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Abstract

This paper focuses on the use of mobile sensors to esti-
mate contours in a field. In particular, we focus on strate-
gies to estimate the contour with minimum latency and max-
imum precision. We propose a novel algorithm, ACE (Adap-
tive Contour Estimation), that (a) estimates and exploits in-
formation regarding the gradients in the field to move to-
wards the contour and (b) uses a spread component to sur-
round the contour in order to optimize latency. While it is
possible for sensors to spread as they approach the contour,
it is crucial to judiciously determine when and how much
to spread. Spreading too early or too much may result in
increasing the latency or affecting the precision. ACE dy-
namically makes this decision using local sensor measure-
ments, history of measurements as well as collaboration be-
tween sensors while adapting to different types of deploy-
ment, distance from the contour and shapes of the contour.
We demonstrate that ACE, in the absence of energy con-
straints precisely determines the contour with a lower la-
tency than when only gradients are used for movement or
when the sensors spread out right from the start of estima-
tion. Additionally, we show that ACE significantly improves
precision of contour estimation in the presence of energy
constraints. We also demonstrate a proof of concept imple-
mentation on a mobile robot testbed.

1. Introduction

Contour estimation is the estimation of the boundary
formed by connecting a set of points of equal value, e.g.,
all points with the same concentration level in a pollutant
spill or all points with the same height in a terrain. The set
of points on the contour define a level set. Consider the sce-
nario of an oil spill. Following the occurrence of the spill we
must determine the extent of the spill (in particular the most
hazardous level set) and track it as it moves. A contour esti-

mation technique that quickly and accurately estimates the
contour is vital to prevent the spread of contaminants and to
take corrective actions immediately. Estimation and track-
ing of contours is used to contain spread of oil-spills [7],
determine level of pollutants and plankton population [9] in
water.

One of the techniques for contour estimation is remote
sensing [6]. In [7], radar images of an oil spill are analyzed
to obtain contours of different concentration levels. Pixel
properties of the images such as intensity, color are corre-
lated to oil concentration, density etc. While remote sensing
has the advantage of spanning large geographical regions,
measurement accuracy may be limited due to being distant
from the phenomenon and the dependence on correlation
between the actual and measured quantities. Further, ob-
servations can be hampered due to inclement weather con-
ditions affecting accuracy of estimation. Also, the cost of
deployment (of satellites and radars) can be quite high.

In-situ sensing, where sensors are in direct contact with
the phenomenon addresses some of disadvantages of remote
sensing based contour estimation. Recent advances in wire-
less sensor technology has resulted in the integration of in-
situ sensing, computing and communicating operations into
low-power low-cost sensing platforms and have enabled nu-
merous applications in areas like environmental monitor-
ing [11], structural monitoring [16] etc. Static in-situ sensor
networks are also used for contour estimation [19, 13]. The
sensors measure the phenomenon and coordinate with each
other to build a model of the field. This model is used to
generate contour maps based on level sets of interest. The
larger the density of the sensors covering the area of inter-
est, the higher is the accuracy of estimation [15]. For high
accuracy of estimation and coverage, there is a need for a
large number of sensors to be deployed over a large geo-
graphical area which is costly and complex. Additionally,
if the phenomenon itself is dynamic, for example a mov-
ing oil spill, static sensor nodes are not useful once the spill
moves out of coverage and redeploying the network may be
prohibitively expensive and time consuming. One potential



technique to address the disadvantages of static sensors is
to enable the sensors with mobility. A few mobile sensors
can be deployed at different locations in the field. The sen-
sors can move in the field and collect measurements. Once
sufficient measurements are available, a model of the field
can be built and used to generate contour maps.

While all of the above techniques can be used to estimate
the contour, they cannot be directly used in cases where we
need to reach the contour to take preventive actions such
as spraying of anti-pollutants or deploying booms to con-
tain an oil spill. In such cases, the mobile sensors need to
physically move to the contour, cover the contour and take
preventive actions to reduce the time required to start cor-
rective operations. In this paper we focus on techniques to
maneuver mobile sensors to locate and trace a contour of a
given value in the field. The benefits of mobility come with
a cost of increased energy usage and latency in estimation.
The energy consumption of a mobile sensor is due to mobil-
ity, communication, sensing and computation with mobility
being at least as expensive as communication. As the sen-
sors work autonomously in the environment, the amount of
energy available for sensor operation is limited. As a re-
sult, it becomes important for the sensors to perform these
tasks (together referred to as contour estimation) such that
the contour is precisely determined and the incurred latency
is minimized.

In this paper, we explore the challenges and implications
of enabling sensor devices with mobility to perform contour
estimation. We propose a novel algorithm ACE, that intel-
ligently combines information from local measurements of
sensors, history of measurements collected over time and
coordination with other sensors to locate and trace the de-
sired level set while minimizing latency and maximizing
coverage in the presence of energy constraints.

1.1 Challenges and Contributions

The task of contour estimation using mobile sensors es-
sentially consists of two steps— (i) movement towards the
contour in the field (converge phase) and (ii) tracing the
contour (coverage phase). The difficulty of these tasks de-
pend on the amount of information available to the sensors
like variation of the field value in the sensor field, number of
sensors deployed, type of deployment, size of the field and
size of the contour. If the exact characteristics of the sensor
field are known a-priori, for e.g., a perfectly gaussian field,
then the contour can be located easily by following the gra-
dient direction. If no knowledge regarding the sensor field
is available, we may have to perform an exhaustive or a ran-
dom search of the entire field to determine the points on the
contour, which results in high latency and energy consump-
tion. The question then is, can we accurately estimate the
contour with partial information, such as local measure-

ments and measurements from other neighboring sensors?
Can the estimation be done with minimum latency and en-
ergy usage? The overall latency of estimation is the sum of
the latency in converge and coverage phases. Some of the
factors that influence latency and energy usage of contour
estimation are (i) the extent of spread of sensors in the field,
(ii) the distance of sensors from the contour and (iii) the size
of the contour.

