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Abstract

Often, data used in on-line decision making (for exam-
ple, in determining how to react to changes in process be-
havior, traffic flow control, etc.) is dynamic in nature and
hence the timeliness of the data delivered to the decision
making process becomes very important. The delivered
data must conform to certain time or value based appli-
cation specific inconsistency bounds. A system designed
to disseminate dynamic data can exploit user-specified co-
herency requirements by fetching and disseminating only
those changes that are of interest to users and ignoring
intermediate changes. But, the design of mechanisms for
such data delivery is challenging given that dynamic data
changes rapidly and unpredictably, the latter making it very
hard to use simple prediction techniques. In this paper, we
address these challenges. Specifically, we develop mecha-
nisms to obtain timely and consistency-preserving updates
for dynamic data by pulling data from the source at strate-
gically chosen points in time. Motivated by the need for
practical system design, but using formal analytical tech-
niques, we offer a systematic approach based on control-
theoretic principles. Our solution is also unique from a
control-theoretic perspective due to the presence of inherent
non-linear system components and the dependence between
the sampled time and sampled value. A proportional con-
troller with dynamically changing tuning criteria is used in
this work as a means of deciding when to next refresh data
from the source. Using real-world traces of real-time data
we show the superior performance of our feedback-driven
control-theoretic approach by comparing with (i) a previ-
ously proposed adaptive refresh technique and (ii) a new
pattern matching technique.

Keywords : Dynamic Data, Temporal Coherency, Data
Dissemination, Push, Pull, Control-theory.

1 Introduction

An ever increasing fraction of the data delivered from
today’s data resources is time-varying (i.e., changes fre-
quently). Examples of such data include sports information,
news, financial information such as stock prices, and traffic
data. An important issue in the dissemination of time vary-
ing data in such applications, is the maintenance of tempo-
ral coherency. The coherency requirements on a data item
depends on the nature of the item and user tolerances. To
illustrate, a user may be willing to receive sports and news
information that may be out-of-sync by a few minutes with
respect to the source, but may desire stronger coherency re-
quirements on the status of patients’ critical parameters.

In a typical data dissemination environment, maintain-
ing consistency of the source and the user can be achieved
in one of two ways: 1) In the Source push model, the
source of the data pushes data to the user (whenever data
changes at the source). In this model, the source must main-
tain state information, in particular, it must keep track of
user requirements and push the data to a user at the appro-
priate time. 2) In the User Pull model, the user pulls
data from the source (whenever it suspects that data might
have changed at the source). So, consistency of the data
at the user depends on how often the user polls, i.e., pulls
from the source. Too frequent polling may result in unnec-
essary overheads, while infrequent polling might mean stale
data. Many real-world sources are designed to be polled
e.g., simple sensors, web sources, sensor proxies[14]. Even
if a source has push capability, pushing only when required
leads to computational overheads and state-space overheads
at the sources[3]. So, we look at the possible ways in which
judicious pulling can be accomplished. We define Time to
Refresh (TTR) as the time gap after which a user refreshes
the data item from the source. For minimizing the incurred
communication overheads, the value of TTR must be high.
But a low TTR value may compromise temporal consis-
tency. We must also dynamically update this TTR value



using an algorithm that decides the value depending on the
present and past rates of source changes, with the goal of
keeping remote requests to a minimum while maintaining
the needed temporal accuracy of the data.

1.1 Maintaining Temporal Coherency

We assume that a user specifies a temporal coherency re-
quirement, � , for each cached item of interest. The value of
� denotes the maximum permissible deviation of the value
known to the user from the value at the source and thus con-
stitutes the user-specified tolerance. Observe that � can be
specified in units of time (e.g., the item should never be out-
of-sync by more than 5 minutes) or value (e.g., the stock
price should never be out-of-sync by more than a dollar).

