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Abstract— We examine the problem of determining
boundaries occurring in natural phenomena using sensor
networks. Sensor nodes remotely collect data about various
points on the boundary. From this data, we estimate
the boundary along with the confidence intervals using
a regression relationship among sensor locations and the
distances to the boundary. The confidence intervals are
guaranteed to be narrower than a specified maximum
width. Our distributed boundary estimation strategy uses
a hierarchical structure of clusters of sensor nodes and re-
quires 20−50% less messages as compared to a centralized
scheme. The computed intervals show desired coverage
of the true boundary points. Further, motivated by the
practical need to estimate the boundary with a minimum
number of sensors, we develop an adaptive approach for
turning sensors on and off. The number of ON sensors in
this scheme is only about 15% more than what a Practical
Oracle needs, to evaluate the boundary and confidence
intervals around it. Our algorithms are also evaluated
using data from real sensors on a testbed.

I. INTRODUCTION

Sensor networking applications involve estimating
spatial variation of a physical field. In many situations,
we encounter a field that is composed of two regions,
with one having the value of the field parameter less than
a threshold and another having the same greater than
the threshold. The regions are delineated by a boundary.
Examples of applications where such boundaries need
to be detected include monitoring the spread of toxic
gases [1], oil spills in oceans [2], or even tracking storm
cloud front. Oil companies are interested in deploying
off-shore sensor networks to monitor the area where
oil spills normally happen. The focus in these cases
is detecting the spill as well as tracking it. Such an
application using sensor networks involves selecting a
proper set of data sources, gathering latest observations
from these sensors, estimating the boundary using a

suitable aggregation technique, and finally delivering the
result to one or more sink sensors where users can access
the information. Designing such an application has many
challenges such as dealing with resource constraints of
sensors, estimating boundaries with the desired accuracy,
providing a scalable solution etc.

The solution space for the boundary estimation prob-
lem can be examined along four orthogonal dimensions:
(1) the characteristic of the sensors being used - either
static or mobile; (2) sensing capabilities - either point
sensing or range/remote sensing; (3) the accuracy of
the estimation - either exact or approximate; and (4) the
nature of the boundary - either static or dynamic. In this
paper, we explore the solution space where static bound-
aries are estimated with bounds on the inaccuracy using
static sensors with range/remote sensing capabilities.

One of the initial papers [3] in this area discusses
how to estimate a boundary with a desired accuracy
provided a large density of static sensors is available.
Recognizing that mobile sensors could help in relaxing
the requirement of dense deployment, an approach for
tracking dynamic boundary using uncoordinated mobile
sensors is explored in [4]. Using mobile actuator-sensor
networks for tracking the diffusion of a plume is dis-
cussed in [1]. But in all these cases, sensors with point-
sensing capabilities are being used, which implies that
the sensors can detect the boundary only if some of them
have physical contact with it. In some applications, for
example, detecting the presence of oil slick under the
ocean surface or predicting trajectory of weather param-
eters, it may not be possible for sensors to have physical
contact with the boundary. The non-contact property of
range or remote sensors for example, using radars [5] or
laser pulses [6], is useful in these cases. Figure 1 shows
an example boundary and the relationship between the
positions of sensors and their observations: a sensor at



Fig. 1. Boundary Example

position (42, 14) finds that the distance to the boundary
is 54 and generates an observation (42, 68). Essentially,
we can view the sensor as having a directional antenna
facing the y direction.

If we assume that a sensor locates a boundary point
having the same value of x and the boundary point
depends only on the x coordinate of the sensor, then the
relationship between x and y coordinates of the observed
point can be modeled as a regression function. Here,
the x coordinate of a boundary point is the independent
variable, whereas the y coordinate of the same is the
value of the dependent variable.

The value of the regression function can be deter-
mined in two ways: parametric and non-parametric. The
parametric approach assumes that the relationship has a
functional form that can be obtained based on a set of
observations whereas in the non-parametric approach the
relationship function is estimated without reference to a
specific functional form of the boundary. Moreover, in
both of these techniques the regression function can be
computed either in a centralized or a distributed fashion.