Since the sensors have no previous knowledge as to
where the contour lies, the first challenge is — how does
a sensor know in which direction to move so as to quickly
arrive at the contour? In ACE, sensors estimate the direc-
tion of movement based on a series of local readings and by
coordinating with other sensors to move towards the con-
tour as quickly as possible. If many sensors happen to be
collocated in the field as they move towards the contour,
they will also converge on to the same point on the con-
tour thereby not benefiting from the presence of multiple
sensors. Hence there is a need for the sensors to spread
out as they approach the contour to enable different sen-
sors to trace different parts of the contour in parallel and
minimize the overall latency of estimation. If the sensors
are deployed far away from the contour, spreading out very
early will increase the converge phase latency and it may
be beneficial for the sensors to spread closer to the con-
tour. If the size or extent of the contour is very large, the
sensors need to spread out right from the start to cover the
contour efficiently. Hence there is a need for each sensor to
balance between moving towards the contour and spreading
out based on the collocation of sensors in the field, distance
of the sensor from the contour and the size of the contour.
The important question is — how do sensors adaptively de-
cide to move towards or spread around the contour?

The main contribution of this work is ACE, a novel algo-
rithm which adaptively decides whether the sensor should
move towards the contour or spread out. ACE uses local
measurements, history and collaboration between sensors to
estimate the factors that affect latency as mentioned above.
Our experimental evaluation shows that ACE significantly
reduces latency and increases precision even in the presence
of energy constraints compared to the strategies that do not
use adaptive spread.

The rest of the paper is organized as follows. Section 3
discusses the assumptions and problem formulation. Sec-
tion 4 describes our approaches. Section 5 presents a de-
scription of our experimental setup along with the results
and observations. Section 6 describes related work and we
conclude with pointers to future work in Section 7.

2. Problem Definition

Our system model consists of mobile sensors deployed
in a two dimensional scalar field with bounded area and ca-



pable of (i) measuring an attribute f within a sensing radius
rsense, (ii) communicating within a transmission radius of
rtrans and (iii) moving with a finite number of steps rstep

in any direction.
Once deployed, any given sensor can sense the attribute

value f at its current location (x, y) as well as within its
sensing neighborhood defined by a circle of radius rsense

and center at (x, y). As sensor measurements are error
prone, we assume that the sensor measurement at any loca-
tion is the average of multiple sample measurements taken
at that location. Sensors are calibrated and the measured
values are within the linear operating range of the sensors
(no saturation). We assume that sensors have no odome-
try errors and have enough energy to move a maximum of
nmax number of steps. Sensors are aware of their locations.
Any given sensor can communicate with all other sensors
and can exchange location and field value information. We
characterize the energy consumed by the sensor as the sum
of mobility, communication and sensing costs. The mobil-
ity cost per sensor is the number of steps taken by the sensor
for estimation. We define our problem as follows:

Let N sensors be deployed in a bounded two dimensional
field, f : �2 → [L, U ] with bounded field amplitude with
upper and lower bounds U and L respectively. Let C ≡
{(x, y) ∈ �2 : f(x, y) = τ} for some τ ∈ [L, U ] represent
the set of points on the contour with field value τ . The task
is to determine C with minimum latency. Next we define
the metrics to evaluate performance of strategies for contour
estimation.

The accuracy of estimation is measured by precision
which is defined as follows. If Cest represents the set of
points on the contour estimated by a given algorithm, then,
in the absence of sensing errors,

Precision =
|C ∩ Cest|

|C| (1)

where C is the set of all points on the actual contour.
The latency of estimation is defined as the maximum

number of steps taken by the sensors in the network to es-
timate the contour. Since the energy consumed is directly
proportional to the number of steps taken, minimizing la-
tency implies minimizing energy consumed for estimation.
If, ti is the number of steps taken by the ith sensor,

Latency = argmaxi(ti) where, i = {1, 2, · · · , N} (2)

In the next section, we describe three contour estimation
approaches in detail.

3 Approaches

In our first approach Direct Descent, the sensors explore
their neighborhood and move along the gradient direction
to approach the contour.

3.1 Direct Descent Algorithm (DD)

A scalar field associates a scalar value to every point
in space. This is often used to indicate the distribution of
a physical quantity such as temperature, concentration in
space. In a scalar field, the gradient direction is perpendic-
ular to the contour and gradient descent is a technique often
used to approach the contour [12].

In the converge phase of DD, each sensor makes use of
local measurements which includes the measurement of the
field value at the current location as well as the measure-
ment of field values sampled at finite number of points in
the sensing neighborhood. The sensor moves to the neigh-
boring location whose field value is closest to that of the tar-
get contour value (greedy heuristic). The movement in DD
is based on a parameter called the distance function which
is computed for each of the neighboring points that are sam-
pled.

The distance Function df at location (x, y) is defined as
the difference between the field value at the sensor’s current
position (x, y) and the field value at the contour, τ and is
given by

df (x,y) =

{
(1 − f(x,y)

τ )2 if f(x, y) ≤ τ
(1 − τ

f(x,y))
2 if f(x, y) > τ

where τ > 0 is the level set value, f(x, y) is the field
value at a location (x, y). df (x, y) = 0 when f(x, y) = τ .

