

for BJI, in blocks, isMJOIN(BJI) = 1 + jDj+�D2D

l
jDj�w(D)

B

m
where D is the set of dimension

table participating in the join, w(D) refers the width of a tuple in a dimension table, and B is

the size of a disk block. The �rst term in this expression corresponds to a block of memory for

the fact table, the second term corresponds to a block of memory for each dimension table, and

the third term corresponds to the memory required for pinning the relevant dimension tables
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in memory. Note that this imposes a signi�cant memory requirement in the context of a data

warehouse, leading to the potential for losses in join eÆciency (see [7] for details).

In terms of processor grouping, the scheme is exactly the same as the PSJ scheme. This results

in Gd+1 processor groups, one for each dimension, plus one for the fact table. In terms of data

placement, the following are loaded on each disk in processor group Gj: (1) For dimension Dj:

1
Nj

th
ofDj (horizontal partition), BI for the resident fragment for each non-primary key attribute

in Dj, Dimension fragment to fact table BJI, and B+Tree index for the primary key attribute of

Dj. (2) For the fact table: The entire fact table (needed for OP phase) and BI for each attribute

in the fact table.

The Parallel BJI Join algorithm has the same general structure as the PSJ algorithm; only the

Local Rowset Generation phase, and the Generate Partial Output Fragments step of the Output

Preparation phase di�er. In the Local Rowset Generation phase, to generate the restriction

rowset fragments, the BJI algorithm uses the BIs to perform restrictions, rather than PIs, as in

the PSJ algorithm. For each (dimension or fact) table on which there is a restriction predicate,

the following is done on each processor of each processor group. For each restriction predicate,

the BI for the attribute referenced in the predicate is traversed, and a partial restriction rowset

constructed. For each distinct attribute value meeting the restriction, the bitmap pointed to

by the leaf node that represents that attribute value is loaded. All loaded bitmaps are bitwise

ORed. The result is a bitmap of size jDjj (for dimensions) or F (for the fact table), where

each set bit represents an attribute value that meets the restriction for attribute values in the

resident fragment. Subsequently, Dj is joined to the fact table as follows. For each bit set in the

dimension restriction rowset of Dj, the corresponding value in the BJI is found, and the bitmap

pointed to by that leaf node is loaded into memory. All loaded bitmaps are merged into a single

partial fact rowset using bitwise OR. This results in a bitmap of size jF j, where each bit set

represents a tuple in the fact table that meets the restriction predicates on attributes in Dj for

the resident fragment. Within the Output Preparation phase, the only step that is di�erent for

the BJI approach is the Generate Partial Output Fragments step. Recall that each bit set in the

global rowset translates to a row of output. Output for participating dimensions is produced
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as follows. Space is allocated for all output rows, with an appropriate width for holding the

projected attribute values from Dj. The blocks containing the fact table tuples corresponding to

the set bits in the global rowset are loaded4 and the needed dimensional key values are projected

from the loaded tuples. For each key value, the appropriate disk block is accessed next using the

index. Here, we assume a B+tree index, since it performs better for dense indexes. Once this

rowset is produced, processing proceeds in the same fashion as in PSJ.

E�ectively, using the approach outlined above, a one-dimensional join is performed at each

processor. In this context, the BJI memory requirement equation above may be restated as

follows: at a processor housing dimension i (Di), the amount of memory required to perform

the BJI-based join as outlined previously is given by the following equation: MJOIN(BJI) =

1 + 1 +
l
jDij�w(Di)

B

m
.

5 The Parallel Hash Join

Here, we describe a parallel hash join strategy (based on work in [4, 5]), a well-known join

strategy based on the conventional relational data model using segmented right-deep trees and

pipelining, and apply the technique in a data warehousing environment. In the remainder of the

paper, we will refer to this algorithm as the HASH algorithm.