In this paper, we only consider temporal coherency re-
quirements specified in terms of the value of the data as
maintaining temporal coherency specified in units of time
is a simpler problem. Thus, we assume that a user speci-
fies a temporal coherency requirement � , for each item of
interest. The value of � specifies the maximum permissible
deviation of the date item value seen by the user from the
actual value at the source:
� ���������	��
����������
���������������������� �	��
����������
��!��������" � (1)

The degree to which users’ coherency needs are met is mea-
sured in terms of the fidelity of the data seen by users. We
define the fidelity # observed by a user to be the total length
of time that the above inequality holds (normalized by the
total length of the observations). In addition to specifying
the coherency requirement, users can also specify their fi-
delity requirement # for each data item so that an algorithm
that is capable of handling users’ fidelity and temporal co-
herency requirements ( � ’s) can adapt to users’ needs. The
problem is hence to devise an algorithm to generate the se-
quence of $%$'& s for which the temporal coherency require-
ment is satisfied at the lowest cost. Note that choosing large
TTR values translates to low cost.

1.2 Periodic vs. Aperiodic Pull

The traditional approach is to use a constant refresh rate,
i.e., periodic polls, in trying to meet the user specified co-
herency requirement. However this technique requires an a
priori estimation of the data dynamics. Often a low conser-
vative value is selected as the refresh rate in order to meet
the tolerance requirement. This invariably leads to unneces-
sary client pulls resulting in an overhead cost of both com-
munication and computational resources at the source.

An alternative to periodic polling is to adjust the refresh
rate based on the observed dynamics of the data. This can
be viewed as aperiodic polling. But, since dynamic data
change independently and unpredictably, we cannot use a

simple prediction algorithm for predicting the next $($(&
value to be assigned to the data object. In the adaptive
method for assigning $%$(& values [7], the TTR value is
varied based on the rate of change of the data item, given
a user’s coherency requirement: TTR decreases multiplica-
tively when a data item starts changing rapidly and in-
creases additively when changes are infrequent. To achieve
this objective, the Adaptive TTR approach incorporates (a)
static bounds so that TTR values are not set too high or too
low, and (b) accounts for the most rapid changes that have
occurred so far as well as the most recent changes to the
polled data. We describe the adaptive TTR algorithm in
Section 2.

1.3 Contributions of the Paper

The Adaptive TTR algorithm assumes linear changes to
estimate TTR. Our new Adaptive Pattern Matching TTR al-
gorithm dispenses with this assumption and makes esti-
mates by matching current change patterns with those ob-
served in the past. This algorithm is described in Sec-
tion 3. We also propose a feedback driven control theoretic
approach to analyze the problem in a systematic way. A
proportional controller, tuned with Ziegler-Nichol’s method
[11] is shown to work well for low and medium speed
traces. A detuning method that helps maintain the control
effort within permitted bounds is then proposed as a way
to deal with fast changing traces. Because a control theo-
retic approach has the capability to tune many parameters
and respond very fast, this is both systematic and practi-
cal. This algorithm is described in Section 4. We describe
detailed performance evaluation, and discuss the results in
Section 5.

2 A Simple Heuristic Algorithm

To achieve the coherency requirement of a data item, a
user computes a Time To Refresh (TTR) for the data item.
The $%$(& denotes the next time that the user should poll the
source so as to refresh the data item if it has changed in the
interim. The Adaptive TTR Algorithm [7] allows the user to
adaptively vary the TTR value based on the rate of change
of the data item. The TTR decreases multiplicatively when
a data item starts changing rapidly and increases additively
when changes are smaller and slower. To achieve this ob-
jective, the Adaptive TTR approach takes into account

) static bounds so that TTR values are not set too high
or too low,

) the most rapid changes that have occurred so far and

) most recent changes to the polled data.
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In this approach the most recent changes to the data are
used to estimate TTR, assuming linear changes of data.
Although the assumption of linear changes simplifies the
heuristic algorithm, we need to go for an approach which
is not dependent upon this assumption, for better estimation
of TTR. In the next section we describe an Adaptive Pat-
tern Matching TTR algorithm which is based on remember-
ing previous patterns and does not assume linear changes of
dynamic data.