At every step, any given sensor moves to that neighbor-
ing location which minimizes the distance function. If the
sensor revisits a location, then the sensor is trapped in a
local minimum and it stops moving or else if the sensor
moves to a location on the contour, then it begins the cover-
age phase as described below.

The coverage phase of a sensor begins when the sensor
arrives at the contour. As and when the sensors converge on
to the contour, the sensors trace the contour in a distributed
fashion such that the path traced by them do not overlap.
DD uses the traditional wall following approach (used in
solving mazes) to trace the contour. As long as the contour
is connected, the wall following algorithm traces any arbi-
trary shape of the contour. Every sensor that lands on the
contour begins tracing the contour in the clock-wise direc-
tion. The sensors follow the right-hand rule where in the
sensor aligns itself such that the contour is on the right of
the sensor. The sensor halts when it traces a point already
traced by a different sensor on the contour. When all of
the sensors on the contour have halted, the coverage phase
ends and the sensors send their estimated points to the user1.

1In the absence of energy constraints, each sensor has unbounded num-
ber of steps and the contour is said to be completely estimated when all the
tracing sensors halt. In the presence of energy constraints, the sensors trace
the contour until they exhaust their allotted number of steps to guarantee
maximum coverage



Next we discuss some of the shortcomings of DD to moti-
vate the need for spreading of sensors.

3.1.1 Critique of DD

Consider the case where the sensors are collocated in the
field and use DD. The sensors end up being collocated on
the contour as well as shown in Figure 1(a). Sensors S1,
S2 and S3 arrive close to each other on the contour and a
major portion of the contour is traced only by a single sensor
S1, resulting in a higher latency as shown by the dotted
line in Figure 1(a). When the sensors spread out as shown
in Figure 1(b), the task of tracing the contour is shared by
S1, S2 and S3 minimizing the overall latency. Now, we
describe our next approach, Spread Always algorithm that
spreads out the sensors in the field.

(a) Without spread (b) With spread

Figure 1. Effect of Spread on Latency

3.2 Spread Always Algorithm (SA)

Spreading of sensors can be achieved in several ways.
One way is to move the sensors such that each node tries
to move as far away as possible from its neighbors after
deployment [14]. However, the basic disavantage of this
method is that at every step, the sensor needs to communi-
cate its location to its neighbors (at least) or all other sensors
(at most).

In SA, the spread is modeled based on angular distribu-
tion of sensors around a centroid. The centroid is defined as
a point equidistant from all the points on the contour. When
there are no estimated points on the contour, the coordinates
of the center of the field (equidistant from the boundaries of
the field) is chosen as the initial approximation of centroid.
The centroid is useful in many ways — It acts as the center
of the angular distribution, it helps sensors to move towards
the contour when stuck in local minima and it also helps in
determining how much to spread by estimating the area of
the contour.

If N sensors are deployed in the field then the field is
divided into ( 2π

N ) angles centered around the centroid. Each
sensor is assigned an angle θ

′
, called the target angle, such

that the difference between the sensor’s current angle (with
respect to the centroid) and the target angle, which is a

measure of the angular distance is minimized. In Figure
2, five sensors (S1...S5) are deployed in the field and the
field is divided into five sectors and the target angles are
0, 72, 144, 216, 288 degrees. The current angle θ, and target
angle θ

′
of S3 are as shown in Figure 2. S3 is assigned a

target angle such that the angular distance travelled, θd, is
minimized.

Figure 2. Angular spread around the centroid.

In order to model spread, we define a parameter called
the spread function that captures how far a given sensor is
from its target angle.

The spread function sf at location (x, y) is defined as
the difference between the current angle2 (θ) and the target
angle θ

′
and is given by

sf (x, y) = (
θd

2π
)2 where θd = |θ′ − θ| (3)

Note, sf (x, y) = 0 when θ = θ
′

at (x, y). 3

In converge phase of SA, at every step, the sensor com-
putes sf (x, y) for different locations in its neighborhood.
The sensor then moves to that neighboring location which
minimizes the spread function. Just like in DD, if the sensor
is trapped in a local minimum, it stops moving. If the sensor
arrives at the contour, then it begins the coverage phase.

In coverage phase, SA performs wall moving to cover
the contour like DD.

3.2.1 Critique of SA

Next we argue the need to spread judiciously by showing
that spreading always is not beneficial all the time. Consider
the case sensors are very far from the contour as shown in
Figure 3(a). Spreading out always may result in a sensors
moving away from the contour and not converging on the
contour (sensors S1 and S3 failed to converge on the con-
tour) or taking a large distance to arrive at the contour re-
sulting in high latency. It is beneficial if the sensors begin to

2If (xc, yc) represents the current centroid estimate, then θ =

tan−1 y−yc
x−xc

(all angles are measured in radians).
3In the case where the sensor’s current angle is in the first quadrant

and the target angle is in the fourth quadrant, we use the smaller angular
difference (2π − θd). Also, we divide by 2π in order to normalize



spread out only when they are close to the contour in order
to minimize latency. In Figure 3(b), the sensors converge
on to the contour minimizing the latency in coverage phase.

(a) Spread Always (b) Adaptive Spread

Figure 3. Effect of Adaptive Spread on La-
tency

The decision of how much to spread also depends on
the size of the contour. For very small contours it may be
sufficient for just a few sensors to trace it and as a result the
sensors should arrive at the contour as quickly as possible
without spreading out since spreading out always increases
the converge phase latency for very small gain in coverage
phase latency.