The contributions of this paper lie in addressing the
following issues connected with the problem of boundary
estimation using data from distributed sensor sources:

1) Given erroneous observations from sensors how
can we estimate the boundary?
We use a non-parametric regression-based ap-
proach that estimates the boundary without ex-
plicitly referring to its functional form, using a
network of sensors capable of range sensing.

2) Can we associate confidence intervals with the
estimated boundary?
Our estimation technique provides confidence in-
tervals around the estimated boundary and ensures
that the width of the intervals is less than a specific
bound δ.

3) How do observations from sensors get dissemi-
nated to node(s) estimating the boundary?
The novelty of a regression-based approach is that
it is amenable to distributed evaluation of the
boundary and the confidence intervals (CIs) using
an in-network aggregation strategy that needs 20−
50% less messages as compared to a centralized
scheme.

4) Can we obtain CIs having a desired maximum
width of δ at user-specified locations, using an
optimal number of deployed sensors?
We present an efficient distributed algorithm for
estimating the CIs with bounded width δ at a set
of selected locations. This method uses only about
15% more sensors than a Practical Oracle would
require. We also extend our algorithm to a more
general solution where it is ensured that CIs around
the estimated boundary at any location has width
less than a specific bound.

The developed algorithms are evaluated using an imple-
mentation on the TOSSIM simulator and data from real
sensors on a testbed.

The paper is organized as follows. Section II provides
the problem definition and the basic solution approach.
Section III explains our proposed distributed solution
strategy and Section IV provides an approach for esti-
mating the boundary using a minimal number of sensors.
The experimental results presented in Section V show the
effectiveness of our technique. Section VI concludes the
paper.

II. PROBLEM FORMULATION AND APPROACH

We assume that sensor nodes are distributed over a
two dimensional field measuring a field parameter and
they are aware of their physical locations using, for
example, a GPS enabled antenna or local positioning
system. Every sensor is directional along the y axis and
based on its position, determines the y coordinate of the
first point where the field parameter meets the definition
of the boundary as specified by a threshold. Further,
we assume that the observation of ith sensor consists of
(xi, yi) where xi is also the x coordinate of the position
of the sensor.1 Given n such sensor observations with
errors, our objective is to find a technique to evaluate the
boundary at arbitrary x values with a certain accuracy.
In this paper, we have addressed the problem of comput-
ing pointwise confidence intervals (pj , Lj) and (pj , Uj)

1yi is the y coordinate of the measured boundary point’s location
and not the relative distance from the sensor



which are respectively the lower and upper portions of
the intervals for a desired confidence (100− ε)% around
the estimated boundary at pj .

We model the relationship between xi and yi as
a nonparametric regression. With n observations, the
regression relationship can be written as

yi = m(xi) + αi, i = 1, . . . , n (1)

where m is the regression relationship between xi and yi,
and αi are the observation errors. If the errors have mean
zero distribution, then the mean value of the distance to
the boundary at xi is m(xi). Assuming the boundary to
be smooth, the observations at points close to x contain
information about the value of m at x. Thus, intuitively
it is possible to use a local average of the data near x
to construct an estimate for m(x). We define a set of
weights such that m(x) is estimated using a weighted
average of the observations within a small neighborhood
of x. The basic step involved in the estimation of m(x)
could be as follows:

m̂(x) =
1
n

n∑

i=1

Wi(x)yi (2)

where {Wi(x)}n
i=1 denotes a sequence of weights that

may depend on all the observations at {xi}n
i=1. We use

m̂(x) to denote the estimation of m(x). The technique
of kernel smoothing [7] is useful in this respect where
the shape of the weight function Wi is defined using
a function called kernel K. Typical kernel functions
are zero outside some range which implies the weight
sequence is non-zero only for observations within a small
neighborhood around x. This neighborhood is referred to
as h-neighborhood of x and the parameter h is called the
bandwidth in the field of nonparametric regression.

The weight sequence proposed by Nadaraya-Watson
estimator [8] is defined as Wi(x) = K(x−xi

h )/f̂(x)
where,

f̂(x) =
1
n

n∑

i=1

K(
x − xi

h
) (3)

The numerator of weight sequence is a kernel function
and denominator of the weight sequence is f̂(x) which is
the kernel density estimator of x. It serves two purposes:
(1) the weights adapt to the local density of x (2) it
satisfies that the weights sum to one. The expression for
m̂(x) after plugging in the weight sequence in Equation
(2) becomes,

m̂(x) =
1
n

∑n
i=1 Kh(x − xi)yi

1
n

∑n
i=1 Kh(x − xi)

(4)

Here Kh(u) = K(u
h) is used for simplification.