The HASH algorithm provides a means of performing multi-way hash joins, using pipelining

techniques to improve performance. This technique assumes a shared-disk architecture, whereas

we assume a shared-nothing architecture for the other algorithms in this paper. Rather than

embarking on a discussion of optimal data placement policies for the HASH algorithm (the

authors of [4] note the diÆculty of this problem; it is well beyond the scope of this paper), we

retain the shared-disk assumption for the HASH algorithm in our discussions and performance

comparisons. Note that this confers a signi�cant advantage to the HASH algorithm, by removing

the need for additional data transfer phases. It also removes the need for an a priori data

placement and processor allocation phase; since each processor can access data on any disk,

4To obtain a simpler cost model, but one that a�ords BJI join a signi�cant advantage when we evaluate its
performance, we make a simplifying assumption for the dimension output generation phase - we assume that the
bits set in the fact table are clustered, i.e., the tuples are co-located in sequential disk blocks.
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data placement is not an issue, and processor allocation can be computed on the 
y for each

query plan. We note that we assume an ideal hash function for each stage, such that the load

is distributed evenly across all processors allocated to a stage. Due to space considerations, we

refer the reader to [4] for the full details of the HASH algorithm (an overview is also provided

in [7]), and move on to discuss the cost models for each algorithm.

6 Cost Model

In this section, we develop cost models for the PSJ, BJI, and HASH algorithms. Throughout

this discussion, multiplication and division by the constant value 8 denotes conversion from bits

(the unit of transmission measurement) to bytes (the unit of disk access measurement) and from

bytes to bits, respectively. The notation used in this paper is summarized in Table 1.

COST MODEL FOR PSJ

(1) Local Rowset Generation (LRG)

(1a) Load PI Fragments (LPF): Disk access cost to load 1
Ni

th
of the PIs needed for restriction

in a single processor group (in blocks) is

�
jDij
Ni

�
P

Waij

B

�
, where aij 2 AR. Disk access cost to load

1
Ni

th
of the PIs needed for restriction in the metric data group (in blocks) is

�
jF j
NF

�
P

WaFj

B

�
, where

aFj 2 AR.

(1b) Merge Dimension Rowset Fragments (MDRF): Transmission cost to merge dimension

restriction rowset fragments into a single dimension restriction rowset in a single processor group

is log2Ni � jDij. Transmission cost to merge metric restriction fragments into a single metric

group restriction rowset is log2NF � jF j.

(1c) Distribute Dimension Rowset (DDR): Transmission cost to distribute dimension rowset

to all members of a processor group is log2Ni � jDij. Transmission cost to distribute metric

restriction rowset to all members of a processor group is log2Ni � jF j

(1d) Load JI Fragments (LJF): Disk access cost to load 1
Ni

th
of the JI in a single processor

group (in blocks) is

�
jF j
Ni
�WJI

B

�
.

(1e) Merge Partial Fact Rowsets (MPFR) Transmission cost to merge partial fact rowsets in
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a single processor group is log2Ni � jF j.

(2) Global Rowset Synthesis

(2a) Merge Local Fact Rowsets (MLFR): Transmission cost to merge all local fact rowsets is

log2DJ � jF j.

(2b) Distribute Global Rowset to Groups (DGRG): Transmission cost to distribute the global

rowset to all groups participating in the output phase is log2DP � jF j.

(3)Output Preparation (OP)

(3a) Distribute Global Rowset to Processors (DGRP): Transmission cost to distribute the

global rowset to all processors in a group (in bits) is log2Ni�jF j. Transmission cost to distribute

the global rowset to all processors in the metric group (in bits) is log2NF � jF j.

(3b) Load PIs (LP): Disk access cost to load all PIs involved in output for a single dimension.

Let B represent the PI cost
l
jDij�

P
Waij

B

m
, where aij 2 AP , J represent the JI cost

�
jF j
NF

�
P

WJI

B

�
,

R represent the Rowset cost

�
jF j

NF�8
�
P

WJI

B

�
, and OU represent the Output cost

l
jOj�

P
Waij

B

m
,

where aij 2 AP . If either B < Sm
Ni

or J < Sm
Ni
, i.e., if either the PI or the JI fragment �ts in

memory, then the cost is B + J + R + OU . Otherwise, either the JI or the PI must be loaded

multiple times to perform the join. If B > J , the cost is (B�J)+J +R+OU . Otherwise, when

B < J , the cost is B + (J � B) + R + OU . Disk access cost to load all PIs involved in output

for the metric table (in blocks) is

�
jF j
NF

�
P

WaFj

B

�
+

�
jF j

NF�8

B

�
aFj 2 AP .