Hence spreading always is not judicious and there is a
need for balancing out the movement towards the contour
and spreading out. Next, we present a robust approach that
intelligently combines movement towards the contour as
well as spreading out called Adaptive Contour Estimation.

3.3 Adaptive Contour Estimation (ACE)

From the previous section we see that the decision to
spread or not, when and how much to spread depends upon
the following parameters (i) extent of spread of the sensors
in the field, (ii) distance of the sensor from the contour and
(iii) size of the contour. Next, we describe how ACE makes
the choice between judiciously by dynamically estimating
these parameters.

At each step, every sensor needs to choose between mov-
ing towards the contour or spreading out. In Section 4.1, we
described how DD uses the distance function to arrive at the
contour and in Section 4.2 how SA uses the spread function
to achieve spread. In ACE, these functions are combined so
that ACE can dynamically choose between minimizing the
distance function or the spread function. We define adaptive
spread function at location (x,y), asf(x, y) as a weighted
combination of distance function df (x, y) and spread func-
tion sf(x, y) and is given by:

asf (x, y) = α × df (x, y) + (1 − α) × sf (x, y) (4)

where, (0 ≤ α ≤ 1) is the biasing factor

Just like the previous two approaches, at every step,
the sensor chooses to move to that neighboring location
which minimizes the asf (x, y). Unlike the previous two
approaches, the sensor does not halt when it is trapped in
a local minimum. It moves to the neighboring point that
is closest to the estimated centroid if the sensor is outside
(f(x, y) < τ ) or to the point farthest from the estimated
centroid if the sensor is inside (f(x, y) > τ ) the contour
respectively.

From Equation 3, we see that, by choosing α = 1.0, the
sensor only moves towards the contour (DD) and if α = 0,
the sensor only spreads (SA). From the previous section we
see that α needs to lie between (0, 1) depending on the dis-
tance from the contour, the size of the contour and extent of
spread of sensors in the field as discussed previously. ACE
estimates these parameters as described below.

3.3.1 Estimating Distance From Contour

In ACE, the sensors estimate the normalized distance from
the contour denoted as δ, by analyzing the rate of change
of field values at all the locations visited so far by the sen-
sor and based on this information, estimates where the field
value becomes τ . At each step, every sensor records its cur-
rent position (xi, yi) and the corresponding observed field
value zi. At the end of the kth iteration, the sensor fits
{(x0, y0, z0), . . . (xk, yk, zk)} using a standard non-linear
regression function used to model physical processes [17].

zi = p0 + p1e
−p2∗xi + p3 ∗ e−p4∗yi (5)

where the coefficients p0 . . . p4 are estimated using Nelder
Mead technique [10] and the sum of squares error between
the observed zi and the calculated zi is minimized. Once the
non-linear functional form is estimated, we need to estimate
(x̂, ŷ) where ẑ = τ . For this, we find yi for fixed values of
xi in the field , such that yi also lies in the field (if �2 is
represented as a square field of dimensions [l × l], then for
xi ∈ [0, l] we find yi such that yi ∈ [0, l]) . We choose
the closest (xi, yi) pair to be an approximation of (x̂, ŷ).
The Euclidean distance between the current position of the
sensor (xk, yk) and (x̂, ŷ) is the estimated distance from the
contour and is denoted by δ.

3.3.2 Estimating the Size of Contour

In ACE, the sensors coordinate to estimate the size of the
contour. The size of the contour is characterized by the area
of the envelope bounding the already estimated points on
the contour if sensor(s) have landed on the contour or the
estimated convergence points on the contour if none of the
sensors have converged on to the contour.

ρ =
Area of envelope bounding estimated points on contour

Area of the field
(6)



where the area of the field is used as a normalizing factor.

3.3.3 Estimating the Extent of Spread of Sensors

We define the extent of spread of sensors in the field, S to
be the ratio of the area of the convex hull formed by the
sensors’ locations to the field area.

S =
Area of convex hull of current positions

Area of field
(7)

Finally we combine the three parameters to compute the
bias factor α.

3.3.4 Computing Bias Factor

The bias factor α balances between moving towards the
contour and spreading out as seen in Section 4.3. We now
show that the value of α depends on parameters described
in the previous sections.

• α decreases with extent of spread, S: If the sensors
are are clustered in the field (as seen in Section 4.1.1.),
the sensor’s movement should be biased towards the
spread function sf in Equation 3.

• α increases with the distance from the contour, δ: If the
sensors are deployed far away from the contour, they
need to approach the contour before spreading (as seen
in Section 4.2.1) and the sensor’s movement should be
biased towards the distance function df in Equation 3.

• α increases with decreasing size of contour, ρ: If
the contour is large, the sensor’s movement is biased
towards the spread function sf else if the contour is
small, it is biased towards the distance function df .

Since the field is nonlinear in nature, we model α as a pos-
itive hyperbolic tanh function of the distance δ. The rate at
which α varies with δ is controlled by a multiplicative fac-
tor k. The higher the value of k, sooner does α approaches
1. The value of k = g(ρ, S) is chosen based on the degree
of spread as well as the size of the contour.

α = tanh(k
δ

δmax
) (8)

where δmax is maximum predicted distance from the con-
tour. Figure 4 shows the variation of α with δ for different
values of k. We define k = S

ρ and make α completely adap-
tive to the distance from the contour, size of the contour and
the degree of spread of sensors.

Apart from deciding whether to move towards the con-
tour or spread towards the target angle, it is also important
to assign target angles to the sensors such that, the non-
converged sensors do not arrive at those locations on the
contour which have already been traced by other converged
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Figure 4. Modeling Bias Factor

sensors. ACE keeps track of covered sectors and maneuvers
the nonconverged sensors to move towards the uncovered
sectors as described in the next section.

