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Abstract—In this paper, issues involved in the design of a real-time database which maintains data temporal consistency are

discussed. The concept of data-deadline is introduced and time cognizant transaction scheduling policies are proposed. Informally,

data-deadline is a deadline assigned to a transaction due to the temporal constraints of the data accessed by the transaction. Further,

two time cognizant forced wait policies which improve performance significantly by forcing a transaction to delay further execution until

a new version of sensor data becomes available are proposed. A way to exploit temporal data similarity to improve performance is also

proposed. Finally, these policies are evaluated through detailed simulation experiments. The simulation results show that taking

advantage of temporal data semantics in transaction scheduling can significantly improve the performance of user transactions in real-

time database systems. In particular, it is demonstrated that under the forced wait policy, the performance can be improved

significantly. Further improvements result by exploiting data similarity.

Index Terms—Real-time database systems, temporal consistency, earliest deadline first, least slack first, data-deadline, transaction

processing.
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1 INTRODUCTION

A real-time database system is a transaction processing
system designed to handle workloads in which

transactions have deadlines. However, many real-world
applications involve not only transactions with time
constraints, but also data with time constraints. Such data,
typically obtained from sensors, become inaccurate with the
passage of time. Examples of such applications include
autopilot systems, robot navigation, avionics systems, and
process control systems [22], [18]. While considerable
attention has focused on real-time databases, most of it
assumes that only transactions have deadlines [1], [7], [8],
[9], [10], [11], [12], [16], [20], [23]. New solutions that
consider data time constraints are required for both
concurrency control and cpu scheduling. Ample evidence
now exists that such time-cognizant protocols are consider-
ably better at supporting real-time transaction and data
correctness than standard database protocols [24].

In this paper, novel solutions that explicitly deal with
data time constraints in firm real-time database systems are
proposed and evaluated. A firm real-time database system
is one in which transactions that have missed their dead-
lines add no value to the system and, hence, can be aborted.
The main contributions of the paper are:

. The development of notions of data-deadline and
forced wait for scheduling transactions that access
temporal data. Informally, data-deadline can be
viewed as the deadline assigned to a transaction
due to the temporal constraints of the data accessed
by the transaction. Forced wait entails forcing a
transaction to delay further execution until a new
version of sensor data becomes available.

. A class of priority assignment policies that account
for transaction deadlines and data time constraints.
These include policies that force transactions to wait
for new versions of data objects and policies that
take advantage of data similarity.

. The comparison of the different policies with base-
line Earliest Deadline First (EDF) and Least Slack
First (LSF) policies. It is found that deadline based
policies outperform slack based policies at medium
loads, and this trend is reversed at high loads.

. A demonstration that while there is some improve-
ment in performance when only data-deadline
(without wait) is taken into account, there is
significant improvement when it is combined with
the notion of forced wait.

. A demonstration that, taking data similarity into
consideration, improves performance significantly
when the forced wait policy is not applied. But, when
combined with forced wait, data similarity does not
perceptibly impact performance. When estimates of
execution (response) time are not available, using data
similarity enhances performance.

The remainder of the paper is organized as follows:
Section 2 discusses the related work. Section 3 describes the
system and transaction model that is considered in the
study. Section 4 outlines the transaction scheduling policies
that have been considered in the study. Section 5 discusses
the results of the experimental study and Section 6
summarizes and concludes the study.
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2 RELATED WORK

Over the past few years, real-time databases have become
important areas of research. Experimental studies reported
in [1], [7], [8], [9], [10], [11], [12], [16], [20], [23], are very
comprehensive and cover most aspects of real-time transac-
tion processing, but have not considered time constraints
associated with data.