3 An Adaptive Pattern Matching TTR
(APMT) Algorithm

We see that different dynamic data fluctuate at different
rates and that a particular data may have different dynamic
behaviour with the passage of time. This suggests that the
TTR associated with each data item is likely to change with
time. We see that in the adaptive TTR algorithm described
in Section 2, the estimation of $%$(& ��������������� assumes linear
increase or decrease over $($(&
	 ��������� based on coherency
requirement (c) and change of dynamic data. Motivated
by the need for an algorithm which can capture non-linear
changes of dynamic data items, we propose in this section
an Adaptive Pattern Matching TTR (AMPT) algorithm. The
basic principle behind APMT algorithm is to predict TTR
based on past known values of TTR and the direction of
change to the data.

Initially we use frequent Polling of the source to get sam-
ples of TTRs. We represent the sequences of known TTR
values as a time series y =

����
,
��

,
��

,......
����

, where
��

represents the current value. The simple method to predict
the next value,

������
, may be based on the value closest to �

in the past data, say
��

, and predicting
 �����

on the basis
of
�� ���

. The definition of the current state may be extended
to include more than one sample value, e.g., the current state
of size three may be defined as

�� ��� �
,
 �!�"�

,
 � �

.
A segment in the series may be defined as a difference

vector # =
� # � , # � ,...... # ���$� � , where # � =

 ����� �% �
, & 1

"
� "(' �

1. A pattern contains one or more segments and may
be visualized as a string of segments S =

� # � , # � ,...... #*) � , for
given value of h. In order to define patterns mathematically,
we choose to encode the time series as a vector of changes
in direction (b). For this purpose, a value

+�
is encoded as 1

if
����$�
,-��

, as 2 if
��.�"�
/0��

and as 0 if
��.�"�

=
��

. So, b
=
��12�

,
13�

,......
14���$���

, where
13�

is either 0, 1 or 2. We define
a pattern by both # and b of size of k samples. If k is 3, we
define a pattern by both # � =

� # ��� � , # ��� � , # ���$� � and
1 �

=��1 ��� �
,
1 �!�5�

,
1 ���$� �

for predicting
 �����

.
The matching algorithm tries to find a segment # which

is similar to b and has the smallest value for m, where m =687��9��3: �
( # ���5� – # � �5� ), for all ; having similar

1
values,

: �
s

are the weights associated with
� # ���5� – # � �5�<� and = is the

sample size. We choose that ; value which gives minimum

�
.
If
1 � ���

= 1, then
������

=
��?>%@

* # � ��� . If
1 � ���

= 2, then �����
=
 � �A@

* # � ��� and if
1B� ���

= 0, then
 �����

=
 �

, where@
= CED�F�=HG * 6I7��9�� # ��� � / # � � � and = is sample size.
So, the predicted TTR is

 �����
. Suppose user should be

informed when change of dynamic data exceeds c. The
mathematical form of this requirement is

� JLK � � � " 0,
where c is the coherency requirement and

� JMK �
is the differ-

ence of previous value of dynamic data and recently polled
dynamic data. We can have three possibilities, i.e.,

� JMK �
is

less than c, equal to c or greater than c.
If
� JLK �

is equal to c, it implies user polls the dynamic
data correctly. If

� JLK �
is less than c, we increase the previ-

ous TTR linearly by a tuning parameter l and use this cor-
rected TTR and previous three TTRs for predicting the next
TTR, if we choose segment of size 3. We use a window of
samples to predict the next TTR in order to account recency.
This window keeps moving as new TTRs are added.

If
� JLK �

is greater than c, we decrease the previous TTR
multiplicatively by a tuning parameter r (less than one) and
use this corrected TTR and other previous three TTRs for
predicting the next TTR, as we choose segment of size 3 for
predicting the next TTR.