3.3.5 Moving Sensors Towards Uncovered Sectors

After computing the bias factor, ACE computes the spans
of covered sectors (angle subtended at the centroid by a
tracing sensor’s path on the contour) as shown in Figure
5. This information is used to compute the number of un-
covered sectors and their spans. If the number of uncovered

Figure 5. Target Angle Assignment

sectors is lesser than the number of nonconverged sensors,
then the largest uncovered sector is split successively un-
til the number of uncovered sectors is equal the number of
nonconverged sensors. The angular bisector of the uncov-
ered sector is the target angle corresponding to the sector.
This is done so as to encourage the nonconverged sensor to
move away from the converged sensor tracing the neighbor-
ing sector. In Figure 5, sensor S3 is assigned θ3 and S2, S5
are assigned θ

′
2 and θ

′
5 which are the angular bisectors of the

uncovered sectors. If the covered sector information is not
used, S2 and S5 would have been assigned angles θ2 and θ5

that are already covered by sensor S1. By keeping track of
the uncovered sectors, these sensors are now re-assigned θ

′
2

and θ
′
5 thereby directing them to the uncovered portions of

the contour. The target angles are assigned to the noncon-
verged sensors such that the angular distance traversed by



the sensors is minimized. In the next section we describe
the control flow in the ACE algorithm.

3.3.6 The ACE Algorithm

Once the sensors are deployed, ACE determines the degree
of spread of sensors. If the sensors are clustered, it spreads
out using SA otherwise uses DD for nsteps. At the end of
nsteps, with the data measured (location and field values),
ACE computes for each sensor, extent of spread of sensors
S, the distance δ from the contour, the centroid and area
of the contour ρ. The bias factor α and is computed using
Equation 4 and the value of k is computed with the esti-
mates of the S and ρ. ACE keeps track of the centroid com-
puted previously. If the position of the centroid has changed
(determined by the distance between the newly computed
centroid and the previous centroid is greater than a thresh-
old), the target angles are recomputed based on the new cen-
troid position and are reassigned to the sensors depending
on the number of uncovered sectors as described in Section
4.3.5. Next, ACE determines the neighboring position with
minimum asf value using α. If the sensor has visited the
location previously (local minimum) and is located outside
the contour (f(x, y) < τ ) then it moves to that neighboring
position which is nearest to the centroid. Otherwise, if the
sensor is located inside the contour (f(x, y) > τ ) then it
moves to that neighboring location that is farthest from the
centroid. When the sensor arrives at the contour, it begins
the coverage phase which is similar to DD as explained in
Section 3.1.

4. Experimental Evaluation

In this section we study the performance of ACE, DD
and SA using latency and precision as evaluation metrics
(Section 2). We consider two scenarios (i) without energy
constraints (unbounded nsteps) and (ii) with energy con-
straints (bounded nsteps) to evaluate performance. The re-
sults (along with 95% confidence interval) shown are the av-
erage values over nsim = 1000 simulation runs. For the un-
bounded case, a single sensor landing on the contour guar-
antees 100% precision and therefore we use latency as the
performance metric. In addition we also use another met-
ric Convergence Percentage (CP), that captures the number
of times where at least one sensor landed on to the con-
tour in our experiments. In the bounded case, one or more
sensors landing on the contour does not guarantee coverage
since the sensors may not have enough energy to cover the
contour and we use precision as metric of comparison. We
compare the performance of our algorithms by varying the
following parameters — field, contour shape and size, type
of deployment and energy level of the sensors.

For sake of simplicity, the field is approximated to be

(a) Pollutant Contours (b) Light Contours

Figure 6. Contours for Evaluation

a two dimensional grid of size [l × l]. Sensors can sense
the attribute value f , at each of the grid locations. At any
given point, the sensing radius is said to encompass its eight
neighboring points in a square tessellation. The sensors can
move to any one of its eight neighboring positions.

We use two different types of scalar fields to evaluate
performance. First, we used a pollutant dispersion mod-
eling tool WQMAP4 to generate a pollutant concentration
field. We ran the simulation with three pollutant load sites
and used built-in hydrodynamics for simulating the effect
of the spread the pollutants in water. The simulation ran for
120 time steps and a two dimensional pollutant concentra-
tion field of dimensions [500 × 500] was generated. Figure
6(a) represents pollutant field contours used in our experi-
ments. Next, we created a light field of varying light inten-
sity in the lab, on a grid of dimensions 15 × 15. We mea-
sured the light intensity at each of the grid positions using
a single Crossbow Mote. This field was scaled and interpo-
lated to a grid of length [140 × 140]. Figure 6(b) depicts
different contours in the light field used for evaluation.

A contour is considered large if the area of the contour
is greater than 50% of the area of the field (L1L and L2L

correspond to level sets τ = 150 and τ = 160 in Figure
6(b)), medium if the area of the contour is 30 -50% of the
field area (M1P and M2P correspond to level sets τ = 51
and τ = 86 in Figure 6(a)) and small if it is lesser than
30% of the field area (S1L and S2P correspond to level sets
τ = 121 and τ = 204 in Figure 6 ).