Example: Let (xi, yi) values for four observations be
(10, 13), (11, 15), (12, 18), (13, 20). Suppose we want to es-
timate y value for x = 12.75.
If we take h = 1.25; and a simple kernel K(u) = .75(1 −
u2)I(|u| ≤ 1), then the weight sequences for estimating
m̂(12.75) are: W1(12.75) = 0;W4(12.75) = 0;
f̂(12.75) = (.64 + .96)/4 = .4
W2(12.75) = .64/.4 = 1.6; W3(12.75) = .96/.4 = 2.4;
m̂(12.75) = (1.6 × 18 + 2.4 × 20)/4 = 19.2

The computation of the CIs around the estimated m̂(x)
requires the knowledge of how far this estimation is from
the true m(x). From the asymptotic normal distribution
of |m(x)−m̂(x)| based on a theorem from [9], the upper
and lower CIs U(x), L(x) around m̂(x) for a specific
confidence (100 − ε)% can be obtained as,

U(x) = m̂(x) +
cεc

1/2
K σ̂(x)

(nhf̂(x))1/2

L(x) = m̂(x) − cεc
1/2
K σ̂(x)

(nhf̂(x))1/2
(5)

where σ̂2(x) is the estimated error variance at x, cε is the
(100 − ε)-quantile of a normal distribution and cK is a
kernel constant. The bias term is ignored while obtaining
the above equations from the normal distribution.

The error variance for a given value of x can be
calculated using conditional variance of y,

σ2(x) = E(y2|x) − m2(x) (6)

σ̂2(x) =
1
n

n∑

i=1

Wi(x)y2
i − m̂2(x) (7)

where σ̂(x) is the estimate of σ(x).
The coverage of the CIs is formally defined here.

Suppose all sensors make N instances of observations
and CIs at x are estimated in every instance. In η
out of those instances, the following condition is true:
Li(x) ≤ m(x) ≤ Ui(x) that is, the actual boundary is
within the estimated CIs. Then,

coverage(x) =
η

N × 100 (8)

Next, the relevant question is: how do we evaluate the
regression relationship and the conditional variance in
a sensor network. The expressions for m̂(x) and σ̂2(x)
reflect that they are aggregate functions of sensor obser-
vations. Hence, we need a suitable aggregation technique
to realize these expressions from sensor observations.
This is addressed in the following section.



III. DISTRIBUTED BOUNDARY ESTIMATION

STRATEGY

In this section, we discuss how observations from
the nodes are used to estimate the boundary points and
their conditional variances in a distributed fashion. This
involves (i) deciding where the data aggregation should
take place, (ii) how the observations from individual
nodes reach the nodes that perform such aggregation,
and (iii) what computation should take place at these
nodes. There are two basic approaches for disseminating
the data in sensor networks. In a centralized solution, all
the observations are sent to a base station that performs
the computation. This solution is not scalable as the
total number of messages sent by all nodes increases
with the size of the network. Conversely, in a distributed
solution, the observations can be combined through in-
network aggregation and the computations can be done
in an incremental fashion at intermediate nodes.

For efficient data aggregation, hierarchical clustering
is preferable as it helps in reducing energy consumption
and in efficient resource utilization (number of nodes
being used) [10]. So, we explore a cluster-based data
dissemination technique which is discussed in Section
III-A. For a distributed implementation, Equations (2)
and (7) are amenable to being split into expressions that
can be evaluated at the cluster heads (CHs) in the routing
tree. This is described in sections III-B and III-C. The
evaluation of the proposed approach is done in section
III-D.