In this approach we see two important parameters: 1)
window size (n) and 2) segment size (p). In order to have
better performance of this approach we need to evaluate op-
timal window size and segment size across different types
of the traces. We evaluate the sensitivity of these two pa-
rameters in section 5.3. Other tuning parameters are r and l,
which we choose heuristically. In the next section, we pro-
pose a feed-back driven control theoretic approach to sys-
tematically address the problem described so far.

4 Control Theoretic Approach

4.1 Challenges in Providing a Control Theoretic
Formulation

The control objective is to decide the time of pull so that
a change of � is not missed. This immediately suggests that
we use the time of pulling as the input variable and the value
of the data item at that time as the output variable. Note that
this input is quite different from what we see in the usual
control problems where time is an independent variable.

This choice, however, will result in a non-stationary sig-
nal since the time of pull is a monotonically increasing func-
tion. The value of the data item could also increase or de-
crease endlessly during the observation period. The usual
method of overcoming this difficulty is to take the first or-
der difference between successive data values and use these
values instead for the input and output variables. Although
this differencing procedure is common in forecasting, it is
unusual in control problems.

3



The process that we deal with is also unusual in that we
are required to find the absolute difference between the data
item values at two successive samples, say

K �
and

K �.�"�
. LetJMK ��� K � �-K �.�"�

be the difference between the data item
values at the two successive samples. In order to decide a
strategy for providing a high fidelity together with a high
average $%$(& , we are interested in knowing whether the
absolute value of the difference

JLK*�
is equal to � . That is,

we require that at all times,

� JLK � �!� � "�� (2)

If we take C � JMK � ��� �2G F � as the output
 �

of the system, then
our fidelity requirement can be stated as demanding

 �
to

be equal to
�
. This hence takes the form of a regulation

problem. Note that the absolute function is a process model
and is also unusual.

4.2 Problem Formulation

As discussed above, we define the input
� �

to be,

� ��� � � ��� ���$�
(3)

where
�<�

and
�E���$�

are respectively the times at which the
� � )

and C � � D�G
� )

pulls are effected. We define the correspond-
ing output,

��
to be,

�� � � K2� � K����$� � � �
� (4)

where
K2�

and
K��.�"�

are the data item values at
�<�

and
�E���$�

respectively. The independent variable
�

is the sample num-
ber. As is done in control problems, we define the input and
output variables to be deviation variables from some refer-
ence values. J � ��� � � ��� �

(5)

and JM�� � �� �	�����
(6)

where
� �

is some reference value of
�

(in traditional con-
trol applications, this is taken as the steady state value).

���
has been arbitrarily chosen as the mean of $%$(& � � � and
$%$(& � ��
 . It has been found that

� �
is not a sensitive pa-

rameter.
� ���

is the steady state value of the output. As the
desired value of

� ���
is
�
, we have,

JM�� � ��
(7)

The open loop system depicting our process can be dia-
grammatically represented as in Figure 1(a).

��������������� ���
������������ ���� ��������! " "��#$�% ���

&('*),+ ���.-/�0� +21(3 �4�5��6 7 ' �  "������82-/�0� +21(3 �4�5��6

Figure 1. Open loop and Closed Loop Sys-
tems

4.3 Logic of Closed Loop Control

We next explore whether putting this process in a feed-
back loop with a controller will help achieve the required
regulation: maintaining

 �
at
�

for all
�
. Consider the be-

havior of the closed loop system in Figure 1(b). Here 9 � de-
notes the setpoint for

��
. In our case, 9 � is 0. In this figure,

the output
JM�� � ��

is compared with
�

and the difference,
�� � ����
is sent as input to the controller. One can easily

observe that a negative error,

�� /:�

, corresponds to
�� ,;�

or equivalently to
� K�� �%K2�.�"� � , � . It follows that the user

should have polled earlier. Hence, when

�� /<�

, we wantJ �5�
to be negative so that

�"�
is decreased. Similarly,


�� ,;�
implies that

J � �
should be increased. This indicates that a

positive control action is required.