(3c) Merge Output Fragments (MOF): Let O represent the output relation, and jOj be its

cardinality. Transmission cost to merge output from single processors into a local group output

on a single processor group is jOj
Ni
�
P
(Waij � 8), where aij 2 AP . Transmission cost to merge

output within the metric processor group is jOj
NF

�
P
(WaFj � 8), where aFj 2 AP .

(3c) Merge Local Output (MLO): Transmission cost to merge output from local groups into

a single �nal output. Like the costs for merging the outputs within a processor group, the costs

here assume serial transmission to a single target jOj � (
P
(Waij � 8) +

P
(WaF j � 8)), where

aij; aFj 2 AP .

COST MODEL FOR BJI

(1) Local Rowset Generation (LRG)

25



(1a) Load BI Fragments (LBF): Disk access cost to load index and bitmaps for 1
Ni

th
of

dimension D needed for processing a single restriction predicate in a single processor group (in

blocks) is dlogPiVi � 1e+
�

Vi
KiNi

�
+f

�
&jVij
8BNi

�
. Disk access cost to load index and bitmaps for 1

Ni

th

of the fact table needed for processing a single restriction predicate in a single processor group

(in blocks) is dlogPFVF � 1e +
�

VF
KFNF

�
+ f

�
&jF j
8BNF

�
. Here, the costs for index access are taken

from [6]

(1b) Merge Dimension Rowset Fragments (MDRF): Transmission cost to merge dimension

restriction rowset fragments into a single dimension restriction rowset in a single processor group

is log2Ni � jDij. Transmission cost to merge metric restriction fragments into a single metric

group restriction rowset is log2NF � jF j.

(1c) Distribute Dimension Rowset (DDR): Transmission cost to distribute dimension rowset

to all members of a processor group is log2Ni � jDij. Transmission cost to distribute metric

restriction rowset to all members of a processor group is log2NF � jF j

(1d) Generate Partial Fact Rowsets (GPFR): Disk access cost to traverse BJI and load appro-

priate RIDs for 1
Ni

th
of a dimension in a single processor group (in blocks) is

�
&jDij
Ni

dlogPiVi � 1e
�
+�

R &jDij
Ni

�
. Here, the costs for index access are taken from [6]

(1e) Merge Partial Fact Rowsets (MPFR): Transmission cost to merge partial fact rowsets

in a single processor group is log2Ni � jF j.

(2) Global Rowset Synthesis

(2a) Merge Local Fact Rowsets (MLFR): Transmission cost to merge all local fact rowsets is

log2DJ � jF j.

(2b) Distribute Global Rowset to Groups (DGRG): Transmission cost to distribute the global

rowset to all groups participating in the output phase is log2DP � jF j.

(3) Output Preparation (OP)

(3a) Distribute Global Rowset to Processors (DGRP): Transmission cost to distribute the

global rowset to all processors in a group (in bits) is log2Ni�jF j. Transmission cost to distribute

the global rowset to all processors in the metric group (in bits) is log2NF � jF j.

(3b) Generate Partial Output Fragments (GPOF): Let O represent the output relation, and
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jOj be its cardinality. Generate dimensional output fragment by loading the fact table blocks for

dimension keys, traversing the B+tree for each key value, and loading the blocks containing the

dimension tuples):
�
jOj � jF j

TBF

�
+
�
jOj �

l
logPi

Vi
Ni
� 1

m�
+ min

�
jOj
Ni
; jDij
TBiNi

�
. Disk access cost

to load metric data for metric output fragments: min
�
jOj
NF

; jF j
TBFNF

�
. Here, the costs for index

access are taken from [6]

(3c)Merge Output Fragments (MOF): Transmission cost to merge output from single proces-

sors into a local group output on a single processor group is jOj
Ni
�
P
(Waij � 8), where aij 2 AP .

Transmission cost to merge output within the metric processor group is jOj
NF
�
P
(WaFj�8), where

aFj 2 AP .

(3d) Merge Local Output (MLO): Transmission cost to merge output from local groups into

a single �nal output. Like the costs for merging the outputs within a processor group, the costs

here assume serial transmission to a single target jOj � (
P
(Waij � 8) +

P
(WaF j � 8)), where

aij; aFj 2 AP .