Database systems in which time validity intervals are
associated with the data are discussed in [13], [14], [25].
Such systems introduce the need to maintain data temporal
consistency in addition to logical consistency. The perfor-
mance of several concurrency control algorithms for
maintaining temporal consistency are studied in [25]. In
the model introduced in [25], a real-time system consists of
periodic tasks which are either read-only, write-only, or
update (read-write) transactions. Data objects are tempo-
rally inconsistent when their ages or dispersions [25] are
greater than the absolute or relative thresholds allowed by
the application. Two-phase locking and optimistic concur-
rency control algorithms, as well as rate-monotonic and
earliest deadline first scheduling algorithms are studied in
[25]. These studies show that the performances of the rate-
monotonic and earliest deadline first algorithms are close
when the load is low. At higher loads, earliest deadline first
outperforms rate-monotonic when maintaining temporal
consistency. They also observed that optimistic concurrency
control is generally worse at maintaining temporal consis-
tency of data than lock based concurrency control, even
though the former allows more transactions to meet their
deadlines. It is pointed out in [25] that it is difficult to
maintain the data and transaction time constraints due to
the following reasons:

. A transient overload may cause transactions to miss
their deadlines.

. Data values may become out of date due to delayed
updates.

. Priority based scheduling can cause preemptions
which may cause the data read by the transactions to
become temporally inconsistent by the time they are
used.

. Traditional concurrency control ensures logical
data consistency, but may cause temporal data
inconsistency.

Our development of the notion of data-deadline and the
associated algorithms that make use of it are motivated by
these problems.

In [13], a class of real-time data access protocols called
SSP (Similarity Stack Protocols) is proposed. The correct-
ness of SSP is based on the concept of similarity which
allows different but sufficiently timely data to be used in a
computation without adversely affecting the outcome. SSP
schedules are deadlock free, subject to limited blocking and
do not use locks. In [14], weaker consistency requirements
based on the similarity notion are proposed to provide more
flexibility in concurrency control for data-intensive real-
time applications. While the notion of data similarity is
exploited in their study to relax serializability (hence
increase concurrency), here it is coupled with data-deadline
and used to improve the performance of transaction
scheduling. The notion of similarity is used to adjust

transaction workload by Ho et al. [15] and incorporated
into embedded applications (e.g., process control) in [4].

Temporal consistency guarantees are also studied in
distributed real-time systems. In [28], Distance constrained
scheduling is used to provide temporal consistency guaran-
tees for real-time primary-backup replication service.

3 SYSTEM MODEL AND CORRECTNESS

In this section, the transaction and data models which
characterize the features of real-time database systems are
described. Also, the criteria for transaction correctness and
data consistency in such real-time database systems are
presented.

3.1 Transaction and Data Model

An object in the database models a real world entity, for
example, the position of an aircraft. The objects in the
database can be either temporal or nontemporal. A
temporal object is one whose state may become invalid
with the passage of time. Associated with the state is a
temporal validity interval. An object whose state does not
become invalid with the passage of time is a non-temporal
object. Thus, there are no temporal validity intervals
associated with non-temporal objects. Two approaches to
modeling temporal data have been proposed in the
literature [19]: attribute versioning and object versioning.
In attribute versioning, a validity interval is associated with
each attribute of an object, whereas in object versioning, a
validity interval is associated with the aggregate object.
Here, the focus is on object versioning, which maintains
multiple versions of each object. Each state of a temporal
object has a validity interval during which the state is valid.
Temporal objects reflect specific objects in the environment
and are updated periodically by transactions that read
sensors. Two kinds of transactions are considered:

. Sensor transactions: These are the periodic transac-
tions which write to temporal objects.

. User transactions: These are user-level transactions
with deadlines. They read temporal objects and
read/write nontemporal objects.

The deadlines of sensor transactions are derived from the
requirement that transactions should update an object
before the end of the validity interval associated with the
data in order to keep the data fresh. Here, fresh refers to
temporal consistency, which is introduced in the next
section.

3.2 Transaction Correctness and Data Temporal
Consistency

In real-time applications, the values of objects in a database
must correctly reflect the state of the environment. Other-
wise, decisions based on the data in the database may be
wrong, and potentially disastrous. For example, data read
by transactions must be fresh. This leads to the notion of
temporal consistency. To define temporal consistency
formally, the attributes of a temporal data object X are
introduced first.