4.4 The Process Model

Let us suppose that the output
JM �

and input
J � �

of the
process in Figure 1(a) be represented by an ARX1 model
[10] of the form,

JM 7 > �H�4JM 7 �"� > ����JM 7 � � >>=?=?=�> ���HJM 7 � �� 12�2J � 7 �$� >(13��J � 7 �5� >>=?=!=�>(13�!J � 7 � � > 
 7 (8)

where

 7 is an error term. The parameters

'
,
� �

,
� �

, @?@!@ ,� �
and

1 �
,
1 �

, @?@!@ , 1 � are determined using the observed
input-output data as follows [12]:

We write equation (8) as,


 7 � JM 7 ��ACB 7�D (9)

where

A B 7 �FE � JM 7 �$�G=?=!= � J? 7 �5� J � 7 �$�H=?=!= J�� 7 � �JILK

D � E �H�G=?=?= ��� 12�G=?=!= 13� I
We stack the values of the errors for the observed
input and output sequences

��J � � K J�� � K @M@N@ K J �PO � and

1Auto-Regressive eXogenous
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��JM+� K J?�� K @N@N@ K J? O � respectively, thereby obtaining a tall
system of the form,����

�

 �����

*���$�

...
(O

�����
� �

����
�
J? �����J?����$�

...JM O

�����
� �

����
�
A B�����
A B���$�

...A BO

�����
� D K (12)

where � is a large number such that the matrix inverse ex-
ists in equation (13).

Although we would like the left hand side in equation
(12) to be zero, we can only hope for a least squares solution
as it is a system with more number of equations than un-
knowns. The least squares estimate using the non-recursive
technique [12] is then given by,	D O � C�
 BO� 
 O G �$� � 
 BO�� � O (13)

where,


 O � E A5����� A5���$� =?=?= APO�I B K
(14)

�PO � E J?������ JM����$� =!=?=�J? O I B
(15)

Initially, 1500 equally spaced samples are chosen. As the
input

�5�
is the time difference

�<� � � ���$�
,
� �

will be equal to
the sampling interval, a constant value, for all

�
. Since the

input is constant, the model cannot be identified as the per-
sistent excitation condition [12] is violated. We have chosen
the input vector to be repetitions of the vector (1,2,3,4,5)
and the corresponding data values as the output. This, com-
bined with the fact that 1500 samples are used to calculate
four parameters of the model helps identify the model eas-
ily. Once the control procedure starts, the samples are at
arbitrary time intervals and this strengthens the persistent
excitation requirement. In the next section, we describe a
model for the controller.

4.5 The Controller

Since proportional controllers are commonly used in sys-
tems where it is desirable to speed up the response, we
would like to determine if they are sufficient to achieve our
objective of making

���� �
. A proportional control is of

the following form ,
J � ����� � J�� � >�� 
 �

(16)

where
�

is the proportional gain. A popular way to se-
lect the parameter

�
is the Ziegler-Nichol’s method [11].

In this technique, the controller in Figure 1(b) is chosen as
a proportional controller with a gain

�
. The value of

�
is gradually increased until the output,

 �
starts oscillating.

