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The PROMPT Real�Time Commit Protocol

Jayant R� Haritsa� Krithi Ramamritham� Ramesh Gupta

Abstract�We investigate the performance implications of
providing transaction atomicity for �rm�deadline real�time
applications operating on distributed data� Using a detailed
simulation model� the real�time performance of a represen�
tative set of classical transaction commit protocols is evalu�
ated� The experimental results show that data distribution
has a signi�cant in�uence on real�time performance and that
the choice of commit protocol clearly a�ects the magnitude
of this in�uence�
We also propose and evaluate a new commit protocol�

PROMPT �Permits Reading Of Modi�ed Prepared�data for
Timeliness�� that is speci�cally designed for the real�time
domain� PROMPT allows transactions to 	optimistically

borrow� in a controlled manner� the updated data of trans�
actions currently in their commit phase� This controlled
borrowing reduces the data inaccessibility and the priority
inversion that is inherent in distributed real�time commit
processing� A simulation�based evaluation shows PROMPT
to be highly successful� as compared to the classical commit
protocols� in minimizing the number of missed transaction
deadlines� In fact� its performance is close to the best on�
line performance that could be achieved using the optimistic
lending approach� Further� it is easy to implement and in�
corporate in current database system software�
Finally� PROMPT is compared against an alternative pri�

ority inheritance�based approach to addressing priority in�
version during commit processing� The results indicate that
priority inheritance does not provide tangible performance
bene�ts�

Keywords� Distributed Real�Time Database� Commit
Protocol� Two Phase Commit� Three Phase Commit� Prior�
ity Inheritance� Performance Evaluation�

I� Introduction

M
ANY real�time database applications are inherently
distributed in nature ����� ����� These include the in�

telligent network services database described in ��	� and the
mobile telecommunication system discussed in ��
�� More
recent applications include the multitude of directory� data�
feed and electronic commerce services that have become
available on the World Wide Web� However� although real�
time research has been underway for close to a decade now�
the focus has been primarily on centralized database sys�
tems� In comparison� distributed real�time database sys�
tems �DRTDBS� have received little attention� making it
di
cult for their designers to make informed choices�
Real�time database systems operating on distributed

data have to contend with the well�known complexities of
supporting transaction ACID semantics in the distributed
environment ���� ����� While the issue of designing real�time
protocols to ensure distributed transaction serializability
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has been considered to some extent �for example� ����� �����
����� ������ very little work has been done with regard to the
equally important issue of ensuring distributed transaction
atomicity� We address this lacuna here�

A� Commit Protocols

Distributed database systems implement a transaction
commit protocol to ensure transaction atomicity� Over the
last two decades� a variety of commit protocols have been
proposed �for non�real�time database systems� by database
researchers �see ���� ��
�� ���� for surveys�� These include
the classical Two Phase Commit ��PC� protocol ��
�� ��	��
its variations such as Presumed Commit �PC� and Pre�
sumed Abort �PA� ����� ����� and Three Phase Commit
��PC� ����� To achieve their functionality� these commit
protocols typically require exchange of multiple messages�
in multiple phases� between the participating sites where
the distributed transaction executed� In addition� sev�
eral log records are generated� some of which have to be
�forced�� that is� �ushed to disk immediately in a syn�
chronous manner� Due to this series of synchronous mes�
sage and logging costs� commit processing can signi�cantly
increase the execution times of transactions ����� ����� ��	��
This is especially problematic in the real�time context since
it has a direct adverse e�ect on the system�s ability to meet
transaction timing constraints� Therefore� the choice of
commit protocol is an important design decision for DRT�
DBS�

The few papers in the literature that have tried to ad�
dress this issue ���� ����� ��
� have required either relaxing
the traditional notion of atomicity or strict resource alloca�
tion and resource performance guarantees from the system�
Instead of resorting to such fundamental alterations of the
standard distributed DBMS framework� we take a di�er�
ent approach in this paper � we attempt to design high�
performance real�time commit protocols by incorporating
novel protocol features� The advantage of this approach is
that it lends itself to easy integration with current appli�
cation and system software�

Our study is conducted in the context of real�time ap�
plications that impose ��rm deadlines� ���� for transaction
completion� For such applications� completing a transac�
tion after its deadline has expired is of no utility and may
even be harmful� Therefore� transactions that miss their
deadlines are �killed�� that is� immediately aborted and
discarded from the system without being executed to com�
pletion� Accordingly� the performance metric is KillPer�
cent� the steady�state percentage of killed transactions��

�Or� equivalently� the percentage of missed deadlines�
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B� Contributions

For the above real�time context� the main contributions
of this paper are the following�
First� we precisely de�ne the semantics of �rm deadlines

in the DRTDBS environment�
Second� we investigate the performance implications of

supporting transaction atomicity in a DRTDBS� Using a
detailed simulation model� we pro�le the KillPercent per�
formance of a representative set of classical commit proto�
cols� including �PC� PA� PC and �PC� To the best of our
knowledge� this is the �rst quantitative evaluation of these
protocols in the real�time environment�
Third� we propose and evaluate a new commit pro�

tocol called PROMPT �Permits Reading Of Modi�ed
Prepared�data for Timeliness�� which is designed speci��
cally for DRTDBS� The main feature of PROMPT is that
it allows transactions to �optimistically� borrow the up�
dated data of transactions currently in their commit phase�
This borrowing speeds up transaction execution by reduc�
ing the data inaccessibility and the priority inversion that
is� as explained later� inherent in distributed commit pro�
cessing� At the same time� the borrowing is controlled to
ensure that cascading aborts� usually associated with the
use of dirty �i�e�� modi�ed and uncommitted� data� do not
occur� PROMPT also incorporates several other features
that cater to the special characteristics of the real�time en�
vironment� Finally� PROMPT is easy to implement and in�
corporate in current systems� and can be integrated� often
synergistically� with many of the optimizations proposed
earlier� including industry standard protocols such as PC
and PA�

C� Organization

The remainder of this paper is organized as follows�
The performance framework of our study is outlined in
Section II� A representative set of commit protocols de�
signed for traditional �non�real�time� databases and their
drawbacks in DRTDBS environments are described in Sec�
tion III� The semantics of �rm deadlines in distributed
database environments are presented in Section IV� Section
V introduces PROMPT� our new commit protocol designed
speci�cally for distributed real�time transactions� The per�
formance model is described in Section VI and the results
of the simulation experiments� which compare PROMPT
with the traditional commit protocols� are highlighted in
Section VII� A few options in PROMPT�s design are ex�
plored in Section VIII� An alternative priority inheritance�
based approach for reducing the e�ect of priority inver�
sion during commit processing is presented and evaluated
against PROMPT in Section IX� Related work on real�
time commit protocols is reviewed in Section X� Finally�
in Section XI� we present the conclusions of our study�

II� Performance Framework

From a performance perspective� commit protocols can
be compared with respect to the following issues�
�� E�ect on Normal Processing� This refers to the ex�
tent to which the commit protocol a�ects the normal �no�

failure� distributed transaction processing performance�
That is� how expensive is it to provide atomicity using this
protocol�
�� Resilience to Failures� When a failure occurs in a
distributed system� ideally� transaction processing in the
rest of the system should not be a�ected during the recov�
ery of the failed component� With most commit protocols�
however� failures can lead to transaction processing grind�
ing to a halt �as explained in Section III�D�� and they are
therefore termed as �blocking protocols��
To ensure that such major disruptions do not occur� e�orts
have been made to design �non�blocking commit proto�
cols�� These protocols� in the event of a site failure� permit
transactions that had cohorts executing at the failed site
to terminate at the operational sites without waiting for
the failed site to recover ����� ������ To achieve their func�
tionality� however� they usually incur additional messages
and forced�log�writes than their blocking counterparts�
In general� �two�phase� commit protocols are susceptible
to blocking whereas �three�phase� commit protocols are
non�blocking�
�� Speed of Recovery� This refers to the time required
for the database to be recovered to a consistent state when
the failed site comes back up after a crash� That is� how
long does it take before transaction processing can com�
mence again in a recovering site�

Of the three issues highlighted above� the design emphasis
of most commit protocols has been on the �rst two �e�ect
on normal processing and resilience to failures� since they
directly a�ect ongoing transaction processing� In compar�
ison� the last issue �speed of recovery� appears less critical
for two reasons� First� failure durations are usually orders
of magnitude larger than recovery times� Second� failures
are usually rare enough that we do not expect to see a
di�erence in average performance among the protocols be�
cause of one commit protocol having a faster recovery time
than the other� Based on this viewpoint� our focus here also
is on the mechanisms required during normal �no�failure�
operation to provide for recoverability and resilience to fail�
ures� and not on the post�failure recovery process�

III� Traditional Distributed Commit Protocols

We adopt the common �subtransaction model� �
� of dis�
tributed transaction execution in our study� In this model�
there is one process� called the master� which is executed
at the site where the transaction is submitted� and a set of
other processes� called cohorts� which execute on behalf of
the transaction at the various sites that are accessed by the
transaction�� Cohorts are created by the master sending a
startwork message to the local transaction manager at
that site� This message includes the work to be done at

�It is impossible to design commit protocols that are completely
non�blocking to both site and link failures 

�� However� the number
of simultaneous failures that can be tolerated before blocking arises
depends on the protocol design�
�In the most general case� each of the cohorts may itself spawn o�

subtransactions at other sites� leading to the �tree of processes� trans�
action structure of System R� 
�� � for simplicity� we only consider a
two�level tree here�
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that site and is passed on to the cohort� Each cohort sends
a workdone message to the master after it has completed
its assigned data processing work� and the master initiates
the commit protocol �only� after it has received this mes�
sage from all its cohorts�
For the above transaction execution model� a variety of

commit protocols have been devised� most of which are
based on the classical �PC protocol ��
�� In our study� we
focus on the �PC� PA� PC and �PC protocols since these
protocols are well�established and have received the most
attention in the literature� We brie�y describe these proto�
cols in the remainder of this section � complete descriptions
are available in ����� ����� ����� For ease of exposition� the
following notation is used in the sequel � �small caps

font� for messages� �typewriter font� for log records�
and �sans serif font� for transaction states�

A� Two Phase Commit Protocol

The two�phase commit ��PC� protocol� as suggested
by its name� operates in two phases� In the �rst phase�
called the �voting phase�� the master reaches a global de�
cision �commit or abort� based on the local decisions of the
cohorts� In the second phase� called the �decision phase��
the master conveys this decision to the cohorts� For its
successful execution� the protocol assumes that each co�
hort of a transaction is able to provisionally perform the
actions of the transaction in such a way that they can be
undone if the transaction is eventually aborted� This is
usually implemented by using logging mechanisms such as
WAL �write�ahead�logging� ��
�� which maintain sequen�
tial histories of transaction actions in stable storage� The
protocol also assumes that� if necessary� log records can
be force�written� that is� written synchronously to stable
storage�
After receiving the workdone message from all the

cohorts participating in the distributed execution of the
transaction� the master initiates the �rst phase of the com�
mit protocol by sending prepare �to commit� messages
in parallel to all its cohorts� Each cohort that is ready to
commit �rst force�writes a prepare log record to its local
stable storage and then sends a yes vote to the master� At
this stage� the cohort has entered a prepared state wherein
it cannot unilaterally commit or abort the transaction but
has to wait for the �nal decision from the master� On the
other hand� each cohort that decides to abort force�writes
an abort log record and sends a no vote to the master�
Since a no vote acts like a veto� the cohort is permitted to
unilaterally abort the transaction without waiting for the
decision from the master�
After the master receives votes from all its cohorts� the

second phase of the protocol is initiated� If all the votes
are yes� the master moves to a committing state by force�
writing a commit log record and sending commit messages
to all its cohorts� Each cohort� upon receiving the com�
mit message� moves to the committing state� force�writes a
commit log record� and sends an ack message to the mas�
ter�
On the other hand� if the master receives even one no

vote� it moves to the aborting state by force�writing an
abort log record and sends abort messages to those co�
horts that are in the prepared state� These cohorts� after
receiving the abort message� move to the aborting state�
force�write an abort log record and send an ack message
to the master�
Finally� the master� after receiving acks from all the

prepared cohorts� writes an end log record and then �for�
gets� the transaction �by removing from virtual memory
all information associated with the transaction��

B� Presumed Abort

As described above� the �PC protocol requires transmis�
sion of several messages and writing or force�writing of sev�
eral log records� A variant of the �PC protocol� called
presumed abort �PA� ����� tries to reduce these mes�
sage and logging overheads by requiring all participants to
follow� during failure recovery� an �in the no�information
case� abort� rule� That is� if after coming up from a fail�
ure a site queries the master about the �nal outcome of
a transaction and �nds no information available with the
master� the transaction is �correctly� assumed to have been
aborted� With this assumption� it is not necessary for co�
horts to send acks for abort messages from the master�
or to force�write the abort record to the log� It is also not
necessary for an aborting master to force�write the abort

log record or to write an end log record�
In short� the PA protocol behaves identically to �PC

for committing transactions� but has reduced message and
logging overheads for aborted transactions�

C� Presumed Commit

Another variant of �PC� called presumed commit
�PC� ����� is based on the observation that� in general� the
number of committed transactions is much more than the
number of aborted transactions� In PC� the overheads are
reduced for committing transactions� rather than aborted
transactions� by requiring all participants to follow� during
failure recovery� an �in the no�information case� commit�
rule� In this scheme� cohorts do not send acks for a commit
decision sent from the master� and also do not force�write
the commit log record� In addition� the master does not
write an end log record� On the down side� however� the
master is required to force�write a collecting log record
before initiating the two�phase protocol� This log record
contains the names of all the cohorts involved in executing
that transaction�
The above optimizations of �PC have been implemented

in a number of database products and standards �����

D� Three Phase Commit

A fundamental problem with all of the above protocols
is that cohorts may become blocked in the event of a site
failure and remain blocked until the failed site recovers�
For example� if the master fails after initiating the proto�
col but before conveying the decision to its cohorts� these
cohorts will become blocked and remain so until the mas�
ter recovers and informs them of the �nal decision� During
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the blocked period� the cohorts may continue to hold sys�
tem resources such as locks on data items� making these
unavailable to other transactions� These transactions in
turn become blocked waiting for the resources to be relin�
quished� resulting in �cascading blocking�� So� if the dura�
tion of the blocked period is signi�cant� the outcome could
be a major disruption of transaction processing activity�
To address the blocking problem� a three phase com�

mit ��PC� protocol was proposed in ����� This protocol
achieves a non�blocking capability by inserting an extra
phase� called the �precommit phase�� in between the two
phases of the �PC protocol� In the precommit phase� a
preliminary decision is reached regarding the fate of the
transaction� The information made available to the partic�
ipating sites as a result of this preliminary decision allows
a global decision to be made despite a subsequent failure
of the master site� Note� however� that the price of gaining
non�blocking functionality is an increase in the communi�
cation and logging overheads since� �a� there is an extra
round of message exchange between the master and the
cohorts� and �b� both the master and the cohorts have to
force�write additional log records in the precommit phase�

E� Master and Cohort Execution Phases

As described above� commit protocols typically operate
in two or three phases� For ease of exposition� we will sim�
ilarly divide the overall execution of masters �which repre�
sent the entire transaction�� and of individual cohorts� into
phases�
A master�s execution is composed of two phases� the

�data phase� and the �commit phase�� The data phase
begins with the sending of the �rst startwork message
and ends when all the workdone messages have been re�
ceived� that is� it captures the data processing period� The
commit phase begins with the sending of the prepare mes�
sages and ends when the transaction is forgotten� that is�
it captures the commit processing period�
A cohort�s execution is composed of three phases� the

�data phase�� the �commit phase� and the �wait phase��
In the data phase the cohort carries out its locally assigned
data processing � it begins with the receipt of the start�
work message from the master and ends with the sending
of the workdone message to the master� The commit
phase begins with the cohort receiving the prepare mes�
sage and ends with the last commit�related action taken
by the cohort �this is a function of the commit protocol
in use�� The wait phase denotes the time period in be�
tween the data phase and the commit phase� that is� the
time period between sending the workdone message and
receiving the prepare message�

F� Inadequacies in the DRTDBS Environment

The commit protocols described in this section were de�
signed for traditional database systems where transaction
throughput or average response time is usually the primary
performance metric� With respect to meeting ��rm� real�
time objectives� however� they fail on two related counts�
First� by making prepared data inaccessible� they increase

transaction blocking times and therefore have an adverse
impact on the number of killed transactions� Second� pri�
oritized scheduling policies are typically used in RTDBS to
minimize the number of killed transactions� These com�
mit protocols� however� do not take transaction priorities
into account� This may result in high priority transac�
tions being blocked by low priority transactions� a phe�
nomenon known as priority inversion in the real�time lit�
erature ��
�� Priority inversion can cause the a�ected high�
priority transactions to miss their deadlines and is clearly
undesirable�
Priority inversion is usually prevented by resolving all

con�icts in favor of transactions with higher priorities� At
the CPU� for example� a scheduling policy such as Priority
Pre�emptive Resume ensures the absence of priority inver�
sion� Removing priority inversion in the commit protocol�
however� is not fully feasible� This is because� once a co�
hort reaches the prepared state� it has to retain all its update
data locks until it receives the global decision from the mas�
ter � this retention is fundamentally necessary to maintain
atomicity� Therefore� if a high priority transaction requests
access to a data item that is locked by a �prepared cohort�
of lower priority� it is not possible to forcibly obtain ac�
cess by preempting the low priority cohort� In this sense�
the commit phase in a DRTDBS is inherently susceptible
to priority inversion� More importantly� the priority inver�
sion is not bounded since the time duration that a cohort is
in the prepared state can be arbitrarily long �for example�
due to network delays�� If the inversion period is large� it
may have a signi�cant negative e�ect on performance�
It is important to note that this �prepared data block�

ing� is distinct from the �decision blocking� �because of
failures� that was discussed in Section III�D� That is� in all
the commit protocols� including �PC� transactions can be
a�ected by prepared data blocking� In fact� �PC�s strat�
egy for removing decision blocking increases the duration
of prepared data blocking� Moreover� such data blocking
occurs during normal processing whereas decision blocking
only occurs during failure situations�
To address the above�mentioned drawbacks �prepared

data inaccessibility and priority inversion� of the classical
commit protocols� we have designed a new commit proto�
col called PROMPT� The PROMPT design is based on a
speci�c semantics of �rm deadlines in DRTDBS� de�ned in
the following section � the description of PROMPT itself
is deferred to Section V�

IV� Firm Deadline Semantics in DRTDBS

The semantics of �rm deadlines is that a transaction
should be either committed before its deadline or be killed
when the deadline expires� To implement this notion in
a distributed RTDBS� ideally the master and all the co�
horts of a successfully executed transaction should commit
the transaction before the deadline expires or all of them
should abort immediately upon deadline expiry� In prac�
tice� however� it is impossible to provide such guarantees
because of the arbitrary message delays and the possibil�
ity of failures ���� To avoid inconsistencies in such cases�
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we de�ne the �rm deadline semantics in the distributed
environment as follows�

De�nition� A distributed �rm�deadline real�time transac�
tion is said to be committed if the master has reached the
commit decision �that is� forced the commit log record to
the disk� before the expiry of the deadline at its site� This
de�nition applies irrespective of whether the cohorts have
also received and recorded the commit decision by the dead�
line�

To ensure transaction atomicity with the above de�nition�
we require prepared cohorts that receive the �nal decision
after the local expiry of the deadline to still implement this
decision� Note that this is consistent with the intuitive no�
tion of �rm deadlines since all that happens is that access
to prepared data is prevented even beyond the deadline
until the decision is received by the cohort� other transac�
tions which would normally expect the data to be released
by the deadline only experience a delay� We expect that
many real�time database applications� especially those re�
lated to electronic commerce �e�g�� electronic auctions�� will
subscribe to these semantics�
Typically� the master is responsible for returning the re�

sults of a transaction to the invoker of the transaction�
From the above discussion� it is clear that the semantics
we prescribe are such that� if a transaction commits� its re�
sults will begin to be output before the deadline� Further�
the problem of delayed access to data� even after the ex�
piry of the deadline of the cohort holding these data items�
applies primarily to the classical protocols � the e�ect is
considerably reduced with PROMPT� as discussed in the
following section�

V� The PROMPT Real�Time Commit Protocol

The main feature of our new PROMPT �Permits Read�
ing Of Modi�ed Prepared�data for Timeliness� commit pro�
tocol is that transactions requesting data items held by
other transactions in the prepared state are allowed to
access this data�� That is� prepared cohorts lend their
uncommitted data to concurrently executing transactions
�without� of course� releasing the update locks�� The me�
chanics of the interactions between such �lenders� and their
associated �borrowers� are captured in the following three
scenarios� only one of which will occur for each lending�

�� Lender Receives Decision Before Borrower Com�
pletes Data Processing� Here� the lending cohort re�
ceives its global decision before the borrowing cohort has
completed its local data processing� If the global decision
is to commit� the lending cohort completes in the normal
fashion� On the other hand� if the global decision is to
abort� the lender is aborted in the normal fashion� In ad�
dition� the borrower is also aborted since it has utilized
dirty data�
�� Borrower Completes Data Processing Before
Lender Receives Decision� Here� the borrowing co�

�While PROMPT is intended for the real�time domain� we have
successfully used its basic lending approach to also design e�cient
commit protocols for traditional �non�real�time� distributed database
systems 
����

hort completes its local data processing before the lend�
ing cohort has received its global decision� The borrower
is now �put on the shelf�� that is� it is made to wait and
not allowed to send a workdone message to its master�
This means that the borrower is not allowed to initiate the
�commit�related� processing that could eventually lead to
its reaching the prepared state� Instead� it has to wait un�
til either the lender receives its global decision or its own
deadline expires� whichever occurs earlier� In the former
case� if the lender commits� the borrower is �taken o� the
shelf� �if it has no other �pending� lenders� and allowed to
send its workdone message� whereas if the lender aborts�
the borrower is also aborted immediately since it has uti�
lized dirty data �as in Scenario � above�� In the latter
case �deadline expiry�� the borrower is killed in the normal
manner�
�� Borrower Aborts During Data Processing Before
Lender Receives Decision� Here� the borrowing cohort
aborts in the course of its data processing �due to either
a local problem� deadline expiry or receipt of an abort

message from its master� before the lending cohort has re�
ceived its global decision� In this situation� the borrower�s
updates are undone and the lending is nulli�ed�
In summary� the PROMPT protocol allows transactions
to access uncommitted data held by prepared transactions
in the �optimistic� belief that this data will eventually be
committed�	 It uses this approach to mitigate the e�ects
of both the data inaccessibility and the priority inversion
problems that were identi�ed earlier for traditional commit
protocols �Section III�F��
We wish to clarify here that while the PROMPT de�

sign may super�cially appear similar to that of optimistic
concurrency control ����� it is actually quite di�erent since
updates are made in�place and not to copies or versions of
the data� also� data is lent only by transactions that have
completed their data processing�

A� Additional Real�Time Features of PROMPT

To further improve its real�time performance� three ad�
ditional features are included in the PROMPT protocol�
Active Abort� Silent Kill and Healthy Lending� These fea�
tures are described below�

A�� Active Abort

In the basic �PC protocol� cohorts are �passive� in that
they inform the master of their status only upon explicit re�
quest by the master� This is acceptable in conventional dis�
tributed DBMS since� after a cohort has completed its data
phase� there is no possibility of the cohort subsequently be�
ing aborted due to serializability considerations �assuming
a locking�based concurrency control mechanism��
In a DRTDBS� however� a cohort which is not yet in its

commit phase can be aborted due to con�icts with higher
priority transactions� Therefore� it may be better for an
aborting cohort to immediately inform the master so that

�A similar� but unrelated� strategy of allowing access to uncommit�
ted data has also been used to improve real�time concurrency control
performance 
���
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the abort of the transaction at the sibling sites can be done
earlier� Early restarts are bene�cial in two ways� First�
they provide more time for the restarted transaction to
complete before its deadline� Second� they minimize the
wastage of both logical and physical system resources� Ac�
cordingly� cohorts in PROMPT follow an �active abort�
policy � they inform the master as soon as they decide to
abort locally� the subsequent abort process implemented by
the master is the same as that followed in the traditional
passive environment�

A�� Silent Kill

For a transaction that is killed before the master enters
its commit phase� there is no need for the master to invoke
the abort protocol since the cohorts of the transaction can
independently realize the missing of the deadline �assum�
ing global clock synchronization�
� Eliminating this round
of messages may help to save system resources� Therefore�
in PROMPT� aborts due to deadline misses that occur be�
fore the master has initiated the commit protocol are im�
plemented �silently� without requiring any communication
between the master and the cohort�

A�� Healthy Lending

A committing transaction that is close to its deadline
may be killed due to deadline expiry before its commit
processing is over� Lendings by such transactions must be
avoided since they are likely to result in the aborts of all the
associated borrowers� To address this issue� we have added
a feature to PROMPT whereby only �healthy� transac�
tions� that is� transactions whose deadlines are not very
close� are allowed to lend their prepared data� This is re�
alized in the following manner� A health factor� HF T � is
associated with each transaction T and a transaction is al�
lowed to lend its data only if its health factor is greater than
a �system�speci�ed� minimum value MinHF � The health
factor is computed at the point of time when the master
is ready to send the prepare messages and is de�ned to
be the ratio TimeLeft � MinTime � where TimeLeft is the
time left until the transaction�s deadline� and MinTime is
the minimum time required for commit processing �recall
that a minimum of two messages and one force�write need
to be processed before the master can take a decision��
The success of the above scheme is directly dependent

on the threshold health factor MinHF � set too conser�
vatively �large values�� it will turn o� the borrowing fea�
ture to a large extent� thus e�ectively reducing PROMPT
to standard �PC� on the other hand� set too aggressively
�small values�� it will fail to stop several lenders that will
eventually abort� In our experiments� we consider a range
of values for MinHF to determine the best choices�
An important point to note here is that the health factor

is not used to decide the fate of the transaction but merely
to decide whether the transaction can lend its data� Thus�
erroneous estimates about the message processing times

�Our �rm deadline semantics ensure that skew in clock synchro�
nization� if any� only a�ects performance� but not atomicity� Further�
for minor skews� the performance impact is expected to be marginal�

and log force�write times only a�ect the extent to which
the optimistic feature of PROMPT is used� as explained
above�

B� Aborts in PROMPT do not Arbitrarily Cascade

An important point to note here is that PROMPT�s
policy of using uncommitted data is generally not rec�
ommended in traditional database systems since this can
potentially lead to the well�known problem of cascading
aborts ��� if the transaction whose dirty data has been ac�
cessed is later aborted� However� for the PROMPT pro�
tocol� this problem is alleviated due to the following two
reasons�
First� the lending transaction is typically expected to

commit because� �a� The lending cohort is in the prepared

state and cannot be aborted due to local data con�icts� and
�b� The sibling cohorts are also expected to eventually vote
to commit since they have survived� all their data con�icts
that occurred prior to the initiation of the commit protocol
�given our Active Abort policy��
The only situation where a lending cohort will �nally

abort is if �a� the deadline expires at the master�s node be�
fore the master reaches a decision� or �b� a sibling cohort
votes no� The latter case can happen only if the abort
message sent by the sibling cohort and the prepare mes�
sage sent by the master to the sibling cohort �cross each
other� on the network� As the time during which a message
is in transit is usually small compared to the transaction
execution times� these situations are unlikely to occur fre�
quently� Hence� a lending transaction is typically expected
to commit��
Second� even if the lending transaction does eventually

abort� it only results in the abort of the immediate bor�
rower and does not cascade beyond this point �since the
borrower is not in the prepared state� the only situation
in which uncommitted data can be accessed�� That is� a
borrower cannot simultaneously be a lender� Therefore� the
abort chain is bounded and is of length one� Of course�
if an aborting lender has lent to multiple borrowers� then
all of them will be aborted� but the length of each abort
chain is limited to one� In short� PROMPT implements a
controlled lending policy�

C� System Integration

We now comment on the implementation issues that
arise with regard to incorporating the PROMPT protocol
in a DRTDBS� The important point to note here is that
the required modi�cations are local to each site and do not
require inter�site communication or coordination�
� For a borrower cohort that �nishes its data processing be�
fore its lenders have received their commit�abort decisions
from their masters� the local transaction manager must not

�We assume a locking�based concurrency control mechanism�
�Of course� aborts could also occur after receiving the prepare

message due to non�concurrency�related issues such as� for example�
violation of integrity constraints� Although not described here� our
experiments have shown that unless the frequency of such �surprise
aborts� is unrealistically high �more than �� percent�� the improve�
ment o�ered by PROMPT continues to be signi�cant�
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send the workdonemessage until the fate of all its lenders
is determined�
� When a lender is aborted and consequently its borrow�
ers are also aborted� the local transaction manager should
ensure that the actions of the borrowers are undone �rst
and only then are the updates of the associated lender un�
done � that is� the recovery manager should be invoked in
a �borrowers �rst� lender next� sequence�
Note that in the event of a system crash� the log records
will naturally be processed in the above order since the
log records of lenders will always precede those of the bor�
rowers in the sequential log and the log is always scanned
backwards during undo processing�
� The local lock manager must be modi�ed to permit bor�
rowing of data held by prepared cohorts� The lock mode
used by the borrowing cohort should become the current
lock mode of the borrowed data item as far as other exe�
cuting transactions are concerned�
� The local lock manager must keep track of the lender�
borrower relationships� This information will be needed to
handle all possible outcomes of the relationship �for exam�
ple� if the lender aborts� the associated borrowers must be
immediately identi�ed and also aborted�� and can be easily
maintained using hash tables�

The above modi�cations do not appear di
cult to in�
corporate in current database system software� In fact�
some of them are already provided in current DBMS � for
example� the high�performance industrial�strength ARIES
recovery system ���� implements operation logging to sup�
port semantically rich lock modes that permit updating of
uncommitted data� Moreover� as shown later in our exper�
iments� the performance bene�ts that can be derived from
these changes more than compensate for the small amount
of run�time overheads entailed by the above modi�cations
and the e�ort needed to implement them�

D� Integrating PROMPT with Other �PC Optimizations

A particularly attractive feature of PROMPT is that it
can be integrated with many of the other optimizations sug�
gested for �PC� For example� Presumed Commit and Pre�
sumed Abort �Section III� can be directly added as a useful
supplement to reduce processing overheads� Moreover� the
integration may often be synergistic in that PROMPT may
retain the good features of the added optimization and si�
multaneously minimize its drawbacks� This is the case� for
example� when PROMPT is combined with �PC� In its at�
tempt to prevent decision blocking� �PC su�ers an increase
in the prepared data blocking period� but this drawback is
reduced by PROMPT�s lending feature� The performance
improvement that could be obtained from such integrations
is evaluated in our experiments �Section VII��
Among additional optimizations ����� PROMPT can be

integrated in a straightforward manner with Read�Only
�one phase commit for read�only transactions�� Long Locks
�cohorts piggyback their commit acknowledgments onto
subsequent messages to reduce network tra
c�� and Shared
Logs �cohorts that execute at the same site as their mas�
ter share the same log and therefore do not need to force�

write their log records�� Further� PROMPT is especially
attractive to integrate with protocols such as Group Com�
mit ���� �forced writes are batched together to save on disk
I�O� and linear �PC ��
� �message overheads are reduced
by ordering the sites in a linear chain for communication
purposes�� This is because these optimizations extend� like
�PC� the period during which data is held in the prepared

state� thereby allowing PROMPT to play a greater role in
improving system performance�
Finally� we do not consider here optimizations such as

Unsolicited Vote ����� wherein cohorts enter the prepared

state at the time of sending the workdone message itself�
e�ectively resulting in �one�phase� protocols�� While these
protocols reduce the overheads of commit processing due to
eliminating an entire phase� they also result in substantially
increased priority inversion durations �recall that cohorts
in the prepared state cannot be aborted due to con�icts
with higher priority transactions�� We plan to assess the
real�time capabilities of these protocols in our future work�

VI� Simulation Model� Metrics and Baselines

To evaluate the performance of the various commit pro�
tocols described in the previous sections� we developed a
detailed simulation model of a DRTDBS� Our model is
based on a loose combination of the distributed database
model presented in �
� and the real�time processing model
of �����
The model consists of a �non�replicated� database that is

distributed over a set of sites connected by a network� Each
site has six components� a source which generates transac�
tions� a transaction manager which models the execution
behavior of the transaction� a concurrency control man�
ager which implements the concurrency control algorithm�
a resource manager which models the physical resources� a
recovery manager which implements the details of commit
protocols� and a sink which collects statistics on the com�
pleted transactions� The behavior of the communication
network is modeled by a network manager component�
The following subsections describe the database model�

the workload generation process and the hardware resource
con�guration� Subsequently� we describe the execution
pattern of a typical transaction and the policies adopted
for concurrency control and recovery� A summary of the
parameters used in the model is given in Table I�

A� Database Model

The database is modeled as a collection ofDBSize pages
that are uniformly distributed across all the NumSites

sites� Transactions make requests for data pages and con�
currency control is implemented at the page level�

B� Workload Model

At each site� transactions arrive in an independent Pois�
son stream with rate ArrivalRate� and each transaction
has an associated �rm deadline� All transactions have
the �single master�multiple cohort� structure described

�A detailed survey of such protocols is available in 
���
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TABLE I

Simulation Model Parameters

Parameter Meaning Default Setting
DBSize Number of pages in the database ��		
NumSites Number of sites in the database �
ArrivalRate Transaction arrival rate�site 	 � �	 transactions per second
TransType Transaction Execution Type �Sequential or Parallel� Sequential
DistDegree Degree of Distribution �number of cohorts� �
CohortSize Average cohort size 
 pages
UpdateProb Page update probability ��	
SlackFactor Slack Factor in Deadline Assignment ��	
NumCPUs Number of processors per site �
NumDataDisks Number of data disks per site �
NumLogDisks Number of log disks per site �
PageCPU CPU page processing time � ms
PageDisk Disk page access time �	 ms
BufHit Probability of a bu�er hit 	��
MsgCPU Message send � receive time � ms
MinHF Minimum Health Factor �for PROMPT� 	

in Section III� Transactions in a distributed system can
execute in either sequential or parallel fashion� The dis�
tinction is that the data phases of cohorts in a sequential
transaction occur one after another� whereas for cohorts in
a parallel transaction the data phases occur concurrently�
We consider both types of transactions in our study � the
parameter TransType speci�es whether the transaction ex�
ecution is sequential or parallel�
The number of sites at which each transaction executes

is speci�ed by the DistDegree parameter� The master and
one cohort reside at the site where the transaction is sub�
mitted whereas the remaining DistDegree� � cohorts are
set up at di�erent sites chosen at random from the remain�
ing NumSites � � sites� At each of the execution sites�
the number of pages accessed by the transaction�s cohort
varies uniformly between 	�� and ��� times CohortSize�
These pages are chosen uniformly �without replacement�
from among the database pages located at that site� A page
that is read is updated with probability UpdateProb��
 A
transaction that is aborted due to a data con�ict is imme�
diately restarted and makes the same data accesses as its
original incarnation�

C� Deadline Assignment

Upon arrival� each transaction T is assigned a deadline
using the formula DT � AT � SF � RT � where DT � AT

and RT are its deadline� arrival time and resource time� re�
spectively� while SF is a slack factor� The resource time is
the total service time at the resources that the transaction
requires for its execution� The SlackFactor parameter is a
constant that provides control over the tightness�slackness
of transaction deadlines�

There are two issues related to the resource time com�

�	A page write operation is always preceded by a read for the same
page� that is� there are no �blind writes� 

��

putation� First� since the resource time is a function of
the number of messages and the number of forced�writes�
which di�er from one commit protocol to another� we com�
pute the resource time assuming execution in a centralized
system� Second� while the workload generator utilizes in�
formation about transaction resource requirements in as�
signing deadlines� the RTDBS system itself has no access
to such information since this knowledge is usually hard to
come by in practical environments�

D� System Model

The physical resources at each site consist of
NumCPUs processors� NumDataDisks data disks and
NumLogDisks log disks� The data disks store the data
pages while the log disks store the transaction log records�
There is a single common queue for the processors and the
service discipline is Pre�emptive Resume� with preemptions
based on transaction priorities� Each of the disks has its
own queue and is scheduled according to a Head�Of�Line
�HOL� policy� with the request queue ordered by transac�
tion priority� The PageCPU and PageDisk parameters
capture the CPU and disk processing times per data page�
respectively� When a transaction makes a request for ac�
cessing a data page� the data page may be found in the
bu�er pool� or it may have to be accessed from the disk�
The BufHit parameter gives the probability of �nding a
requested page already resident in the bu�er pool�

The communication network is simply modeled as a
switch that routes messages since we assume a local area
network that has high bandwidth� However� the CPU over�
heads of message transfer� given by the MsgCPU parame�
ter� are taken into account at both the sending and the
receiving sites� In our simulations� all requests for the
CPU� whether for message processing or data processing�
are served in priority order�
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Finally� speci�cally for the PROMPT protocol� the min�
imum health factor value is determined by the MinHF

parameter�

E� Transaction Execution

When a transaction is initiated� it is assigned the set of
sites where it has to execute and the data pages that it has
to access at each of these sites� The master is then started
up at the originating site� which in turn forks o� a local
cohort and sends messages to initiate each of its cohorts at
the remote participating sites�
Based on the transaction type� the cohorts execute ei�

ther in parallel or in sequence� Each cohort makes a se�
ries of read and update accesses� A read access involves a
concurrency control request to obtain access� followed by
a disk I�O to read the page if not already in the bu�er
pool� followed by a period of CPU usage for processing the
page� Update requests are handled similarly� except for
their disk I�O � the writing of the data pages takes place
asynchronously after the transaction has committed��� We
assume su
cient bu�er space to allow the retention of data
updates until commit time�
If the transaction�s deadline expires at any time during

its data processing� it is immediately killed� Otherwise�
the commit protocol is initiated when the transaction has
completed its data processing� If the transaction�s deadline
expires before the master has written the global decision log
record� the transaction is killed �as per the �rm deadline
semantics de�ned in Section IV�� On the other hand� if
the master writes the commit decision log record before
the expiry of the deadline at its site� the transaction is
eventually committed at all of its execution sites�

F� Priority Assignment

For simplicity� we assume here that all transactions have
the same �criticality� or �value� ������� Therefore� the goal
of the priority assignment is to minimize the number of
killed transactions� In our model� all cohorts inherit their
parent transaction�s priority� Further� this priority� which
is assigned at arrival time� is maintained throughout the
course of the transaction�s existence in the system� includ�
ing the commit processing stage� if any� Messages also
retain their sending transaction�s priority�
The only exception to the above priority rule is in the