In order to observe the effect of type of deployment on
the algorithms, we use two different types of deployment -
(i) Non-clustered — the sensors are distributed uniformly
randomly in the field (x, y) ∈ U(0, l) and (ii) Clustered
— the sensors are distributed uniformly randomly within a
small circle of radius

√
N where, N is the number of sen-

sors and the center of the cluster itself is placed uniformly
randomly in the field Each simulation consists of a initial
deployment of sensors and the sensors move a maximum

4Applied Science Associates Inc., http://www.appsci.com/



Contours Nonclustered Clustered
ACE DD SA ACE DD SA

Latency CP Latency CP Latency CP Latency CP
S2L 46 ± 1.2 46 ± 1.2 99 59 ± 1 20 135 ± 30 285 ± 71 100 47 ± 4 33
S1P 241.7 ± 11 243 ± 9 63 276 ± 8 29 225 ± 21 258 ± 5 14.5 267 ± 8 4
M2P 398 ± 10 514 ± 14 53 623 ± 14 43 654 ± 50 721 ± 12 31 733 ± 44 11
M1P 429 ± 8 550 ± 11 71 693 ± 16 78 806.5 ± 52 950.5± 5 35 994 ± 22 22
L2L 134.7 ± 2 140.8± 2 100 218.1± 4 99 345 ± 4 409 ± 3 100 433 ± 5 78
L1L 128 ± 1 133 ± 2 100 213 ± 4 100 311 ± 4 383 ± 3 100 408 ± 4 83

Table 1. Effect of adaptive spread on latency and convergence percentage[CP].
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Figure 7. Distribution of latency difference for ACE and DD for M1P contour.

of nmax steps (1000 for non-clustered and 2000 for clus-
tered deployments) before terminating the simulation. In
ACE, the sensors perform re-estimation of parameters ev-
ery nsteps = 5.

4.1 Latency Comparison

We compare the latency of ACE, DD and SA when the
precision is 100% for different contours in both light and
pollutant fields and for non-clustered and clustered deploy-
ments. Table 1 depicts the average latency values and con-
vergence percentage (CP) of DD and SA. For small con-
tours and non-clustered deployment, ACE performs sim-
ilar to DD. For small (S2L) contour in the clustered de-
ployment case, even though SA performed the best, CP of
SA was much lower (33%). For the large contours in the
light field (L1L and L2L), ACE and DD performed simi-
larly as the sensors are deployed close to the contour (light
field is smaller than the pollutant field) and there is not
much of a chance to spread out before landing on the con-
tour. However for medium (M1P , M2P ) sized contours and
non-clustered deployment, ACE has 22% and 38% perfor-
mance gain when compared to DD and SA respectively. For
medium and large contours (M1P , M2P , L1L and L2L) the
performance gain using ACE is 9-18% over DD and 11-
23% over SA in the clustered deployment case.

The CP of DD and SA when the precision of ACE is

100% is as shown in Table 1. We see that the CP for DD
and SA was better in the light field than in the pollutant
field. The intuition behind this behavior is that the size of
the field is smaller in the light field than the pollutant field,
increasing the possibility of sensors landing on the contour.
As contour size increases, CP increases and it is higher for
non-clustered deployments when compared to cluster de-
ployments.

Figure 7 depicts the distribution of the latency difference
between ACE and DD for cases where the latency of ACE is
more than DD and less than DD. The results are shown for
M1P contour in the pollutant field only due to lack of space.
For non-clustered deployment, we see that number of cases
where the latency of ACE is more than DD much smaller
than the cases where DD was less than ACE. The number of
cases where latency of ACE was less than DD was a factor
of 2-12 times more than the case when the latency of DD
was less than ACE. In the clustered deployment case, ACE
performs significantly better than DD.

4.1.1 Sensitivity to Varying Number of Sensors

When the number of sensors (N ) deployed was increased,
we observe that the latency of ACE is 20-25% less than DD
and SA for N = 5 and the latency of ACE and DD are
similar for N = 20. Surprisingly, for N > 20, we observe
that the latency of ACE is higher than DD by 15%. While
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Figure 8. Sensitivity to number of sensors (Contour M1P ).
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Figure 9. Effect of uniform energy bound on precision.

with clustered deployment, latency of ACE is consistently
better— 23% and 33% less than DD and SA respectively.
This result indicates that adaptive spread also depends on
an additional parameter N . We intend to explore the impact
of N on the biasing factor as part of future work.

4.2 Precision Comparison

In this section, we study the performance of ACE and
DD in the presence of energy constraints based on the pre-
cision metric. In the bounded energy case, in order to maxi-
mize coverage the sensors do not stop when it traces a point
already traced by another sensor but continues until all of
the conour is traced or until it exhausts its battery power.

4.2.1 Uniform Energy Bound for all Sensors

In this experiment, we set all the sensors to have the same
number of steps and observe the degradation in precision
for ACE and DD. The maximum number of steps, nmax

allowed per sensor is varied from 50 - 500 uniformly for
all sensors. Figure 9 depicts the precision for non-clustered
and clustered deployments for a large contour in the pollu-
tant field. In Figure 9(a), we see that ACE has a 25-20%
and 30-25% higher precision than DD and SA respectively
for nmax > 100. In Figure 9(b), for clustered deploy-

ment, ACE has 45-10% higher precision than DD and SA
for nmax > 100. For nmax ≤ 100, ACE and DD has simi-
lar precision irrespective of the deployment.

4.2.2 Random Energy Bound for each Sensor

Next, we assigned different bounds for each sensor, chosen
uniformly randomly in the range [5 − 50%] of nmax and
we compared the precision and convergence percentage of
ACE and DD for different deployments and contours. The
results are tabulated in Table 2. We observe that ACE has
a better precision, 4 − 26% than DD for non-clustered and
19 − 30% than DD for clustered deployments. Also, ACE
exhibits better precision than SA, 15−90% for nonclustered
and 16 − 72% for clustered deployments. This implies that
when energy is limited, ACE delivers more precision than
DD and SA. CP for ACE is uniformly high in the range
91-100%, while DD varies between 62-100% and SA has a
higher variation, 19-100%.