As mentioned earlier, a temporal data object has multiple
versions. The ith version of data object X, Xi (ði ¼ 1; 2; . . .Þ),
is defined as:
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ðvalueðXiÞ; viðXiÞÞ;

where valueðXiÞ denotes the ith state of X, and viðXiÞ
denotes valueðXiÞ’s validity interval, i.e., the time interval

during which valueðXiÞ is considered to be temporally

consistent. After vieðXiÞ, valueðXiÞ is no longer valid.1 So,

the attributes of a temporal data object X are defined as

follows:

. Xi: the ith version of data object X

. vibðXiÞ : the beginning of the validity interval of Xi;

. vieðXiÞ : the end of the validity interval of Xi;

. viðXiÞ : the validity interval of Xi;
viðXiÞ = ½vibðXiÞ; vieðXiÞÞ, where
vibðXiÞ < vieðXiÞ.

The ith version of data object X, Xi (ði ¼ 1; 2; . . .Þ) is

temporally consistent at time t if and only if:

vibðXiÞ � t < vieðXiÞ:

In the rest of the paper, when we say that a transaction T

reads a data object X at time t, it should be understood that

T reads a version ofX that is temporally consistent at time t.
A transaction in our real-time database can commit if

and only if

1. it is logically consistent, i.e., it is serializable and
satisfies all the data integrity constraints,

2. it meets its deadline, and
3. it reads temporally consistent data and the data it

read are still fresh when it commits.

In certain circumstances, it may be possible to relax one or

more of these constraints but these possibilities are left for

future work.

3.3 Concurrency Control for Data Objects

In the current model, user transactions need to obtain
database locks in order to read or write a non-temporal
objects. Temporal objects are only written by sensor
transactions, which are write-only transactions. Further-
more, sensor transactions do not read any data in the
database; their write sets are disjoint from each other and
from the write sets of user transactions. When a sensor
transaction writes a temporal object in each period, it
creates a new version of the temporal object. In this case,
there is no need for a sensor transaction to obtain database
locks in order to write. On the other hand, no transactions
other than sensor transactions can write temporal objects.
Thus, user transactions do not need to obtain database locks
in order to read a valid version of an object. Therefore, there
is no database concurrency control for these temporal
objects. However, to ensure that data is not read while it is
being updated, latches (i.e., short term locks or semaphores)
must be used.

For nontemporal data, conflict resolution in case of

concurrent access is based on the priority abort protocol,

where the conflicting transaction with lower priority waits

or gets aborted depending on whether it is the requester or

holder of locks, respectively.

4 SCHEDULING TRANSACTIONS IN REAL-TIME

DATABASES

The transactions in the system can be classified into two
classes: user transactions and sensor transactions. The
scheduling algorithm should maximize the number of user
transactions which meet their deadlines while maintaining
temporal consistency. In the system studied, sensor
transactions always get higher priority than user transac-
tions. Other policies to assign priorities to user and sensor
transactions will be studied in future work. All the sensor
transactions are scheduled by the earliest deadline first
policy. Policies to assign priorities to user transactions
based on their deadlines and the constraints on temporal
data objects that they access are studied.

Data read by a transaction must be valid when the
transaction completes, this leads to another constraint on
completion time, in addition to a transaction’s deadline.
This constraint is referred to as data-deadline. Within the
same transaction class, the scheduling algorithm should be
aware of the data-deadline of a transaction, that is, the time
after which the transaction will violate temporal consis-
tency.2 The scheduling algorithm should account for data-
deadlines when it schedules transactions whenever a data-
deadline is less than the corresponding transaction dead-
line. Consider the following example which illustrates the
concept of data-deadlines.