A. Routing using Clusters

How the nodes in the network disseminate information
using clusters is discussed here. Initially, the sensors
are organized into clusters and cluster heads (CH) are
selected. We require the nodes within a cluster to be
one or two hops away from the CH so that the obser-
vations from individual nodes can easily be aggregated
at the CH. In our case, different CHs may contribute
to the partial aggregates relating to different boundary
points. So it is not clear whether a general clustering
scheme with the goal of minimizing the energy will
meet our needs. Given this consideration, we use a
cluster formation algorithm suggested in [11] as it has the
characteristic that the nodes within a cluster are within
the communication range of the CH and it generates an
optimal number of clusters. We assume that there is a
base station (BS) that is always a CH. All other CHs
form a routing tree structure rooted at BS. This implies
that every CH has a parent node through which it can
send data to a CH closer to BS.

In the routing tree, each leaf node sends its observation
to the respective CH. Non-leaf nodes and CHs wait for
their child nodes to send their data before forwarding the
aggregated data to their respective parent nodes.

B. Computation of Distance to the Boundary

Since the regression function, m̂(pj) and the condi-
tional variance σ̂2(pj) are duplicate-sensitive aggregates
we require that observation from any node is included
in the computation at-most once. This is ensured by the
cluster-based routing scheme used here. The technique
for computing the regression function at pj is as follows.
The observation from a node with xi coordinate is used
for computing boundary point m̂(pj) if it satisfies the
relationship pj − h ≤ xi ≤ pj + h. The expression for
m̂(pj) in (4) can be written in terms of a fraction N

D
where numerator N is the sum of individual observations
multiplied by the kernel at xis and denominator D is
the sum of kernel values evaluated at xis in the range
[pj − h, pj + h].

If all the leaf nodes within the neighborhood of pj

send their observations to two CHs and sets of xis of
nodes within these clusters are: S1 = {xi|i = 1, . . . , M}
and S2 = {xi|i = M + 1, . . . , n} where their union is
denoted by S = S1 ∪ S2. Then m̂(pj) can be evaluated
as follows:

m̂(pj) =
∑

iεS Kh(pj − xi)yi∑
iεS Kh(x − xi)

=

∑
iεS1∪S2

Kh(pj − xi)yi∑
iεS1∪S2

Kh(pj − xi)

=
N1(pj) + N2(pj)
D1(pj) + D2(pj)

(9)

where Nl(pj), Dl(pi) for l = 1, 2 are as given below:

Nl(pj) =
∑

iεSl

Kh(pj − xi)yi

Dl(pj) =
∑

iεSl

Kh(pj − xi) (10)

This shows that multiple CHs can compute Ni, Di

terms and these partial aggregates (PA) for m̂(pj) can
be combined using the above strategy to obtain a new PA
and sent through the routing tree to BS. A CH calculates
the PA for m̂(pj) only if it has at least one observation
within its cluster for computing this.

C. Computation of Conditional Variance

Using a similar technique used in the previous section,
multiple nodes in the network can compute the condi-
tional variance in a distributed fashion. The computation



Fig. 2. CHs computing m̂ and σ̂2 for p1 = 11.5 and p2 = 14

of variance as in (7) involves taking the square of
observations from the individual nodes and using the
value of final m̂(pj). Again, if S is the set of relevant
observations available at two CHs, then the variance of
a boundary point is computed using PAs from these two
nodes using the following approach:

σ̂2(pj) =
∑

iεS Kh(pj − xi)y2
i∑

iεS Kh(x − xi)
− m̂2(pj)

=
Q1(pj) + Q2(pj)
D1(pj) + D2(pj)

− m̂2(pj) (11)

where D1(pj) and D2(pj) are provided by Equation (10)
and Ql(pj) for l = 1, 2 is given as:

Ql(pj) =
∑

iεSl

K((pj − xi)/h)y2
i (12)

Thus, many nodes in a sensor network can com-
pute PAs that contain (Ni, Di, Qi) terms for m̂(pj)
and σ̂2(pj) in a distributed manner using the above
aggregation technique.

A crucial step in estimating the true boundary is
choosing the parameter h that controls how much of
the neighborhood around pj has to be considered in
estimating the boundary at pj . We used an iterative plug-
in approach [12] for finding the optimal h that minimizes
the expression for the average square error (ASE). It
requires estimating m̂′′(x) the second derivative of the
regression curve, using the kernel method. Due to lack of
space, we have not provided the details of this technique
in this paper.