4.3 Evaluating Feasibility

In order to validate whether the advantages identified by
the simulation translates to practical benefits, it is important
to understand (a) some of the assumptions made such as the
mobility cost is indeed greater than communication cost and



Contours Nonclustered Clustered
ACE DD SA ACE DD SA

Precision CP Precision CP Precision CP Precision CP Precision CP Precision CP
S1P 74 ± 6 91 48 ± 4 62 22 ± 1 30 30 ± 3 44 11 ± 1 10 3 ± 0.1 3
S2L 98 ± 1 100 94 ± 1 100 9 ± 0.5 19 73 ± 6 97 43 ± 3 81 1 ± 0.1 3
M1P 70 ± 6 100 48 ± 4 96 45 ± 2 93 31 ± 2 79 19 ± 1 32 20 ± 1 22
M2p 72 ± 6 99 53 ± 4 95 38 ± 2 79 32 ± 3 71 19 ± 2 29 12 ± 0.7 12
L1L 98 ± 8 100 98 ± 8 100 83 ± 5 100 97 ± 0.6 100 83 ± 4 99 81 ± 5 83
L2L 96 ± 8 100 96 ± 8 100 79 ± 4 99 99 ± 0.51 100 96 ± 0.5 100 71 ± 4 77

Table 2. Effect of random energy bounds on precision and convergence percentage[CP].

Figure 10. Mobile sensor tracing the contour.

(b) assess the feasibility of implementing the algorithms. As
a first step in this direction we (a) implement DD (gradient
descent and wall moving), a component of ACE on a robot
and (b) perform a simplified energy characterization of the
algorithms.

The test-bed comprises of a single mobile robot moving
along a grid of dimension 11 × 18 with granularity 8cm.
in a light field of varying light intensity. We determine the
ground truth by measuring the light intensity at each grid
point. The robot is equipped with a three white line sensors,
two shaft encoders and two ultra low power DC motors to
move along the grid. The robot comprises of a rotating arm
on which a light sensor capable of measuring light intensity
is mounted. The rotating arm is powered by two servo mo-
tors. The length of the rotating arm is equal to one grid cell
length and the light intensity value is measured at the eight
neighboring grid intersections. The robot is equipped with
ATMEGA128, 11.06 MHz processor and the radio module
comprises of 2.4 GHz CDMA, Infrared with 50m range.

4.3.1 Contour Estimation with a Mobile Sensor

First, we verify the feasibility of estimating a contour using
a mobile sensor. Figure 10 shows the exact contour of value
τ = 200 ± 20 for a single light source and the path taken
by the robot to estimate the contour. The mobile sensor was
programmed to use the DD algorithm for contour estima-
tion. As can be seen from the figure, the estimated contour

faithfully covers the exact contour. The error in estimation
is due to the granularity of the grid used by the sensor to
navigate.

4.3.2 Simplified Energy Characterization

In this experiment, we measure the energy consumed by the
robot to move one grid cell length and to communicate 5
bytes of information — (i) sensor id (1 byte), (ii) x and y co-
ordinates (2 bytes) and (iii) relative light intensity (2 bytes).
The robot was powered by 8.4V DC. A multimeter is con-
nected in series with the robot and the power supply and the
current drawn and the time taken to travel one grid length is
measured. The energy consumed for moving one step (mc)
along the grid was measured to be 4.96J. This was calcu-
lated by measuring the voltage supplied to the robot (7.7V),
current drawn for moving one step (205mA) and time taken
to move on grid step (3.4s). Next, we measure the energy
consumed for transmitting (tc) and receiving a message
(rc). Even though the time taken to transmit a byte is 0.5ms,
we introduce a delay of 1 ms to include radio initialization
time. The current drawn for transmission and reception of a
byte was derived from the CDMA5 data sheet. The energy
consumed for transmission of a single packet is computed
by measuring the voltage supplied to the radio (8.4V), cur-
rent drawn to transmit a single byte (69mA) and time taken
for transmission including the delay for radio initialization
(1ms) was 2.9mJ. Similarly energy consumed for receiving
a packet of information was computed similarly and found
to be 2.4mJ. If nt and nr represents number of messages
sent and received, then the total energy spent is given by
Energy consumed = Latency × mc + nt × tc + nr × rc

In our simulations, we assume a centralized single hop
communication model. The sensors send and receive mes-
sages to and from the sink. For contours in the pollutant
field, we measured the number of messages exchanged and
the energy consumed by ACE and DD for different deploy-
ments as shown in Table 3.

5http://www.alldatasheet.com/datasheet-
pdf/pdf/144993/CYPRESS/CYWUSB6935.html



Contour Deployment ACE DD
Latency Sent (nt) Recd (nr) Energy Latency Sent (nt) Recd (nr) Energy

M1P Non-clustered 429 2471 2471 2140J 550 2471 2471 2741J
Cluster 806 5871 5871 4028J 950 1209 1209 4712J

M2P Non-clustered 398 3862 3862 1994J 514 1975 1975 2559J
Cluster 654 7752 7752 3284J 721 1043 1043 3581J

S1P Non-clustered 241 3324 3324 1212J 243 979 979 1210J
Cluster 225 8650 8650 1161J 258 728 728 1283J

Table 3. Comparison of total energy consumed by ACE and DD.