The value of
�

when this happens is taken as the critical
gain,

� �
. In order to determine the critical gain

� �
, we

take
J����

to be the output of the prediction model of Equa-
tion (8). If

�� C��+G and
� C��+G denote the z-transforms of

J��+�
and

J�� �
respectively, then,� D > � � � �"� > @N@M@ > � � � � ��� �� C��+G �� 1 � � �$� > @N@M@ > 1 � � � � � � C���G (17)

We hence obtain the transfer function of the process as,

� � �� C��+G� C���G �
12� � �"� >(13� � � � > @N@M@ > ��� � �5�

D > � � � �$� > � � � �5� > @M@N@ >(1 � � �5� (18)

Let the numerator and denominator polynomials of
�

be� and � respectively. The closed loop gain of the system
using proportional controller with a gain

�
is then given as,

��� ��� � ���<��� � ��� 	 � � �
D > � � � �� > � � (19)

Simple algebraic manipulation shows that

� > � � � � � >"! ���9�� C �+�5>�� 13� G#� ��� � (20)

Since the stability of a system requires that all the poles
of the z-transform of the transfer function lie within the unit
circle, the problem of finding the critical gain reduces to that
of finding the value of

�
for which there exists a root of the

polynomial in equation (20) whose absolute value is equal
to one. Call the corresponding gain as

� �
. The Ziegler-

Nichol’s setting for proportional controller is
� � � @%$ � � .

4.6 Controller Tuning

The controller designed so far does not take into account
the constraints on the inputs, namely, $%$'& ��� 
'& J �(&
$%$(& � � � . Sometimes, the predicted TTR may lie outside
this bound. This happens mainly in the fast moving traces.
One way to handle this problem is to pose control design as
a constrained optimization problem. As this is relatively
a complicated problem, we have chosen an alternate ap-
proach, which involves detuning the Ziegler-Nichol’s con-
troller so that TTR will come within the required bounds.
This detuning strategy is intuitive, simple and easy to imple-
ment. Moreover, computational overheads in implementing
this strategy are minimal:

) We place bounds on Ziegler-Nichol’s tuning parameter
with upper bound as 0.5 and a pre-defined lower bound�*)

.

) We set initial value of Ziegler-Nichol’s parameter as
0.5 and effect the polls. Let TTR calculated by the
controller be actual TTR. This may be out of bounds
and hence may be unusable. It is then constrained to
come within bounds. Let this TTR be called TTR with
bounds.
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) If the TTR exceeds $($(& ��� 
 or goes below $($(& � ���
more than a threshold

�
number of times, we decrease

Ziegler-Nichol’s tuning parameter by a factor � .

In the next section we describe the results of experimen-
tal evaluation of this control-theoretic TTR adjustment and
compare the overall performance with the Adaptive TTR
and the APMT approaches.

5 Performance Evaluation

In this section we will discuss the simulation environ-
ment, metrics used for the experiment, and present the re-
sults.

5.1 Simulation environment

The algorithm was evaluated using a prototype source
that replayed traces of dynamic data. The experiments as-
sume that the network latency in polling and fetching dy-
namic data items from the source is fixed and is negligible.

The performance of the algorithm was evaluated using
real-world traces. The presented results are based on stock
price traces (i.e., history of stock prices) of a few companies
obtained from http://finance.yahoo.com. The traces were
collected at a rate of 2-3 stock traces per second. Since the
rate of change of any stock quote is much greater than even
one change per second, the traces can be considered to be
real time traces. All the experiments were done on the lo-
cal intranet. We have categorized the traces as fast, medium
and slow based on a statistical measure standard deviation
of the data item. We have taken 1000 traces, each of length
10,000, for categorization. The top one-third of the traces,
which show rapid changes (i.e., large standard deviation)
have been considered as fast changing trace, the middle one-
third and the rest have been considered as medium and slow
changing traces respectively. Table 1 shows examples of
different types of traces and their statistical measure stan-
dard deviation.

In order to check whether our approach is applicable for
other domains, such as the process industry, we also used a
set of temperature data obtained every six seconds from a
polymer reactor.

5.2 Metrics

The algorithm was evaluated using the following met-
rics:

1. Network Overhead in (%), which is the number of
polls normalized by the length of the trace and mul-
tiplied by 100. So, 5% Network Overhead means five
polls over a trace of length 100.

2. Loss of Fidelity, � 	 , which can be measured based
on the total time duration for which the client was
oblivious to changes exceeding user specified c value.