COST MODEL FOR HASH5

(1) Table Building

(1a) Load dimension data for segment (LDD): Disk access cost to load dimension data

for a segment is the max across all dimensions (where data is loaded in parallel), given the

processor allocation for the segment, and assuming a B+ tree index on restriction attributes:

max i

�
dlogNi

Vi � 1e+
l
jDij�

P
Wai

NiB

m�
, where Di is in the segment.

(1b) Transmit dimensional data (TDD): Transmit dimensional data to appropriate pro-

cessor, according to the partitioning function. Assumes a uniform distribution of data across

disks6, where 1
N th
i

of a group's data is loaded on the appropriate processor in the LDD phase:

�Ni

j=1

l
&jDij � (

P
WaRP � 8)�

&jDij�(
P

WaRP
�8)

Ni

m
, where WaRP 2 AP or WaRP 2 AR.

(2) Tuple Probing

(2) Load probing table (LPT): Let Q be the probing table, i.e., the fact table for the �rst

5We begin our discussion of the costs with the table building phase, and ignore the costs of the preliminary
phase, where the segments and processor allocation are determined. Since the HASH algorithm repeats over
segments, we model the cost of executing a segment in phases (1) and (2), while phase (3) considers the cost of
generating the �nal output.

6This represents a best case scenario, where data loading in parallel minimizes I/O costs.
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segment, or the intermediate result from the preceding segment. Let WQ be the width of Q in

bytes. Then the cost to load the probing table from disk is as follows:
l
jQj�WQ

NB

m
.

(2b) Transmit probing data (TPD): The cost to transmit probing table data to the appro-

priate processor, where frac1N th of a data is loaded on the appropriate processor in the LDD

phase:
l
(jQj �WQ � 8)�

jQj�WQ�8
N

m

(2c) Save intermediate results (SIR): Let I be the set of intermediate results of the segment

to be saved to disk for use in the succeeding segment. Let WI be the width of I in bytes. The

cost to save I to disk is as follows:
l
jIj�WI

NB

m

(3) Generate output

(3a) Transmit �nal output (TFO) Let O represent the set of �nal results. The cost to transmit

the �nal output to a single processor, where 1
N th of a data is located on the appropriate processor

after the TPD phase, is as follows:
l
(jOj �WI � 8)� jOj�WI�8

N

m

7 System Model for Performance Comparison

In this section, we describe our performance analysis model, focusing on the three major com-

ponents: the database, the database server, and the query.

Database Model: Our database is organized in a star schema, i.e., there is a single fact

table and NumDimensions dimension tables. For the purposes of these experiments, we assume

the database schema depicted in Figure 1B. We chose to base our experiments on the TPC-D

benchmark speci�cally because it is a well-known and well-accepted benchmark, designed to

represent a "generic" data warehouse and serve as the basis for comparison tests. As such, we

believe that it provides a suÆcient basis for comparison tests, and that adding other databases

to the empirical study would increase the length of the paper, without signi�cant bene�t.

We assume a static dataset, i.e., there are no updates to the database during the experiments,

and that referential integrity exists from the fact table to each dimension table. The size of the

data in the database is increased or decreased through the use of a ScaleFactor parameter, as is

done in the TPC-D benchmark. A ScaleFactor of s corresponds to a database size of 86s MB.

Database Server Model: Our database server has a shared-nothing architecture consisting of
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NumProcessors processors. Each processor is associated with MemorySize bytes of RAM. The

processor group assignment and data placement are static, i.e., the assignments are made prior to

the start of the experiments (according to the scheme outlined for each type of physical design)

and remain constant over the course of the experiments.