From Table 3, ACE has a (8-22%) lower energy con-
sumption than DD for all contours except in the case of
S1P , non-clustered deployment where both ACE and DD
have similar energy consumption. This is not surprising
since ACE performs DD for small and nonclustered deploy-
ments. The latency values used in Table 3 are for the cases
when both DD and ACE converge (see Table 1).

4.3.3 Summary of Results

We have demonstrated that ACE estimates the contour with
100% precision and 4 − 22% lower latency for medium
and large contours for non-clustered deployment, 15−52%
for clustered deployment. For small contours in the non-
clustered case, the performance of DD and ACE was simi-
lar. When compared to SA, ACE has 22 − 40% lesser la-
tency in nonclustered deployments and 15 − 23% in clus-
tered deployments. In the presence of energy constraints we
demonstrated that ACE delivers better precision 4 − 35%
for small and medium contours in the nonclustered deploy-
ment and 3−63% in the clustered deployment than DD. We
demonstrated the feasibility of DD on testbed with a single
mobile sensor. With our simplified energy characterization
we show that ACE consumed 8.3− 22% lesser energy than
DD. Next, we describe related work and follow it up with
conclusions and directions to future work.

5. Related Work

Our work bears a strong resemblance to boundary esti-
mation even though we perform level set estimation. In our
case, we have an added knowledge of the value of the level
set we are looking for and thereby, we use this information
to do the path planning for the mobile nodes. The basis of
boundary estimation algorithms is the detection of the edge
that separates two different regions [2]. Boundary detec-
tion and estimation using a network of static sensors has
been studied extensively in the recent past [2]. The authors
in [15] derive a theoretical bound on the number of sensors
needed in a lattice network of static sensors to achieve a
certain accuracy.

In [1], the authors use mobile nodes to adaptively scan
the entire region to determine the boundary. Their strategy
consists of placing the mobile sensors uniformly along the
boundary of the region and scan the entire field in a raster
scan interleaved manner. This approach does not assume or
make use of any local gradient information to converge on
to the boundary. In contrast our approach assumes that the
field is continuous and bounded (the field value is bounded
so as to define the existence of the level set) and the mobile
nodes use the gradient at their current position with respect
to the target field value to converge on to the contour. While
the adaptive sampling method guarantees convergence (be-
cause the whole field is scanned) it does not exploit infor-
mation available to the sensor. When the size of the field
is large, sampling the whole field might be prohibitively
expensive. In our approach, we exploit local gradient and
previous history information to arrive at the contour with
smaller latency. Another interesting contrast is in the case
of dynamic boundaries. If the position of the level set is
changing in time, the sensors can adapt since their motion
is based on the current measurements. However, in adap-
tive sampling, the measurements made at the previous pass
may not be valid at the current instant. It is our belief that
we should exploit what ever field information we have to
do the path planning and resort to scanning only in the case
where such information is unavailable.

In [5] the authors propose the active contour algorithm
used in image segmentation [12] to arrive at the boundary
and trace the boundary by moving the nodes in and out of
the boundary. They directly adapt the snake algorithm (sen-
sors are deployed as a virtual snake) to estimate the level set.
Our approach is similar to theirs in the use gradient informa-
tion to approach the contour but does not require to deploy
the sensors in a specific manner. Spread is achieved in their
approach by defining a repulsion potential between neigh-
boring sensors. This requires pair-wise communication at
every step for movement. We model spread using angular
distribution and sensors are not attached to their neighbors.
In [3], the agents are allowed to converge and in the trace
phase the agents move in and out of the boundary to trace
the boundary. The agents interlace the traversal such that
they sample different points. This results in a higher latency



since all of them traverse the entire boundary. In contrast,
we follow the wall moving algorithm and the task of tracing
is shared by the sensors. Also, in [5], no study is reported
regarding how the algorithm behaves in the presence of en-
ergy constraints.

Our previous work [18] proposed an algorithm MCD
for estimating the contour based on the knowledge of the
centroid of the contour. In the current work, we estimate
the centroid based on history of movement, points already
traced on the contour and sensor’s current locations. We
also overlap movement in converge and coverage phases
and use wall moving algorithm to trace contours of arbitrary
shape.

The work in [4] uses a static sensor network to guide a
single mobile sensor to trace a contour. The mobile node
computes the gradient using the readings from the static
sensors and moves towards the contour. In our work, the
estimation is done by autonomous nodes and no overhead
of deploying a static network for the purpose is necessary.

In [8], the authors use unconstrained mobility to estimate
level set and the agents. Their main assumption is that mo-
bility comes for free. In scenarios like mapping of level sets
in oil spills using autonomous robots, one cannot assume
that mobility is free of cost. Our approach aims at reducing
the mobility cost by intelligently estimating the shape and
the location of the contour as the sensors move.

6. Conclusion

While it is intuitive for sensors to spread in a sensor field
to estimate a contour, it is hard to determine, in the absence
of the knowledge of the contour’s exact location and extent,
when and how much to spread. In this paper, we propose a
novel algorithm ACE which intelligently decides to spread
out or move towards the contour and demonstrate that ACE
reduces latency of estimation irrespective of types of de-
ployments, sizes and shapes of contour and improves pre-
cision of estimation when compared to the case where no
adaptive spread is used even in the presence of energy con-
straints.

As part of future work, we intend to extend ACE to han-
dle limited transmission ranges. Additionally, instead of
performing re-estimation of parameters at every few steps,
we plan to dynamically determine when any given sensor
needs to reestimate, based on events such as when a sensor
lands on the contour or when a sensor’s estimated conver-
gence point changes beyond a given threshold. We also plan
to extend ACE to handle discontinuous contours and im-
plement ACE on multiple robots to validate our simulation
results.
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