� 	 � $��
����� � ��� ����� �' � ���	� 

$�� ����� � 9 � � 
 � � 9 � ��� � '

Total out of sync time is the time duration for which there
were false negatives.

5.3 Effect of Parameters on the AMPT approach

Figure 2 shows the effect of variation of window size, a
parameter in APMT approach, for fast, medium and slow
changing traces. From Figure 2(a) we see the variation of
network overheads (%) for different window sizess. For
window sizes from 50 to 550, we see some variation of net-
work overheads. For window size

,
550, however, the plots

get flattened across all types of traces. Figure 2(b) shows
variation of loss of fidelity for different window sizes. We
see from the figure that for window size

,
500, we get al-

most the same fidelity across the categorized traces. So, we
conclude that window size

,
550 can be selected as an op-

timal window size.
Figure 3 shows the effect of variation of segment size (p),

another parameter in the APMT approach, for fast, medium
and slow changing traces. From Figure 3(a) we see the vari-
ation of network overheads (%) for different segment sizes.
We see from the figure that for segment size = 3, we get the
least network overheads. From Figure 3(b) we see the vari-
ation of loss of fidelity for different segment sizes. If we
consider both the Figures 3(a) and 3(b) to choose segment
size, we can set segment size to be 3.

For segment size 3 we get better performance in terms of
network overheads (%) and loss of fidelity in fast changing
trace compared to other segment sizes. In medium and slow
changing traces, we can also use segment size of 3 as the
segment size.

5.4 Performance with Modified Ziegler-Nichol’s
Settings

Table 2 shows the values of different parameters used in
the experiment. We see in Figures 4(a), 4(b), and 4(c), the
effect on TTR values of variation of Ziegler-Nichol’s tun-
ing parameter in fast, medium and slow changing traces.
Figure 4(a) shows a plot of actual TTR (predicted TTR
without considering $%$'& ��� 
 and $%$'& � ��� ) and TTR with
bounds with a standard Ziegler-Nichol’s setting as 0.5 for
fast changing traces. Figure 4(b) shows a plot for Ziegler-
Nichol’s setting as 0.1 and Figure 4(c) shows a plot with
Ziegler-Nichol’s setting modified using the technique dis-
cussed in Section 4.6. These three figures show the effect
of variation of Ziegler-Nichol’s setting and placing bounds
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Type of trace Company Max value Min Value Standard Deviation
Fast Changing Veritas 135.75 131.50 0.0100121
Medium Changing INTC 134.5 132.5 .00587
Slow Changing IBM 86.48 86.16 .000335

Table 1. Type of Traces used for the Experiment

parameter Definition Value
p segment size in AMPT approach 3
n window size in AMPT approach 600
l a tuning parameter in AMPT approach 8-10
r a tuning parameter in AMPT approach 0.4-0.6
���

lower bound of modified Ziegler’s setting 0.1
�

tuning parameter of modified Ziegler-Nichol’s setting 0.1-0.2
t threshould used in modified Ziegler-Nichol’s setting 8-10

Table 2. Parameters used in Experiment
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Figure 2. Effect of Variation of Window (n) Size on Networks Overheads and Loss of Fidelity
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Figure 4. Effect of Variation of Ziegler-Nichol’s setting in Fast Changing Trace
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Figure 5. Standard Ziegler-Nichol’s setting
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(c) Slow Changing Trace

Figure 6. Network Overheads (%) vs. Coherency

on controller’s performance. We see from Figure 4(b) that
we get less difference between actual TTR and TTR with

bounds as compared to Figure 4(a). In other words, we
can get better performance if controller responds less ag-
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(c) Slow Changing Trace