Query Model: Queries, in our model, are characterized in terms of four basic parameters:

NumJoinDimension, Selectivityi, NumRestrictions and NumProjections. The NumJoinDimen-

sion parameter denotes the number of dimensions that will participate in the star join query. The

actual dimension instances that will be picked are chosen randomly from among the set of dimen-

sions. The selectivity of a dimension i in the set of join dimensions of a query, i.e., the fraction of

records returned based on an equality based restriction predicate, is denoted by Selectivityi, and

is drawn from a uniform distribution in the range [MinSelectivity,MaxSelectivity]. The selectivity

of the metric table, denoted by SelectivityF , is generated in a similar fashion. The number of

restriction predicates in a query, denoted by NumRestrictions, is generated from a truncated

normal distribution in the range [MinNumRestrictions,MaxNumRestrictions], where MinNum-

Restrictions is 0 and MaxNumRestrictions is the total number of attributes in the dimensions

involved in a given query, with a mean of MeanNumRestrictions and a standard deviation of

StdNumRestrictions. A set of NumRestrictions attributes, denoted by RestrictionSet, is then

selected randomly from among the attributes of the set of join dimensions and the metric at-

tributes. The number of projection attributes, denoted by NumProjections, is generated from

a truncated normal distribution in the range [MinNumProjections,MaxNumProjections], where

MinNumProjections is 1 and MaxNumProjections is the total number of attributes in the dimen-

sions involved in a given query, with a mean of MeanNumProjections and a standard deviation

of StdNumProjections. A set of NumProjections attributes, denoted by ProjectionSet, is then

selected randomly from among the attributes of the set of join dimensions and the metric at-

tributes.
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8 Results of Performance Comparison

After discussing the performance metrics, we present the results of the experimental study of the

Parallel Star Join algorithm, the Bitmapped Join Index Algorithm, and the Pipelined Hash Join

algorithm. We begin with a discussion of our two primary performance metrics:

Response Time in Block Access (RTBA): RTBA represents the response time of a query

measured in units of block accesses. As explained in Section 6, I/O costs overwhelmingly dom-

inate overall query processing costs, and so we have chosen to characterize response times with

the RTBA measure. RTBA is computed using the cost model for the PSJ algorithm as outlined

in detail in Section 6 and demonstrated pictorially in Figure 5 (in this �gure the RTBA of the

query is t19 � t0). The same �gure also illustrates the cost model for the BJI algorithm, though

the steps have di�erent cost attributes. The costs incurred by the various steps of the three

phases of the PSJ and BJI algorithms as well as by the two phases (per segment) of the HASH

algorithm are described in Section 6. Note that whereas RTBA provides a good indication of the

overall response times, it does not take into account the e�ects of sequential vs. random I/O.

Aggregate Data Transmission (ADT) cost: ADT represents the total number of blocks of

data transmitted between all the processors in the course of performing a query. We initially

considered a combined metric that would consider both disk costs as well as network costs in a

single metric. Such a metric would be possible if I/O and transmission steps were guaranteed not

to overlap at all. However, our algorithm allows for the overlap of I/O and data transmission,

e.g., when a processor completes the Load PI Fragments step of the PSJ algorithm, it need not

wait for all other processors is the system to complete this step before sending its results on for

the Merge Dimension Rowset Fragments phase.

All curves presented in this section exhibit mean values that have relative half-widths about

the mean of less than 10% at the 90% con�dence level. Each experiment was run for 400

queries. We only discuss statistically signi�cant di�erences. Table 2 shows the values of the

parameters used in our experiments. We next present the results of scalabilty experiments

comparing PSJ, BJI, and HASH. Due to space considerations, we are unable to include the

results of the corresponding speedup experiments. For these results, the reader is referred to [7].
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Parameter Value Parameter Value

Num Dimensions 4 MaxSelectivity 0.5

ScaleFactor 20 to 1280 MeanNumRestrictions 0.25

NumProcessors 8 to 1024 StdNumRestrictions 0.01

MemorySize 8MB to 1024 MB MeanNumProjections 0.5

BlockSize 512KB StdNumProjections 0.01

MinSelectivity 0.1

Table 2: Table of Parameter Values

8.1 Scalability Experiments

We explore the scalability properties of PSJ, BJI and HASH. As is common in such experiments,

we explore how the cost curves scale as system resources are increased, with a concomitant

increase in warehouse size. We report on scalability, in this paper, with respect to increasing

processor counts. For each experiment, we measure how RTBA and ADT costs scale as more

processors are added to the system. Simultaneously, the size of the warehouse is increased at

the same rate by increasing the scale factor of the database. Speci�cally, we vary the number

of processors between 8 and 1024 with associated scale factor variations from 10 through 1280.