In Fig. 1, transaction T needs to read two temporal data
objects, Y and Z, to produce results. T reads these data
objects at time t2 and t3, respectively. The deadline of
transaction T is t6. Data Y is valid in the interval ½t0; t5�, and
data Z is valid in the interval ½t0; t4�. Transaction T starts at
time t1, and it has no data-deadline at this time. At time t2,
transaction T reads data Y . The data-deadline of transaction
T becomes t5 since it will violate temporal consistency after
time t5. In order to satisfy temporal consistency, T has to be
scheduled to commit before time t5, i.e., before the value of
Y it read becomes invalid. Notice the deadline of transac-
tion T is later than time t5. Next, transaction T proceeds and
reads data Z with a value which becomes invalid at time t4.
Now, the data-deadline of T is adjusted to t4. At time t4,
transaction T has not completed. Thus, it aborts. Note that it
might be possible to restart T and use subsequent version of
Y and Z to meet deadline t6.

The following are some of the attributes of a transaction
T that are useful in explaining the policies:

. aðT Þ: the arrival time of T

. sðT Þ: the start time of T

. dðT Þ: the deadline of T

. ddtðT Þ: the data-deadline of T at time t

XIONG ET AL.: SCHEDULING TRANSACTIONS WITH TEMPORAL CONSTRAINTS: EXPLOITING DATA SEMANTICS 1157

Fig. 1. An illustration of data deadline.

1. This ignores data similarity which is introduced in Section 4.4.
2. A transaction can violate temporal consistency without missing its

deadline.



. LðT Þ: the number of object accesses of T

. Ltot ðT Þ: the number of remaining temporal object
accesses of T at time t

. Lntot ðT Þ: the number of remaining nontemporal
object accesses of T at time t

. LtðT Þ: the number of remaining object accesses of T
at time t; LtðT Þ = Ltot ðT Þ + Lntot ðT Þ; LaðT ÞðT Þ = LðT Þ

. EtðT Þ: the estimated remaining execution time of T
at time t

. RtðT Þ: the estimated remaining response time of T at
time t

. CtðT Þ: the estimated completion time of T at time t;
CtðT Þ = t + EtðT Þ

. RStot ðT Þ: the readset of T at time t; this set contains
the versions of all temporal data objects read by T .

. PtðT Þ: the priority of T at time t

The data-deadline of transaction T at time t, ddtðT Þ, is
defined as:

ddtðT Þ ¼ min
X2RStot ðT Þ

vieðXÞ:

4.1 Baseline Scheduling Policies for CPU and Data
Access

All the policies presented are preemptive dynamic priority
policies that differ in the method used to set priorities.
Before explaining the policies that are based on data-
deadlines, the baseline policies to which all the policies are
compared are outlined.

. Earliest Deadline First (EDF): This is the traditional
EDF policy where the priority of a transaction is its
deadline.

PtðT Þ ¼ dðT Þ:

This policy neglects temporal consistency con-
straints. Note that a transaction aborted due to
temporal inconsistency can be restarted.

. Least Slack First (LSF): This is the conventional
LSF policy where the priority of a transaction
corresponds to its estimated slack.

PtðT Þ ¼ dðT Þ � CtðT Þ:

Here again, temporal consistency constraints are
ignored and a transaction aborted due to temporal
inconsistency can be restarted.

4.2 Data-Deadline Based Scheduling Policies

As mentioned earlier, EDF and LSF are not cognizant of
data-deadlines in scheduling. Transactions that read data
objects that have become invalid are aborted because of
commit criteria. Variations of EDF and LSF that are
cognizant of data-deadlines in scheduling could possibly
avoid such aborts. They are as follows:

. Earliest Data-Deadline First (EDDF): This policy
assigns the minimum of the data-deadline and
transaction deadline to be the priority of the
transaction.

PtðT Þ ¼ minðddtðT Þ; dðT ÞÞ:

. Data-Deadline based Least Slack First (DDLSF): This
policy calculates the slack of the transaction based
on the minimum of the data-deadline and transac-
tion deadline.