Figure 7. Loss of Fidelity vs. Coherency
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Figure 8. Sensor Data: Air Temperature variation

gressively for rapid changes in dynamic data with a re-
duced Ziegler-Nichol’s setting. We see from Figure 4(c)
that we get less difference between actual TTR and TTR
with bounds as compared to Figures 4(a) and 4(b), as in this
case we use modified Ziegler-nichol’s setting, which makes
controller respond adaptively to dynamics of data. We see
from figure 5(a) that we get very less difference between
actual TTR and TTR with bounds in medium changing trace
even if we use standard Ziegler-Nichol’s setting. We also
see from figure 5(b) that there is no difference between ac-
tual TTR and TTR with bounds for slow changing traces.
So, we see that modified Ziegler-Nichol’s setting makes the
controller to respond adaptively and more accurately where
needed - when data changes rapidly.

5.5 Comparison of Adaptive TTR, AMPT and
Control Theoretic Approaches

We take 25 traces of each type for conducting experi-
ments and the plots are based on average of result obtained
from these traces. Figure 6 shows Network overheads of
Adaptive TTR (Heuristic), APMT and Control-theoretic ap-
proaches. From Figure 6(a) we see that for fast chang-
ing traces we can reduce considerable network overheads,
as much as 70% using control-theoretic approach. Simi-
larly from Figure 6(b) and Figure 6(c) we see that even for
medium and slow changing traces more than 60% and 50%
improvement can be obtained.

Figures 7(a), 7(b) and 7(c) show comparison of loss of
fidelity for fast, medium and slow changing traces respec-
tively. We see from figure 7(a) that control-theoretic ap-
proach achieves less loss of fidelity as compared to adap-
tive TTR and AMPT approaches for lower coherency re-
quirements. We also see from Figures 7(b) and 7(c) that
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loss of fidelity is almost the same for all three approaches
for medium and slow changing traces. As mentioned ear-
lier, we also conducted experiments on sensor data, specif-
ically, air temperatures. Figures 8(a) and 8(b) show that
Control-theoretic approach achieves less network overheads
and high fidelity. In summary, from the experimental results
we see that control-theoretic approach performs better than
Adaptive TTR and APMT approaches in terms of achieving
higher fidelity and lowering network traffic overheads.

6 Related Work

The design of coherency mechanisms for dynamic data
has received significant attention recently. Proposed tech-
niques include strong and weak consistency and the leases
approach [5, 8]. Our contributions in this area lie in the
definition of temporal coherency in combination with the
fidelity requirements of users. User polling, is discussed
in [4], where users periodically poll the server to check
if the objects have been modified. In the Alex protocol,
the user adopts an adaptive Time-To-Live (TTL) expiration
time which is expressed as a percentage of the data’s age.

Several research groups have designed adaptive tech-
niques for web workloads [1, 2, 9, 6]. Whereas these efforts
focus on reacting to network loads and/or failures as well
dynamic routing of requests to nearby proxies, our effort
focuses on adapting the dissemination protocol to changing
system conditions.

A new approach, More-less principle, is proposed in
[13] to derive deadlines and periods in update transac-
tions in real-time databases. This approach provides bet-
ter schedulability and reduces update transaction workload
while guarantees data validity constraints, but it does not
deal with unpredictable dynamics. We focus on adapting
time-to-refresh for time-varing data, reducing network over-
heads.

7 Conclusions and Future Work

One of the attractive features of the novel approaches
discussed in this paper is that these do not require sources
to push changes, thus avoiding the computational overheads
and state space overheads at the source. In this paper, we
explored the possibility of using a proportional controller
to address the problem of intelligent polling. We show su-
perior performance of control theoretic approach over both
the existing Adaptive TTR and the new Pattern Matching
based approach in terms of communication overheads and
fidelity given to the users. Our experimental results show
that we can save substantial network overheads, as much as
70% in fast chaging traces, 63% in medium changing traces
and 50% in slow chaging traces. We also showed that we

can obtain better fidelity using control-theoretic approach
compared to other two approaches.

Finally, the control theory based solutions have the po-
tential to scale to multivariable systems, as these are backed
by formal methods.
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