Note that a scale factor of 10 represents a warehouse of size 860 MB while scale factor of 1280

represents a 1.4 TB warehouse.

Each plot for PSJ and HASH in the next two �gures corresponds to an experiment assuming

a speci�c amount of memory per processor { the speci�c values of the memory size parameter

are shown in the caption of the �gure. The case for BJI is somewhat di�erent. As discussed

earlier in Section 4, the BJI algorithm needs a certain minimum amount of memory to work well.

This minimum memory size is given in Section 4. For the BJI experiments, we have assumed

that each processor has the requisite memory available to perform its local join operation using

BJIs. In the experiments conducted here, this memory requirement varies between 1.36 MB (for

joining the TIME dimension to the fact table with a ScaleFactor of 20 and a Processor Count of

1024) and 807 MB (for joining the CUSTOMER dimension to the the fact table with aScaleFactor

of 1280 and a Processor Count of 64).

RTBA Results: Figure 6[A] shows RTBA curves for PSJ and HASH corresponding to memory

sizes of 16 MB and 64 MB, as well as a curve for BJI join. As explained in the previous paragraph,
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BJI join needs a requisite amount of memory to work. In the schema used in these experiments

(outlined in Figure 1B), the largest dimension is the CUSTOMER table. At each processor housing

the CUSTOMER dimension, the maximum amount of memory required turns out to be 807 MB.

Note that this memory requirement is much larger than the amounts provided to the PSJ and

HASH algorithms.

We �rst remark on the general properties of the curves. The curves rise as the scale factor

and the number of processors increase. In other words, PSJ, BJI, and HASH have less than

perfect scaling. The reasons for this behavior are easy to identify. Let us �rst examine the PSJ

algorithm. In PSJ, as can be easily seen from the cost model, the output preparation (OP) phase

cost dominates the other costs combined. In this phase, for a given output column (i.e., in the

context of a single participating group), the relevant projection index (PI) is scanned at each

processor in the group. Recall that the guiding principle of the PSJ algorithm was that joins

should be performed with at most a single scan of the JI across all the processors in a group.

The motivation for this of course is that JIs are much, much larger than PIs and we wanted to

minimize the number of JI scans required. To achieve this though, one would potentially need

to scan the PI several times (unless the entire PI could be pinned in memory). It can be easily

shown that in the worst case, a PI may need to be scanned
Sj
M

number of times at each processor

in the group, where Sj is the size of the JI fragment at each processor and M is the memory

size. This translates to an I/O cost of
Sj
M
� Sb where Sb is the size of the PI. As the number

of processors is increased, and the size of the warehouse increases proportionally, Sj remains

constant while Sb increases in proportion to the size increase. Put another way, since the PIs

are replicated at all processors, adding processors has no impact on PI scan cost, which keeps

on increasing. As a result, there is an increase in access cost when processors are added.

The increase in BJI cost is due to the output preparation costs that do not scale linearly.

Each processor in a dimension group must scan all the qualifying tuples of the fact table (i.e., all

the tuples indicated by the global fact table rowset) to �nd the dimension keys needed to produce

dimensional output fragments, regardless of the number of processors in the group. Since this

cost cannot be distributed over all processors in a group, it results in sub-linear scaling.
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The increase in HASH cost is also simple to explain. Because the sum of the sizes of par-

ticipating dimension relations is larger than the aggregate size of memory, the query must be

divided into multiple pipeline segments. At the end of each segment, the intermediate results

must be saved to disk, and then reloaded (as the probing table) at the beginning of the subse-

quent segment. These results must be written out to disk from the processors serving the �nal

relation of the segment, i.e., this I/O cost cannot be spread across all processors in the system.

This results in the sub-linear scaling behavior we see for HASH in Figure 6[A].

Now we turn our attention to comparing the PSJ, BJI, and HASH cost curves. The �rst

observation, of course, is that PSJ costs are an order of magnitude lower than BJI and HASH

costs (note that the Y-axis is plotted in log scale). This is due to the fact that our data placement

exploits the natural partitionability of star schemas and we only access data that is needed.