An example of computing PA at CHs for two points
p1 = 11.5 and p2 = 14 using h = 1.5 is shown in Figure
2. After the information is sent to Node 1, it estimates
m̂(11.5) = 15.5 and σ̂2(11.5) = 2.8, m̂(14) = 18.3 and
σ̂2(14) = 3.9.

D. Evaluation of the Basic Approach

Our proposed technique is evaluated through experi-
ments to verify whether it provides an effective mech-
anism for estimating a physical boundary using sensor
networks. We experiment with boundaries of two types
of shape - regular and irregular. Regular shapes are gen-
erated using a few mathematical functions. Boundaries
of arbitrary shapes are generated using real temperature
values from sensors over a time period. From such a
temperature trace, the time axis is mapped to the x
values of sensors between (0, 100) and the observations
are obtained from the temperature at corresponding x
values. A network of 120 sensors is used to estimate
CIs around a boundary at different values of x. Figure
3(a) and Figure 3(b) illustrate a smooth boundary and a
non-smooth boundary respectively computed using our
technique. Here the x axis represents x values of the
field and y axis shows m̂(x) and the CIs around it.
Note that most of the portions of the true boundary
lie within the CIs. The width of CIs is proportional to
the confidence level as well as to the error variance of
observations as expected from Equation (5). We observe
the effect of varying confidence level (100 − ε)% in
Figure 3(a) and the effect of varying the error variance
σ2 in Figure 3(b). In experimental evaluations, we see
that these confidence intervals also show good coverage
of the actual boundary.

IV. OPTIMIZING SENSOR USAGE

In this section, we extend our algorithm such that the
confidence intervals (Uj , pj) and (Lj , pj) at k values
p1, . . . , pk satisfy the following conditions:

1) the true boundary lies within the above interval
with confidence (100 − ε)%, and

2) max|Uj − Lj | ≤ δ

here δ and ε are specified by the application.
In addition, with the objective of tracking a boundary

for the longest possible time, when the CIs are being
estimated at many locations, they should be done using
a minimal set of ON sensors. If a sensor’s observation is
not required for boundary estimation, the node is turned
off.

We extend our cluster-based evaluation scheme dis-
cussed in the previous section to address the following
issues: (i) if CIs have width much lower than δ, it may be
computed with less number of observations, hence, some
sensors can be turned off, (ii) if the width of a CI is more
than δ, some additional sensors in the neighborhood
have to be turned on. (iii) if sensors are contributing to
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more than one boundary point, some optimization of the
number of ON sensors could be obtained while satisfying
δ criterion for a set of points. Clustering of sensors helps
in deciding the ON/OFF status of neighboring sensors
within a cluster.

A. Selecting a Minimal set of ON sensors

For simplicity, we assume that the errors in observa-
tions as given in Equation (1) have identical distributions.
Since m̂() is the weighted average of all observations,
using the statistical property of variance of an average,
the width of CIs around m̂() reduces with increase in
the number of observations. The challenge here is to
select appropriate number of sensors for turning on (and
turning off) so that all the intervals meet the width
criterion. Since sensors in h-neighborhood of a particular
boundary point may be spatially apart and may belong to
different clusters, each CH has to make its own decision
locally on how many sensors to turn on(off) and yet
globally minimize the total number of ON sensors.

We use an iterative approach for turning on(off) nodes.
Initially, all the CHs send the PAs to the BS but in sub-
sequent iterations, only the PAs that have changed due
to turning on/off nodes are sent. In every iteration, BS
recomputes the confidence intervals and communicates
the information about the width of the intervals (whether
greater than or less than δ) to individual CHs using
an efficient bitmap-based technique. Different bitmaps
are used to indicate the distance between the actual
width and δ. The main components of our solution for
obtaining a minimal set of ON nodes are as follows:

• There should be a route from any node to the BS
using only currently ON nodes. This is achieved by
not turning off any non-leaf CHs and the interme-
diate nodes used for routing.

• If an OFF node contributes to the computation of
a large number of boundary points for which the
width is > δ, then it should be turned on. This is
achieved by each CH keeping a score list for all
the nodes in its cluster where the score of a node
indicates the number of boundary points having x
in the h-neighborhood that have not met the δ limit.

• An ON node is selected for turning off, if all the
boundary points in its h-neighborhood have width
< δ by a certain amount.