PIC commit protocol� described in Section IX� In this pro�
tocol� a low priority transaction that blocks a high priority
transaction inherits the priority of the high priority trans�
action�
The transaction priority assignment used in all of the ex�

periments described here is the widely�used Earliest Dead�
line First �EDF� policy ����� wherein transactions with ear�
lier deadlines have higher priority than transactions with
later deadlines�

��Update�locks are acquired when a data page intended for modi�
�cation is �rst read� i�e�� lock upgrades are not modeled�
��For applications with transactions of varying criticalities� the

value�cognizant priority assignment mechanisms proposed in the lit�
erature �e�g��
���� can be utilized�

G� Concurrency Control

For transaction concurrency control� we use an extended
version of the centralized �PL High Priority ��PL�HP� pro�
tocol proposed in ������ The basic �PL�HP protocol� which
is based on the classical strict two�phase locking protocol
��PL� ����� operates as follows� When a cohort requests
a lock on a data item that is held by one or more higher
priority cohorts in a con�icting lock mode� the requesting
cohort waits for the item to be released �the wait queue for
a data item is managed in priority order�� On the other
hand� if the data item is held by only lower priority co�
horts in a con�icting lock mode� the lower priority cohorts
are aborted and the requesting cohort is granted the de�
sired lock� Note that if priorities are assigned uniquely
�as is usually the case in RTDBS�� �PL�HP is inherently
deadlock�free� Finally� a new reader can join a group of
lock�holding readers only if its priority is higher than that
of all the writers waiting for the lock�
The extensions that we have made to the above basic

protocol for our distributed real�time environment are the
following� First� on receipt of the prepare message from
the master� a cohort releases all its read locks but retains
its update locks until it receives and implements the global
decision from the master� Second� a cohort that is in the
prepared state cannot be aborted� irrespective of its priority�
Third� in the PROMPT�based commit protocols� cohorts
in the data phase are allowed optimistic access to data held
by con�icting prepared cohorts�

H� Logging

With regard to logging costs� we explicitly model only
forced log writes since they are done synchronously and
suspend transaction operation until their completion� The
cost of each forced log write is the same as the cost of
writing a data page to the disk� The overheads of �ush�
ing the transaction log records related to data processing
�i�e�� WAL ��
��� however� are not modeled� This is because
these records are generated during the cohort�s data phase
and are therefore independent of the choice of commit pro�
tocol� We therefore do not expect their processing to a�ect
the relative performance behavior of the commit protocols
evaluated in our study�

I� Default Parameter Settings

The default settings used in our experiments for the
workload and system parameters are listed in Table I� They
were chosen to be in accordance with those used in ear�
lier studies �e�g� �
�� ������ While the absolute performance
pro�les of the commit protocols would� of course� change if
alternative parameter settings are used� we expect that the
relative performance of these protocols will remain qualita�
tively similar since the model parameters are not protocol�
speci�c� Further� these settings ensure signi�cant levels of
both resource contention �RC� and data contention �DC�

��The problem of inaccessibility to prepared data does not arise
with optimistic CC protocols since they permit unrestricted reads�
However� open problems remain with respect to integrating optimistic
schemes in practical systems 
�
�� 


��
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in the system� thus helping to bring out the performance
di�erences between the various commit protocols���

J� Performance Metric

The performance metric in all of our experiments is
KillPercent� which is the steady�state percentage of in�
put transactions that are killed� i�e�� the percentage of input
transactions that the system is unable to complete before
their deadlines��	 KillPercent values in the range of 	 to �	
percent are taken to represent system performance under
�normal� loads� while values beyond this represent �heavy�
load performance��
 A long�term operating region where
the KillPercent value is high is obviously unrealistic for a
viable DRTDBS� Exercising the system to high KillPercent
levels� however� provides information on the response of the
algorithms to brief periods of stress loading�

The simulator was instrumented to generate several
other statistics� including resource utilizations� number of
transaction restarts� number of messages and force�writes�
etc� These secondary measures help to explain the KillPer�
cent behavior of the commit protocols under various work�
loads and system conditions� For the PROMPT protocol�
speci�cally� we also measure its borrow factor� that is� the
average number of data items �pages� borrowed per trans�
action� and the success ratio� that is� the fraction of times
that a borrowing was successful in that the lender commit�
ted after loaning the data�

K� Baseline Protocols

To help isolate and understand the e�ects of distribution
and atomicity on KillPercent performance� and to serve as
a basis for comparison� we have also simulated the per�
formance for two additional scenarios� CENT and DPCC�
described below�

In CENT �Centralized�� a centralized database system
that is equivalent �in terms of overall database size and
number of physical resources� to the distributed database
system is modeled� Messages are obviously not required
here and commit processing only requires writing a single
decision log record �force�write if the decision is to commit��
Modeling this scenario helps to isolate the overall e�ect of
distribution on KillPercent performance�

In DPCC �Distributed Processing� Centralized Com�
mit�� data processing is executed in the normal distributed
fashion� that is� involving messages� The commit process�
ing� however� is like that of a centralized system� requiring
only the writing of the decision log record at the master�
While this system is clearly arti�cial� modeling it helps
to isolate the e�ect of distributed commit processing on

��The contention levels are assessed by measuring the CPU and
disk utilizations and the data con�ict frequencies�
��Only statistically signi�cant di�erences are discussed here� All

the KillPercent values shown have relative half�widths about the
mean of less than ��� at the ��� con�dence level � after elimination
of the initial transient� each experiment was run until at least �����
transactions were processed by the system�
��Heavy load may arise due to a variety of factors� increased trans�

action arrival rate� more stringent time constraints� etc�

KillPercent performance �as opposed to CENT which elim�
inates the entire e�ect of distributed processing��

VII� Experiments and Results

Using the �rm�deadline DRTDBS model described in the
previous section� we conducted an extensive set of simula�
tion experiments comparing the real�time performance of
the �PC� PA� PC� �PC and PROMPT commit protocols�
In this section� we present the results of a representative
set of experiments �the complete set is available in ������

A� Experiment 	� Resource and Data Contention

Our �rst experiment was conducted using the default
settings for all model parameters �Table I�� resulting in sig�
ni�cant levels of both resource contention �RC� and data
contention �DC�� Here� each transaction executes in a se�
quential fashion at three sites� accessing and updating an
average of six pages at each site� Each site has two CPUs�
three data disks and one log disk� For this environment�
Figures �a and �b show the KillPercent behavior under nor�
mal load and heavy load conditions� respectively� In these
graphs� we �rst observe that there is considerable di�erence
between centralized performance �CENT� and the perfor�
mance of the standard commit protocols throughout the
loading range� For example� at a transaction arrival rate of
� per second at each site� the centralized system misses less
than � percent of the deadlines whereas �PC and �PC miss
in excess of �� percent� This di�erence highlights the ex�
tent to which a conventional implementation of distributed
commit processing can a�ect the real�time performance�
Moving on to the relative performance of �PC and �PC�

we observe that there is a noticeable but not large di�erence
between their performance at normal loads� The di�erence
arises from the additional message and logging overheads
involved in �PC� Under heavy loads� however� the perfor�
mance of �PC and �PC is virtually identical� This is ex�
plained as follows� Although their commit processing is
di�erent� the abort processing of �PC is identical to that
of �PC� Therefore� under heavy loads� when a large frac�
tion of the transactions wind up being killed �i�e�� aborted�
the performance of both protocols is essentially the same�
Overall� it means that� in the real�time domain� the price
paid during regular processing to purchase the nonblocking
functionality is comparatively modest�
Shifting our focus to the PA and PC variants of the �PC

protocol� we �nd that their performance is only marginally
di�erent to that of �PC� The reason for this is that per�
formance in a �rm�deadline RTDBS is measured in boolean
terms of meeting or missing the deadline� So� although PC
and PA reduce overheads under commit and abort condi�
tions� respectively� all that happens is that the resources
made available by this reduction only allow transactions
to execute further before being restarted or killed but is
not su
cient to result in many more completions� This
was con�rmed by measuring the number of forced writes
and the number of acknowledgements� normalized to the
number of committed transactions� shown in Figures �c
and �d� In these �gures we see that PC has signi�cantly
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1f: PROMPT Success Ratio

Fig� �� Sequential Transactions �RC�DC�



�� IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS� VOL� XX� NO� Y� MONTH ����

0 2 4 6 8 10
0

0.4

0.8

1.2

Arrival Rate/Site −−>

B
or

ro
w

in
gs

/T
ra

ns
 −

−>
1g: PROMPT Successful Borrow Factor
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1h: PROMPT Kill Reduction

lower overheads at normal loads �when commits are more�
while PA has signi�cantly lower overheads at heavy loads
�when aborts are more�� Moreover� while PA always does
slightly better than �PC� PC actually does worse than �PC
at heavy loads since PC has higher overheads �the addi�
tional collecting log record� than �PC for aborts�

Finally� turning to our new protocol� PROMPT� we ob�
serve that its performance is considerably better than that
of the standard algorithms over most of the loading range
and especially so at normal loads� An analysis of its im�
provement showed that it arises primarily from �a� the op�
timistic access of uncommitted prepared data which allows
transactions to progress faster through the system� and
�b� the Active Abort policy� The former e�ect is quanti�
�ed in Figure �e� which plots PROMPT�s borrow factor �
this graph clearly shows that borrowing is signi�cant� espe�
cially in the low to medium loading range� For example� at
an arrival rate of � trans�sec� each transaction on average
borrows approximately one page� At high loads� however�
only a few transactions are able to make it to the com�
mit processing phase and correspondingly there are very
few lenders� leaving little opportunity for the optimistic
feature to come into play� as indicated by the dip in the
borrow factor�

The Silent Kill optimization �not sending abort messages
for kill�induced aborts�� on the other hand� gives only a
very minor improvement in performance� At low loads this
is because transaction kills are few in number and the op�
timization does not come into play� at high loads� the opti�
mization�s e�ect is like that of PA and PC for the standard
�PC protocol � although there is a signi�cant reduction in
the number of messages� the resources released by this re�
duction only allow transactions to proceed further before
being restarted but does not result in many more com�
pletions� This was con�rmed by measuring the number
of pages that were accessed by a transaction before being
aborted � it was signi�cantly more when Silent Kill was
included�

As part of this experiment� we also wanted to quan�
tify the degree to which the PROMPT protocol�s optimism

about accessing uncommitted data was well�founded � that
is� is PROMPT safe or foolhardy� To evaluate this� we
measured the success ratio � this statistic� shown in Figure
�f� clearly indicates that under normal loads� optimism is
the right choice since the success ratio is almost one� Un�
der heavy loads� however� there is a decrease in the success
ratio � the reason for this is that transactions reach their
commit phase only close to their deadlines and in this situ�
ation� a lending transaction may often abort due to missing
its deadline� That is� many of the lenders turn out to be
�unhealthy�� Note that PROMPT�s Healthy Lending fea�
ture� which was intended to address this problem� did not
come into play since MinHF� the minimum health factor�
was set to zero in this experiment � we return to this issue
in Experiment 
�

To conclude the discussion of PROMPT�s performance�
in Figure �g we show the successful borrow factor� that
is� the combination �through multiplication� of Figures �e
and �f� and in Figure �h we graph the �absolute� reduction
in Kill Percent achieved by PROMPT as compared to �PC�
Note the close similarity between the shapes of these two
graphs� conclusively demonstrating that allowing for bor�
rowing is what results in PROMPT�s better performance�

Lastly� another interesting point to note is the following�
In Figures �a and �b the di�erence between the CENT and
DPCC curves shows the e�ect of distributed data process�
ing whereas the di�erence between the commit protocol
curves and the DPCC curve shows the e�ect of distributed
commit processing� We see in these �gures that the e�ect
of distributed commit processing is considerably more than
that of distributed data processing for the standard com�
mit protocols� and that the PROMPT protocol helps to
signi�cantly reduce this impact� These results clearly high�
light the necessity for designing high�performance real�time
commit protocols�

B� Experiment �� Pure Data Contention

The goal of our next experiment was to isolate the in�
�uence of data contention �DC� on the performance of the
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Fig� �� Sequential Transactions �Pure DC�

commit protocols��� Modeling this scenario is important
because while resource contention can usually be addressed
by purchasing more and�or faster resources� there do not
exist any equally simple mechanisms to reduce data con�
tention� In this sense� data contention is a more �fun�
damental� determinant of database system performance�
Further� while abundant resources may not be typical in
conventional database systems� they may be more com�
mon in RTDBS environments since many real�time systems
are sized to handle transient heavy loading� This directly
relates to the application�domain of RTDBSs� where func�
tionality� rather than cost� is usually the driving consider�
ation�

For this experiment� the physical resources �CPUs and
disks� were made �in�nite�� that is� there is no queueing
for these resources ���� The other parameter values are
the same as those used in Experiment �� The KillPercent

��The corresponding experiment� pure RC� is not considered here
since our goal of reducing prepared data inaccessibility ceases to be
an issue in the pure RC environment�

performance results for this system con�guration are pre�
sented in Figures �a and �b for the normal load and heavy
load conditions� respectively� and PROMPT�s supporting
statistics are shown in Figures �c and �d� We observe in
these �gures that the relative performance of the various
protocols remains qualitatively similar to that seen for the
RC�DC environment of the previous experiment� Quanti�
tatively� however� the performance of the standard proto�
cols relative to the baselines is markedly worse than before�
This is because in the previous experiment the consider�
able di�erence in overheads between CENT and �PC� for
example� was largely submerged due to the resource and
data contention in the system having a predominant e�ect
on transaction response times� In the current experiment�
however� the commit phase occupies a bigger proportion
of the overall transaction response time and therefore the
overheads of �PC are felt to a greater extent� Similarly�
�PC performs signi�cantly worse than �PC due to its con�
siderable extra overheads�

Moving on to PROMPT� we observe that it exhibits
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much better performance as compared to the standard al�
gorithms over the entire loading range� This is explained in
Figure �c� which shows the borrow factor being even higher
than that of the RC�DC case� Moreover� the success ra�
tio is also better than that of the RC�DC case� not going
below �� percent even at the highest loading levels �Figure
�d��
The above experiment indicates that when resource con�

tention is reduced by upgrading the physical resources�
it is even more important to employ protocols such as
PROMPT to mitigate the ill e�ects of data contention�

C� Experiment �� Fast Network Interface

In the previous experiments� the cost for sending and re�
ceiving messages modeled a system with a relatively slow
network interface �MsgCpu � � ms�� We conducted an�
other experiment wherein the network interface was faster
by a factor of �ve� that is� where MsgCpu � �ms� The
results of this experiment are shown in Figures ��� and
��� for the RC�DC and pure DC environments� respec�
tively��� In these �gures� we see that the performance of
all the protocols comes closer together �as compared to
that seen in Experiments � and ��� This improved behav�
ior of the protocols is only to be expected since low message
costs e�ectively eliminate the e�ect of a signi�cant fraction
of the overheads involved in each protocol� Their relative
performance� however� remains the same� Note also that
the PROMPT protocol now provides a performance that
is close to that of DPCC� that is� close to the best com�
mit processing performance that could be obtained in a
distributed RTDBS�
In summary� this experiment shows that adopting the

PROMPT principle can be of value even with very high�
speed network interfaces because faster message processing
does not necessarily eliminate the data contention bottle�
neck�

D� Experiment 
� Higher Degree of Distribution

In the experiments described so far� each transaction ex�
ecuted on three sites� To investigate the impact of having
a higher degree of distribution� we performed an experi�
ment wherein each transaction executed on six sites� The
CohortSize in this experiment was reduced from 
 pages
to � pages in order to keep the average transaction length
equal to that of the previous experiments� In addition� a
higher value of SlackFactor � 
 was used to cater to the
increase in response times caused by the increased distri�
bution�
The results of this experiment are shown in Figures ���

and ��� for the RC�DC and pure DC environments� re�
spectively� In these �gures� we observe that increased dis�
tribution results in an increase in the magnitudes of the
performance di�erences among the commit protocols� This
is to be expected since the commit processing overheads are

��The default parameter settings for the RC�DC and pure DC sce�
narios in this experiment� as well as in the following experiments� are
the same as those used in Experiment � and Experiment �� respec�
tively�

larger in this experiment� The relative performance of the
protocols� however� remains qualitatively the same with
PROMPT continuing to perform better than the standard
protocols�

E� Experiment �� Parallel Execution of Cohorts

In all of the previous experiments� the cohorts of each
transaction executed in sequence� We also conducted simi�
lar experiments for transaction workloads with parallel co�
hort execution and we report on those results here� The
performance under the RC�DC environment is shown in
Figures ���a�c and we observe here that the general trends
are like those seen for sequential transactions in Exper�
iment �� In particular� the e�ect of distributed commit
processing on the KillPercent performance remains consid�
erably more than that of distributed data processing� But�
there are also a few changes� as described below�
First� we observe that the di�erences between the perfor�

mance of CENT and that of �PC and �PC have increased
for parallel transactions as compared to that for sequential
transactions� The reason for this is that the parallel execu�
tion of the cohorts reduces the transaction response time�
but the time required for the commit processing remains the
same� Therefore� the e�ect of the commit phase on overall
transaction response time is signi�cantly more�
Second� although PROMPT continues to perform the

best under normal loads� its e�ect on the KillPercent per�
formance is partially reduced as compared to that for se�
quential transactions� This is because the Active Abort
policy� which had signi�cant impact in the sequential envi�
ronment� is less useful in the parallel domain� The reason
for its reduced utility is that due to cohorts executing in
parallel� the duration of the wait phase of the cohorts is
shorter and so there are much fewer chances of a cohort
aborting during the wait phase� which is when the Active
Abort policy mostly comes into play for the parallel case�
Third� the performance of PROMPT under heavy loads

is marginally worse than that of �PC� whereas in the se�
quential case PROMPT was always better than or matched
�PC� This is explained by comparing PROMPT�s success
ratios in Figures �f and ���c� which clearly indicate that
the heavy�load degradation in PROMPT�s success ratio is
much more under parallel workloads than under sequential
workloads� The reason for this is the following� The data
contention level is smaller with parallel execution than
with sequential execution since locks are held for shorter
times on average �this was also con�rmed by PROMPT�s
borrow factor which was about �	 percent less than in its
sequential counterpart�� Cohorts are therefore able to ob�
tain the necessary locks sooner than in the sequential case
and hence those that are aborted due to deadline expiry
tend to make further progress than in the sequential case�
This leads to a proportionally larger group of cohorts �n�
ishing their work closer to the deadline� resulting in a worse
success ratio due to more �unhealthy lenders��
When the above experiment was conducted for the pure

DC environment� we obtained Figures ���a�c� Interestingly�
the performance of PROMPT in these �gures does not
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Fig� �� Higher Degree of Distribution

show the deterioration observed in the RC�DC environ�
ment� The reason is that when DC is the main performance
bottleneck� PROMPT which primarily addresses DC has
the maximum impact� In this case� PROMPT�s borrow
factor and success ratio �Figure ���c� are quite high� re�
sulting in its performance being considerably better than
the standard commit protocols�

F� Experiment �� Lending Restricted to Healthy Lenders

Results for the parallel cohort execution workloads of the
previous experiment may seem to suggest that PROMPT
may not be the best approach for all workloads � how�
ever� as we will now show� the reduced success ratio of
PROMPT can be easily recti�ed by appropriately setting
theMinHF parameter �which was 	 in the experiments de�

scribed thus far�� After this optimization is incorporated�
PROMPT provides better performance than all the other
classical protocols�

A range of MinHF values were considered in our exper�
iments� including MinHF � 	� which corresponds to the
PROMPT protocol evaluated in the previous experiments�
MinHF � �� MinHF � � and MinHF � �� which is
equivalent to the �PC protocol� The results for these var�
ious settings are shown in Figures 
��a�c and in Figures

��a�c for the workloads of the previous experiment�

In the KillPercent graphs �Figures 
��a and 
��a�� we
see that MinHF � � is in general slightly better than
MinHF � 	 and especially so under heavy loads in the
pure DC environment� Further� note that its performance
matches that of �PC in the heavy load region� thereby
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Fig� �� Parallel Transactions � RC�DC and Pure DC
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correcting the problem observed in the previous experi�
ment� The reason for the performance improvement is ev�
ident in Figures 
��b and 
��b where the success ratio of
MinHF � � is seen to be considerably higher than that of
MinHF � 	� Further� from Figures 
��c and 
��c� which
present the borrow factors� it is clear that MinHF � � is
�e
cient� in that it restricts borrowing only in the heavy
load region but not in the normal load region where opti�
mism is almost always a good idea� That is� healthy lenders
are very rarely tagged as unhealthy�

The last observation deals with the �completeness� and
�precision� of borrowing� that is� ��� �Do we always borrow
when the borrowing is going to be successful��� and ��� �Is
what we borrow always going to be successful��� PROMPT
with MinHF � 	 is complete by design since it does not
miss out on any successful borrowing opportunities� but
because it may also borrow without success� it is not pre�
cise� The experimental results show that MinHF � �� in
contrast� is quite precise while sacri�cing very little com�
pleteness in achieving this goal�

Turning our attention to MinHF � �� we observe that
the performance of PROMPT for MinHF � � and for
MinHF � � is almost identical� indicating that a health
threshold of unity is su
cient to �lter out the transac�
tions vulnerable to deadline kill in the commit phase� The
reason for this is that� by virtue of the EDF priority pol�
icy used in our experiments� transactions that are close to
their deadlines have the highest priority at the physical re�
sources� and therefore the minimum time required to carry
out the commit processing is actually su
cient for them to
complete this operation�

G� PROMPT Combinations

While presenting the PROMPT protocol in Section V�
we had mentioned that one of the attractive features of
PROMPT is its ability to combine with other optimiza�
tions� We now evaluate the performance bene�ts possible
from such combinations�

G�� Experiment �� PROMPT�PA and PROMPT�PC

When we analyzed the performance e�ects of adding the
PA and PC optimizations to PROMPT �graphs available
in ������ we observed that just as PA and PC provided little
improvement over the performance of standard �PC� here
also they provide no tangible bene�ts to the performance
of the PROMPT protocol and for the same reasons� While
PROMPT�PA is very slightly better than basic PROMPT�
PROMPT�PC performs worse than basic PROMPT under
heavy loads� especially when data contention is the primary
performance bottleneck�

G�� Experiment �� Non�Blocking PROMPT

In our second experiment� we evaluated the e�ect of com�
bining PROMPT with �PC� resulting in a non�blocking
version of PROMPT� The results of this experiment are
shown in Figures ��� and ��� for the RC�DC and pure DC
environments� respectively�

We observe in these �gures that the performance of
PROMPT��PC is not only superior to that of �PC� but
also signi�cantly better than that of �PC� In fact� the per�
formance of PROMPT��PC is close to that of the basic
PROMPT itself� The reason for this superior performance
of PROMPT��PC is that the optimistic feature has more
e�ect on �PC than on �PC due to the larger commit pro�
cessing phase of �PC �as mentioned earlier in Section V��
These results indicate that� in the real�time domain� the

nonblocking functionality which is extremely useful in the
event of failures can be purchased for a small increase in
the KillPercent value�

H� Summary of the Results

The set of experiments discussed above� which covered a
variety of transaction workloads and system con�gurations�
demonstrated the following�
�� Distributed commit processing can have considerably
more e�ect than distributed data processing on the real�
time performance� especially on systems with slow network
interfaces� This highlights the need for developing commit
protocols tuned to the real�time domain�
�� The classical commit protocols generally perform poorly
in the real�time environment due to their passive nature
and due to preventing access to data held by cohorts in the
prepared state�
�� Our new protocol� PROMPT� provides signi�cantly im�
proved performance over the standard algorithms� Its good
performance is attained primarily due to its optimistic bor�
rowing of uncommitted data and Active Abort policy� The
optimistic access signi�cantly reduces the e�ect of prior�
ity inversion which is inevitable in the prepared state�
Supporting statistics showed that PROMPT�s optimism
about uncommitted data is justi�ed� especially under nor�
mal loads� The other optimizations of Silent Kill and Pre�
sumed Commit�Abort� however� had comparatively little
bene�cial e�ect�
�� The results obtained for parallel distributed transaction
workloads were generally similar to those observed for the
sequential�transaction environment� But� performance im�
provement due to the PROMPT protocol was not as high
for two reasons� ��� Its Active Abort policy� which con�
tributed signi�cantly to improved performance in the se�
quential environment� has reduced e�ect in the parallel do�
main� ��� Parallel execution� by virtue of reducing the data
contention� results in an increased number of unhealthy
lenders� These problems were recti�ed� however� by appro�
priately setting the MinHF parameter�
�� We have also found that a health threshold of
MinHF � � provides good performance for a wide range
of workloads and system con�gurations� that is� this setting
is robust���


� Experiments combining PROMPT with �PC indicate
that the nonblocking functionality can be obtained in the
real�time environment at a relatively modest cost in nor�
mal processing performance� This is especially encouraging

��Even otherwise� it should be easy to set MinHF during the in�
evitable initial system�application tuning process�
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Fig� �� Non�blocking PROMPT

given the high desirability of the nonblocking feature in the
real�time environment�
In summary� the above results show that the PROMPT
protocol may be an attractive candidate for use in DRT�
DBS commit processing� In the following section� we dis�
cuss a variety of options in PROMPT�s design�

VIII� Alternative Design Choices in PROMPT

We �rst present and evaluate Shadow�PROMPT� which
incorporates a special mechanism to reduce the adverse
e�ects in those cases where lending optimism turns out to
be misplaced� Then� we present and evaluate FullLending�
PROMPT� which incorporates a mechanism intended to
increase the lending opportunities�

A� The Shadow�PROMPT Protocol and its Performance

The Shadow�PROMPT protocol combines PROMPT
with the �shadow transaction� approach proposed in ����
In this combined technique� a cohort forks o� a replica
of the transaction� called a shadow� whenever it borrows a
data page� The original incarnation of the transaction con�
tinues execution while the shadow transaction is blocked
at the point of borrowing� If the lending transaction ��
nally commits� the �original� borrowing cohort continues
its ongoing execution and the shadow is discarded �since
the optimistic borrowing proved to be a correct decision��
Otherwise� if the lender aborts� the borrowing cohort is
aborted and the shadow� which was blocked so far� is acti�
vated� Thus the work done by the borrowing transaction
prior to its borrowing is never wasted even if the wrong
borrowing choice is made� Therefore� if we ignore the over�
heads of the shadow mechanism �which may be signi�cant
in practice�
�� Shadow�PROMPT represents the best on�

�	For example� it is mentioned in 
�� that for a single�shadow per
transaction environment� a �� percent increase in number of messages
was observed�

line performance that could be achieved using the opti�
mistic lending approach�
We conducted experiments to evaluate the performance

of the Shadow�PROMPT protocol� In these experiments�
we modeled a zero�overhead Shadow�PROMPT protocol�
In addition� as in ���� at most one shadow �for each cohort�
is allowed to exist at any given time� The �rst shadow
is created at the time of the �rst borrowing � creation of
another shadow is allowed only if the original cohort aborts
and the current shadow resumes its execution replacing the
original cohort�
Our experimental results showed the performance of

PROMPT �with MinHF set to �� and Shadow�PROMPT
to be so close that they are di
cult to distinguish visu�
ally �the graphs are available in ������ In fact� in all our
experiments� the performance di�erence between Shadow�
PROMPT and PROMPT was never more than two per�
cent� This means that Healthy Lending can provide per�
formance gains similar to that of the ideal Shadow mech�
anism without attracting the associated implementation
overheads and di
culties��� That is� PROMPT is e
cient
in its use of the optimistic premise since this premise holds
most of the time� as expected� especially in conjunction
with the Healthy Lending optimization�

B� The FL�PROMPT Protocol and its Performance

A situation may arise in PROMPT wherein the borrower
cohort �nishes its execution before the lender cohort re�
ceives the �nal decision from its master� In such a case�
the borrower cohort is put �on the shelf� waiting for the
lender to complete and is not allowed to immediately send
the workdone message to its master �as described in Sec�
tion V�� This can increase the response time of the transac�
tion� especially for sequential execution� and may therefore

��A signi�cant reworking of the transaction management system is
required to support the shadow concept�
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result in more missed deadlines� Allowing the borrower to
immediately send the workdone message in the normal
manner� however� is not a solution because it would lead
to the problem of cascading aborts since a borrower at one
site could become a lender at other sites�

To address the above issue� we designed another vari�
ant of PROMPT� called Full�Lending PROMPT �FL�
PROMPT�� which operates in the following manner� When
sending the workdone message to the master� the bor�
rower � which is waiting for its lending to complete � also
sends an extra bit� called the �borrower bit�� piggybacked
on this message� The master� while subsequently sending
the prepare message to the cohorts� passes on this infor�
mation to the other sibling cohorts� Cohorts receiving this
bit do not lend their data� thereby ensuring that borrower
transactions cannot simultaneously be lenders �the condi�
tion necessary to ensure the absence of cascading aborts��
Note that while this mechanism ensures that the aborts
do not cascade� it does not allow the borrower transac�
tion to become a lender even after the borrowing is over�
This problem is overcome by having such borrowers send
a borrow�over message to the master if the lender sub�
sequently commits and the borrower cohort has not yet
received a prepare message from the master� This mes�
sage to the master e�ectively invalidates the borrower bit
sent earlier��� A related issue arising out of the distributed
nature of execution is the situation wherein the borrow�
over and prepare messages �cross� each other on the net�
work � in this situation� the master ignores the borrow�
over message�

Our experiments to evaluate the performance of the FL�
PROMPT protocol showed that under RC�DC conditions�
its performance was virtually identical to that of basic
PROMPT �the graphs are available in ������ This is be�
cause the performance gains due to FL�PROMPT�s full
lending feature are largely o�set by the extra CPU mes�
sage processing overheads arising out of the borrow�over
messages�

Even in pure DC environments� where the CPU over�
heads are not a factor� the di�erence between FL�
PROMPT and PROMPT turned out to be negligible for
most of the loading range� This is because the situation
when a �borrower bit� is sent with the workdone mes�
sage does not occur frequently in this environment� Only a
marginal di�erence at light loads was observed where FL�
PROMPT performed slightly better because it allows more
transactions to become lenders �by using the borrow�

over message��

Thus� even though Full Lending appears to be a useful
idea in principle� its e�ects were not observed in our exper�
iments� However� for priority assignment policies that lead
to longer commit phase durations as compared with those
occuring with EDF� it may have more impact on perfor�
mance�

��If multiple cohorts concurrently send the borrow bit� the master
waits till it receives the borrow�over message from all such borrow�
ers before turning lending on again�

IX� Priority Inheritance � An Alternative to

PROMPT � and its Performance

As discussed earlier� PROMPT addresses the priority in�
version problem in the commit phase by allowing transac�
tions to access uncommitted prepared data� A plausible
alternative approach is the well�known priority inheri�
tance �PI� mechanism ��
�� In this scheme� a low priority
transaction that blocks a high priority transaction inherits
the priority of the high priority transaction� The expecta�
tion is that the blocking time of the high priority transac�
tion will be reduced since the low priority transaction will
now execute faster and release its resources earlier�

A positive feature of the PI approach is that it does not
run the risk of transaction aborts� unlike the lending ap�
proach� Further� a study of PI in the context of �central�
ized� transaction concurrency control ���� suggested that
priority inheritance is useful only if it occurs towards the
end of the low priority transaction�s lifetime� This seems
to �t well with handling priority inversion during commit
processing since this stage occurs at the end of transaction
execution�

Motivated by these considerations we now describe Pri�
ority Inheritance Commit �PIC�� a real�time commit
protocol based on the PI approach� In the PIC protocol�
when a high priority transaction is blocked due to the data
locked by a low priority cohort in the prepared state� the
latter inherits the priority of the former to expedite its
commit processing� To propagate this inherited priority to
the master and the sibling cohorts� the priority inheriting
cohort sends a priority�inherit message to the master�
The master� in turn� sends this message to all other cohorts�
After the master or a cohort receives a priority�inherit
message� all further processing related to the transaction at
that site �processing of the messages� writing log records�
etc�� is carried out at the inherited priority��� Our experi�
ments to evaluate the performance of the PIC showed that
the performance of PIC is virtually identical to that of �PC
�the graphs are available in ������ The reason for this be�
havior is the following� PI comes into play only when a high
priority transaction is blocked by a low priority prepared
cohort� which means that this cohort has already sent the
yes vote to its master� Since it takes two message delays
for dissemination of the priority inheritance information to
the sibling cohorts� PIC expedites at most the processing
of only the decision message� Further� even the minor ad�
vantage that may be obtained by PIC is partially o�set
by the extra overheads involved in processing the priority
inheritance information messages�

Thus� PIC fails to provide any performance bene�ts over
�PC due to the delays that are inherent in distributed pro�
cessing� Speci�cally� it is a�ected by the delay in the dis�
semination of priority inheritance information to the sibling
cohorts at remote sites�

��For simplicity� the priority is not reverted to its old value if the
high priority waiter is restarted�
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X� Related Work

As mentioned in the Introduction� distributed real�time
commit processing has received little attention in the lit�
erature and the only papers that we are aware of dealing
with this issue are ���� ����� ��
�� In this section� we brie�y
summarize these papers and contrast them with our study�
A centralized timed �PC protocol is described in ��� that

guarantees that the fate of a transaction �commit or abort�
is known to all the cohorts before the expiry of the deadline
when there are no processor� communication or clock faults�
In case of faults� however� it is not possible to provide such
guarantees� and an exception state is allowed which indi�
cates the violation of the deadline� Further� the protocol
assumes that it is possible for the DRTDBS to guarantee
allocation of resources for a duration of time within a given
time interval� Finally� the protocol is predicated upon the
knowledge of worst�case communication delays�
Our work is di�erent from ��� in the following respects�

First� their deadline semantics are di�erent from ours �Sec�
tion IV� in that even if the coordinator of a transaction is
able to reach the decision by the deadline� but it is not pos�
sible to convey the decision to all the cohorts by the dead�
line� the transaction is killed� Thus their primary concern
is to ensure that all the participants of a transaction reach
the decision before the expiry of the deadline� even at the
cost of eventually killing more transactions� In our work�
however� we have focused instead on increasing the number
of transactions that complete before their deadlines expire�
which is of primary concern in the ��rm�deadline� applica�
tion framework� Second� we do not assume any guarantees
provided by the system for the services o�ered whereas such
guarantees are fundamental to the design of their protocol�
Note that in a dynamic prioritized system such guaran�
tees are di
cult to provide and� further� are generally not
recommended since it requires pre�allocation of resources�
thereby running the risk of priority inversion�
A common theme of allowing individual sites to unilater�

ally commit is used in ����� ��
� � the idea is that unilateral
commitment results in greater timeliness of actions� If it
is later found that the decision is not consistent globally�
�compensation� transactions are executed to rectify the
errors� While the compensation�based approach certainly
appears to have the potential to improve timeliness� there
are quite a few practical di
culties� First� the standard
notion of transaction atomicity is not supported � instead�
a �relaxed� notion of atomicity ���� is provided� Second�
the design of a compensating transaction is an application�
speci�c task since it is based on the application semantics�
Third� the compensation transactions need to be designed
in advance so that they can be executed as soon as er�
rors are detected � this means that the transaction work�
load must be fully characterized a priori� Fourth� �real ac�
tions� ���� such as �ring a weapon or dispensing money may
not be compensatable at all ����� Fifth� from a performance
viewpoint also� there are some di
culties� �a� The execu�
tion of compensation transactions imposes an additional
burden on the system� �b� It is not clear how the database
system should schedule compensation transactions relative

to normal transactions� Finally� no performance studies
are available to evaluate the e�ectiveness of this approach�
Due to the above limitations of the compensation�based

approach� we have in our research focused on improving
the real�time performance of transaction atomicity mecha�
nisms without relaxing the standard database correctness
criterion�

XI� Conclusions

Although a signi�cant body of research literature exists
for centralized real�time database systems� comparatively
little work has been done on distributed RTDBS� In par�
ticular� the problem of commit processing in a distributed
environment has not yet been addressed in detail� The few
papers on this topic require fundamental alterations of the
standard distributed DBMS framework� We have instead
taken a di�erent approach of achieving high�performance
by incorporating novel protocol features�
We �rst precisely de�ned the process of transaction com�

mitment and the conditions under which a transaction is
said to miss its deadline in a distributed �rm real�time set�
ting� Subsequently� using a detailed simulation model of
a �rm�deadline DRTDBS� we evaluated the performance
of a variety of standard commit protocols including �PC�
PA� PC and �PC� with respect to the number of killed
transactions� We also developed and evaluated a new com�
mit protocol� PROMPT� that is designed speci�cally for
the real�time environment and includes features such as
controlled optimistic access to uncommitted data� Active
Abort� Silent Kill and Healthy�Lending� To the best of our
knowledge� these are the �rst quantitative results in this
area�
Our performance results showed that distributed com�

mit processing can have considerably more e�ect than dis�
tributed data processing on the real�time performance�
This highlights the need for developing commit protocols
tuned to the real�time domain� The new PROMPT proto�
col� which was an attempt in this direction� provided sig�
ni�cantly improved performance over the classical commit
protocols� By appropriately setting the MinHF param�
eter� it was possible to eliminate most of the unhealthy
lendings and with this optimization the di�erence between
PROMPT and Shadow�PROMPT� which represents the
best on�line usage of the optimistic lending approach� never
exceeded two percent� Further� this high level of perfor�
mance was achieved without incurring the implementation
overheads and integration di
culties associated with the
Shadow mechanism� Finally� PROMPT�s conservatism in
preventing borrowers from continuing to execute if their
associated lenders had not yet received their decisions was
addressed by incorporating an additional bit and message
that informed the master about the borrowing state and
the completion of borrowing by a cohort� However� only
minor KillPercent improvements were realized by this op�
timization�
We also evaluated the priority inheritance approach to

addressing the priority inversion problem associated with
prepared data� Our experiments showed that this approach
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provides virtually no performance bene�ts� primarily due
to the intrinsic delays involved in disseminating informa�
tion in a distributed system� It therefore does not appear
to be a viable alternative to PROMPT for enhancing dis�
tributed commit processing performance�
In summary� we suggest that DRTDBS designers may

�nd the PROMPT protocol to be a good choice for
high�performance real�time distributed commit processing�
Viewed in toto� PROMPT is a portable �can be used with
many other optimizations�� practical �easy to implement��
high�performance �substantially improves real�time perfor�
mance� and e
cient �makes good use of the lending ap�
proach� distributed commit protocol�
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