In contrast, both BJI and HASH must access entire tuples, even though only a portion of

the attributes may be needed. This leads to higher costs for BJI and HASH over PSJ. BJI costs

are higher than HASH because each processor must scan the entire fact table for dimension keys

in the output preparation phase (as mentioned at the beginning of this section), while HASH

spreads the cost of scanning the fact table (as well as the cost of loading the new probing table

for each segment) across all processors.

Another notable observation is that at larger memory sizes, PSJ approaches \near-perfect"

scalability. For instance, at memory size of 1024 MB, the PSJ curve is almost horizontal. This

is due to the fact that greater the memory size, larger the PI that can be pinned in memory (as

explained a few paragraphs ago), and consequently lower the PI scan cost in the OP phase.
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ADT Results: Because for PSJ, BJI, and HASH, ADT costs are independent of the memory

size (denoted by Sm in the cost functions in Section 6) parameter, we only report the results

of a single ADT experiment. Figure 6[B] shows curves for transmission costs for both HASH

and PSJ/BJI. We note that the transmission costs for BJI are exactly the same as those of PSJ,

so the curves overlap. Hence, the remainder of this section, we will compare PSJ and HASH

transmission costs, with the understanding that PSJ and BJI costs are exactly the same.

We �rst note that both HASH and PSJ exhibit imperfect scalability, i.e., transmission volumes

increase at a greater rate than the rate of increase of the warehouse volume. In PSJ, this occurs as

increasing the size of the warehouse results in greater amounts of data that must be transmitted

across groups. As the size of the warehouse and the number of processors increase, the number

of groups remain the same but processors per group increase. Since the processors in a group

exchange rowsets in order to generate a group result (as described in Section 3, more rowsets

must be transmitted to generate a result than would be the case with fewer processors, resulting

in sub-linear transmission costs.

In HASH, the reasons for the sub-linear scalability of transmission costs are similar to those

of PSJ. As in PSJ, as the size of the warehouse and the number of processors increase, the

number of joins per segment remain the same but number of processors allocated to processing a

particular group within a segment increases. In the table-building phase, each processor within a

group ofNi processors loads
1
N th
i

of the data for dimensionDi, hashes each tuple, and transmits it

to the appropriate processor. Here, only 1
Ni

of those tuples will be co-located on the appropriate

processor at load time, i.e., Ni�1
Ni

of the tuples must be transmitted to other processors. Here,

as the number of processors increases, more tuples must be transmitted to other processors at

table-building time. This results in sub-linear scaling of HASH transmission costs.

We now compare the relative magnitudes of the HASH and PSJ curves. HASH has sub-

stantially higher transmission costs than PSJ { this is because HASH needs to exchange actual

data tuples within groups at table-building time, and across groups within a segment during the

probing phase. In contrast, PSJ represents intermediate results with a smaller rowset structure,

resulting in lower overall transmission costs.
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9 Related Work

The research related to our work includes the areas of data warehousing/OLAP and parallel

database processing. For this reason, we review related work in both areas, as well as the work

that combines the two �elds. We will brie
y review the work related to query performance since

it is most relevant to the work in this paper. Two main approaches have been proposed to im-

prove query performance (i.e., response times) in OLAP systems: precomputation strategies and

indexing strategies. Precomputation strategies involve deriving tables that store precomputed

answers to queries. Such tables are often referred to as summary tables or materialized views [3].

There is a tradeo� between response times and the storage requirements of precomputed data.

Determining how much data to precompute is an issue that has been addressed in [14]. The

work in indexing strategies includes traditional approaches, such as tree-based indexing, as well

as non-traditional approaches, such as positional indexing, which has been proposed in [22, 6].

As stated earlier, the physical design strategy underlying PSJ exploits many of these approaches

in the context of the Star Schema.

A large body of work exists in applying parallel processing techniques to relational database

systems (e.g., [8, 26, 28, 25, 19, 1]). From this work has emerged the notion that highly-parallel,

shared-nothing architectures can yield much better performance than equivalent closely-coupled

systems [24, 17, 9]. Indeed, may commercial database vendors have capitalized on this fact [10].

Our focus on shared-nothing systems is also motivated by this fact. Various methods have been

developed over the years to distribute data across sites, including hash- or range-partitioning

based on a single key. This approach is supported by a number of database vendors (e.g., Oracle,

Informix and NCR).