• To reduce the communication overhead, the CHs
closer to BS initiate the process for turning on
followed by the CHs farther from BS.

• In every iteration, based on the information sent by
BS and local score list, each CH decides to turn on
additional sensors or turn OFF redundant sensors.

The iterative process converges when the following
condition is satisfied: if there is some pj for which the
width criterion is not met, then there should be no OFF
sensors within h distance from pj . Note, this does not
necessarily imply that all the intervals are computed with
the minimum number of ON sensors. However, exper-
imental evaluations indicate that the proposed solution
does indeed optimize the number of ON sensors.

B. Satisfy δ Criterion for CIs at every x

What should be the k points such that if the width of
CIs around the boundary at these points are ≤ δ, then
the same would be true for CIs estimated at any x?

The ON/OFF status of the sensors in the network is
decided while estimating CIs at k locations. So the value
of k and location of these k points should be chosen in
such a way that would allow us to ensure that the CIs at
any x meet the δ criterion. This requirement, if satisfied,
would provide a band around the estimated boundary



with width ≤ δ such that at any point, the boundary is
covered by the band with confidence (100 − ε)%.

The width of CIs at a particular x as given in (5)
is inversely proportional to square root of the density
of sensors and proportional to the variability of the
boundary. So the CIs at a particular x would be less than
δ if we ensure that the estimated density of sensors at x
is more than a lower bound and the conditional variance
at x is less than an upper bound. The variance at x is
nothing but the sensor noise variance. Assuming that the
noise variance is upper bounded by the maximum value
of the same at any of the k points , we focus on satisfying
the condition on density.

The density depends on a specific deployment and
availability of sensors. In addition, the technique of
selecting nodes for turning on/off affects the density of
sensors. An estimation of density as given in Equation
(3) takes into account all ON nodes within h distance.
This indicates that if we have at least one boundary
point at every h distance for which the δ criterion is
met, the local density of sensors is expected to meet a
lower bound at any intermediate points. It suggests that a
choice for k as �Xrange/h� where Xrange gives the range
of x values of the deployed sensors. Using this approach,
we estimate the boundary at equi-distant k values.

Through experimental results, we also verify our claim
that if sufficiently large number of boundary points
are estimated, the CI at any arbitrary x meets the δ
criterion. This is verified by estimating CIs at a large set
(> 200) of equi-distant x values. We observe that as k
increases, the width criterion is satisfied by more points
of the boundary. When k > �Xrange/h�, the criterion is
satisfied by about 99% points.

V. SIMULATION RESULTS

Here we look at the performance of the distributed
boundary estimation technique presented above, showing
that it provides an effective technique for estimating
boundaries of arbitrary shapes. We compare our scheme
with a centralized one in terms of number of messages.
The number of (ON) sensors required in our technique is
compared using two standard techniques - Simulated An-
nealing and a Practical Oracle. In addition, we conduct
experiments for choosing suitable values for parameters
like δ and k. We also evaluate the strategy with real
sensor data on a testbed.

We implement our distributed cluster-based algorithm
in MATLAB as well as in TOSSIM [13], the TinyOS
simulator for motes. Our entire implementation including
the estimation of boundary points and turning on/off

nodes is done in TOSSIM but as it is time consuming,
we use the MATLAB simulation for generating Figure
4.

We consider a field where sensors are deployed in
a two-dimensional 100m × 100m square grid. Their
locations are obtained from a random distribution over
the area. We assume error-free communication but the
simulator includes the possibility of loss of messages
due to collisions. We assume that a message can contain
only one sensor observation and one PA. We take the
errors in sensor observations from a normal distribution
N(0, σ2), where σ2, the error variance, is varied between
.5 and 2.0. The number of boundary points, k is varied
between 10 and 50.

Metric: The metrics we consider are the accuracy in
estimation, the communication overhead and the number
of ON sensors. Accuracy is expressed in terms of cover-
age of the actual boundary points by the CIs as given in
(8). Communication overhead is measured by the total
number of messages used in estimating a boundary point
and its CIs. The other metric is the total number of ON
sensors used in obtaining CI for meeting δ requirement
at a selected set of points.

A. Coverage of Intervals increases with δ and ON nodes

The goal of this experiment is to measure the accuracy
of the CIs estimated using the proposed distributed strat-
egy. The coverage score of our algorithm is calculated
with respect to k points p1, . . . , pk. We generate 100
datasets for these k points and we take σ2 = 1.0. The
average loss of coverage (in percent) resulting from our
algorithm vs. the desired confidence (100−ε)% is shown
in Figure 4. The width of CIs would vary based on the
density of ON sensors and the specified δ. To show only
the impact of δ on the coverage, we perform the first set
of experiments with a fixed number of ON nodes. The
δ mentioned here is the value used for 99% confidence
level. For lower confidence, the δ value is reduced in
proportion to the area of normal distribution. Figure 4(a)
shows that when CIs are wider, the coverage score is
better. As the width of CIs increases, the probability that
the actual boundary point is covered by the intervals
increases. In the next set of experiments, we vary the
density of ON nodes by keeping δ fixed. From Figure
4(b) we notice that the coverage score improves with
an increase in the number of nodes because with more
observations, the estimated boundary point converges to
the actual boundary point. From this experiment, we
conclude that δ should be chosen higher than the sensor
error variance and we require > 100 nodes to get a good
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coverage score.

B. Distributed Estimation is Superior to Centralized

The communication overhead of the proposed dis-
tributed solution is compared with a scheme where all
the observations are sent to a central site and the compu-
tation takes place there. It is worth mentioning here that
there is no loss of coverage from the centralized solution
to the distributed solution as similar computation is
done in both the cases. In Figure 5, we compare the
number of messages in these two schemes for different
values of k keeping the communication range as 10m.
The x axis is the size of the network and the y axis
is the total number of messages. For this experiment,
we assume all the nodes in the network are turned on
and total messages in the distributed version does not
include messages required for computing the optimal h
parameter assuming this is done only once in the initial
phase. We observe that the number of messages increases
as k increases. But we notice that it does not change
much with the increase in network size. This can be
explained as follows.

The total messages include messages for gathering
observations by the CHs and then sending the aggregates
to the base station. The number of nodes providing
observations for a specific boundary point around its
h-neighborhood is approximately 2nh where n is the
total number of ON nodes. Here h is expressed as a
fraction of total range of x values. Since an increase in
n (effectively the node density) leads to a reduction in the
optimal value of h, the first contributor of the messages
does not increase in proportion with n. The second
contributor for messages depends on the levels of the
routing tree which is not affected by node density. Thus,
the distributed scheme offers a scalable solution overall.
As the aggregates for each boundary point is routed
to BS separately, the number of messages increases
in proportion with the value of k. Our algorithm uses
20 − 50% less messages as compared to a centralized
approach for a network size over 100.

C. Comparing Algorithms for using a minimal set of ON
sensors

We like to verify whether the total number of ON
sensors in our approach after turning off redundant ones,
actually forms a minimum set of sensors required to
satisfy δ criteria at all k points. So we compare number
of ON sensors in our approach with the same required
by a Simulated Annealing (SA) technique and by a
Practical Oracle (PO) that is aware of the network
topology.

The SA technique is a standard approach that performs
a random search in the solution space based on a cost
function. In this case, the cost function is proportional
to the number of ON nodes and the number of pj values
for which the width criterion is not met. Hence, SA
reaches the optimum state having the lowest cost when
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the maximum number of boundary points meet the δ
width requirement with the minimum number of ON
sensors. Since a state in SA is defined by ON/OFF state
of all the nodes, the state with the lowest cost is expected
to provide the optimal combination of ON nodes to meet
the δ criterion.

But SA is unaware of the neighborhood information. It
does not use the fact that nodes contributing to a number
of boundary points, if turned on, can help in meeting
the width requirement of CIs of multiple points. Hence,
we implement a heuristic-based Oracle program that
obtains the network topology from the implementation
in TinyOS. The Oracle also has global information about
the observations of all sensors and their ON (OFF) state.
It makes use of a score list of all OFF sensor nodes
indicating their impact on the computed intervals and at
each step, a node with the highest score is selected for
turning on. Thus, the Oracle meets the width criterion
on all the CIs by turning on a minimal set of nodes.