A related body of work considers shared disk or shared memory architectures, e.g., [4, 18, 5].

This work considers hash-based join techniques, and the e�ects of pipelining and segmenting

right-deep trees. While this work has produced several good techniques, these schemes are

unlikely to be widely used in practice due primarily to two considerations. The �rst consideration

is cost: shared-resource architectures require expensive, specially designed parallel machines.

Adding new components (e.g., processors) to such machines requires purchasing components
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speci�cally designed for the machine, rather than less-expensive commodity components. The

second consideration is scalability and resource contention. Here, all processing units access the

same pool of shared resources { additional processing units will clearly increase contention for

the pool of shared resources. With the exception of [16], whose major thrust is eÆcient parallel

hardware to support warehousing, we were able to �nd very little in the published (academic)

literature related to parallelism in data warehouses. However, there are several DBMS vendors

that claim to support parallel warehousing products to various degrees. We now focus on some

of these commercial products. In [2], the architecture and design of the Teradata system is

outlined. This is the most directly related work to our own that we were able to �nd, and there

are two signi�cant di�erences. First, Teradata relies on a variant of the hash join algorithm, to

which we compare our algorithms in this paper. Second, Teradata assumes a shared-memory

environment, while we consider a shared-nothing architecture. In [11], the parallel processing

techniques used in the Red Brick Warehouse product are described. Intended for symmetric

multiprocessing platforms (SMP), Red Brick Warehouse utilizes STAR indexes to perform single-

pass joins of 2 to 10 tables. A STAR index is a proprietary multidimensional join index that

allows more than two tables to be joined in a single operation [23]. A parallel version of this

algorithm performs horizontal partitioning so that a single star-join is allocated among 2 to

32 processors. More recently, Red Brick has introduced the Red Brick Warehouse xPP. This

product is designed to take advantage of multiple nodes in massively parallel processing (MPP)

architectures. In [13], the parallel processing model used in the Oracle Parallel Warehouse Server

is described. This product is based on a processing model that incorporates both horizontal and

pipelined parallelism.

A potential limitation of the techniques mentioned above is that they rely primarily on tra-

ditional horizontal partitioning methods to achieve scalability. Whereas such partitioning does

not fully exploit the dimensionality of the data in a data warehouse, the approach outlined in

this paper attempts to exploit the multidimensionality inherent in a warehouse environment. It

exploits the \natural" task partitioning made possible by the star schema while allowing tradi-

tional horizontal partitioning to be used to achieve much greater eÆciency in query processing
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than current techniques can provide.

10 Conclusion

In this paper we have presented a framework for applying parallel processing to OLAP systems.

Our physical design strategy takes advantage of the eÆcient partitioning suggested by the star

schema representation of a data warehouse. Speci�cally, we proposed a declustering strategy

which incorporates both task and data partitioning. We also presented the Parallel Star Join

Algorithm, which provides a means to perform a star join in parallel using eÆcient operations

involving only rowsets and projection columns. Based on a detailed cost model we determined

the response times achievable for star join queries and using a simulated environment evaluated

the performance of our Parallel Star Join algorithm.

We compare the performance of both PSJ to approaches based on bitmapped join indexes, as

well as hash structures. We develop cost models for I/O usage and transmission costs for all three

algorithms. Comparative results show that the overall I/O costs achievable with the Parallel Star

Join (PSJ) are dramatically lower than those achieved with the Pipelined Hash Join (HASH),

which in turn outperforms the Bitmapped Join Index (BJI) based join algorithm. In terms of

transmission costs, PSJ and BJI, which have identical transmission costs, outperform HASH by

an order of magnitude. We believe that this indicates that physical design strategy advocated

in this paper and the associated join algorithm have a big part to play in warehouses, in spite of

the fact that the TPC-D benchmark explicitly disallows vertical partitioning. To highlight this

fact, our examples and experiments in this paper were run based on the TPC-D schema.

The approach we have presented is just the �rst of many steps, leaving open a number of

issues including further re�nement of the Parallel Star Join Algorithm, implementation of the

algorithm, and the development of algorithms for other OLAP operations such as slice, dice, roll-

up, and drill-down to exploit parallelism, as well as experiments in commercial environments.
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