Figure 6 shows the total number of ON sensors of
these three algorithms vs. the value of δ. The initial
number of nodes is 500 and the error variance is σ2 =
1.0. We observe that PO and SA need around the same
number of nodes. However, our scheme needs 5 − 15%
more ON nodes than PO. We also notice that if the
bound is tight i.e., the value of δ is less than σ2,
the difference between PO and our approach is low.
Besides the comparison, this figure also shows the basic
energy-accuracy trade-off in our approach. Though we
have not explicitly derived the expression for the energy
consumption in this paper, the number of ON sensors
is an indicator of energy consumption. For a specific
error variance, the narrower the CIs needed, the larger
the number of sensors that have to be turned on. As
more sensor observations are gathered by the CHs, the
total energy consumption also goes up.

D. Experiment with Real sensors

To verify how our proposed strategy works with real
sensors, we use a robot equipped with linear infrared
distance measuring sensors and a boundary is created
using a wall-like obstacle of non-linear shape. The robot
moves along a defined path and distances to the target
are measured. The actual distances to the boundary are
also taken for reference. Using this dataset in our ex-
perimental setup, the boundary is estimated. We observe
65% coverage of the actual boundary when the number
of observations is less than 50 and but it improves to
91% when the number of observations is increased to
more than 100. In both the cases the observations are
taken over the same range of x values. Figure 7(a) shows
the estimated variance for different x values. We notice
that the variance is 1.0 − 4.0 for most of the values of
x. This suggests that the value of δ should be chosen
> 2.0. The variance is higher when the rate of change
of the boundary with respect to the x coordinate is high.
In Figure 7(b), the estimated CIs for δ = 3.0 are shown.
We observe that the actual boundary is covered by the
CIs if δ is chosen suitably.

In summary, the experimental results reveal the fol-
lowing and thereby show the practicality of our approach
for boundary estimation: 1) the computed intervals cover
the actual boundary points with the desired confidence
level, 2) the technique offers high fidelity if the number
of boundary points is higher than the suggested k value.
3) our distributed solution uses 20− 50% less messages
as compared to a centralized scheme, 4) the efficiency
of the technique for using a minimal number of ON
sensors is comparable with Simulated Annealing and
Oracle approaches, 5) it allows a trade-off between en-
ergy consumption and accuracy in estimating boundaries
using sensor networks.

VI. CONCLUSION AND FUTURE WORK

We have developed a technique for boundary es-
timation in sensor networks where observations from
sensors are aggregated and confidence intervals around
the true boundary are obtained for a set of points. This
strategy allows estimation of the boundary with a desired
accuracy. We have provided a distributed strategy for
realizing the non-parametric regression relationship in
sensor networks. We have also tackled the problem of
satisfying accuracy constraints in terms of the width of
CIs, using optimal number of ON sensors. Moreover, our
proposed distributed strategy uses significantly less num-
ber of messages as compared to a centralized solution for
estimating CIs at a set of boundary points.
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Even though the mathematical model and data dissem-
ination technique described here are for a specific prob-
lem of boundary estimation, the solution approach can
be used for any other generic problem where erroneous
observations are being used to obtain a better estimate of
a physical field parameter using sensor networks. For ex-
ample, the solution can be used to answer the following
question. What is the average temperature in a specific
region X? This can be done by gathering observations
within an optimally chosen small neighborhood of the
region X and computing the weighted average of these
observations.

We now compare our approach qualitatively with the
parametric technique for polynomial regression model
described in [14]. The non-parametric approach assumes
the observations are erroneous and it tries to reduce
the error by aggregation. In the parametric case, the
observations are taken to be the actual values of the
sensed quantity and the coefficients of basis functions
are computed in order to minimize the root mean square
(RMS) between the observations and values of the actual
regression function at sensor locations. As part of our
future work, we would like to find out the ranges on
observation errors for which these two methods give
comparable results.

Our current strategy is being extended to the case
where the boundary changes with time. We include
a time parameter t and the requirement is that the
estimated boundary point lie within the estimated con-
fidence interval for all time t. The main challenge in
tracking a dynamic boundary is to update the CIs with
minimal communication overhead. Moreover, we would
explore real-time processing of the distributed aggrega-
tion strategy outlined here to ensure that the estimation
of boundary is completed before a deadline.
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