PtðT Þ ¼ minðddtðT Þ; dðT ÞÞ � CtðT Þ:

4.3 Policies with Forced Wait

In many cases, estimates of either the remaining execution
or response time are available. Both of these estimates can
be used to maintain data temporal consistency. A transac-
tion that reads valid data may not be able to commit
because the validity interval of a data object it reads expires
before it can commit. Although it is impossible to predict
the exact time when a transaction will commit, it is possible
to estimate the minimum execution time needed for a
transaction to complete. If a transaction reads a data object
whose remaining validity interval is less than the remaining
execution time of the transaction, there is no chance for the
transaction to commit before the validity interval of that
data object expires. Such a validity interval is called an
infeasible validity interval with respect to the transaction. To
prevent a transaction from reading invalid data, or data
with an infeasible validity interval, it can be forced to wait
until the data is updated. That is, there must be a
mechanism to check the validity of data when the
transaction reads it. In Fig. 1, the data-deadline of T
becomes t4 once it reads data object Z. But, if T cannot
commit before t4 then T will be aborted after t4 because a
transaction commits only if all the data objects it accessed
are still valid at commit time. Instead, T can wait until t4
and read the new version of Z. This approach saves the
work a transaction has already done and avoids recovery
overhead. However, this method has the disadvantage of
incurring the cost to check for infeasible validity intervals
which, in turn, may unnecessarily delay the commitment of
transactions.

4.3.1 Forced Wait with Estimated Remaining

Execution Time

The policies outlined above (EDF, EDDF, LSF, and DDLSF)
do not consider the feasibility of validity intervals of data
objects that a transaction accesses. To remedy this, these
policies are combined with the idea of Forced Wait. With
forced wait, whenever a temporal data object is read by a
transaction, the system checks if this transaction will
commit before the validity of the data object expires. If
the validity could expire before the commit, then the
transaction is made to wait until the data object is updated,
else the transaction is allowed to continue. If transaction T
reads temporal data object X at time t, then the following
condition for Forced Wait policy with Estimated Remaining
Execution Time (FWE) is checked:

condition 1 : t þ EtðT Þ � vieðXÞ:

Under FWE, if condition 1 holds, then the transaction
proceeds. Otherwise the transaction waits. This can be
coupled with the previously described policies to yield the
following combined policies:

. Earliest Deadline First with FWE (EDF-FWE),

. Earliest Data-Deadline First with FWE (EDDF-FWE),
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. Least Slack First with FWE (LSF-FWE), and

. Data-Deadline based Least Slack First with FWE
(DDLSF-FWE).

4.3.2 Forced Wait with Estimated Remaining

Response Time

In this case, estimated remaining response time is used in
forced wait. This is slightly more sophisticated than FWE in
that it estimates the remaining response time based on the
statistical data from the system. Our hypothesis is that,
when such information is available, it can provide
additional performance benefits. In order to estimate the
response time needed in forced wait policy, contention due
to access to shared resources such as the CPU and data is
accounted for. CPUSFt is the slowdown factor at time t due
to CPU resource contention. CPUSFt is the average time
taken to get one unit of CPU work done. CCSFt is the
slowdown factor at time t due to data resource contention.
It is the average blocking time to acquire the lock on a
nontemporal data object. Thus,

RtðT Þ ¼ EtðT Þ 
 CPUSFt þ Lntot ðT Þ 
 CCSFt:

If the estimated remaining response time is used, then
the following condition is tested:

condition 2 : t þ RtðT Þ � vieðXÞ:

It should be noted that since RtðT Þ � EtðT Þ, condition 2 is
stronger than condition 1. Forced Wait policy with Estimated

Remaining Response Time (FWR) makes use of condition 2 in
addition to condition 1, to perform a more precise check. To
implement FWR policy, three queues are maintained in the
system, namely, CPU_Queue, Sleep_Queue, and Wait_Queue.

. If condition 2 is true, then the transaction is kept in
CPU_Queue. The scheduler removes the highest
priority transaction from CPU_Queue to execute.

. If condition 2 is false and condition 1 is true, then the
transaction is placed in the Sleep_Queue. Transac-
tions in the Sleep_Queue are executed only if the cpu
is idle, i.e., if there are no transactions in the
CPU_Queue. This is because transactions satisfying
condition 2 have better chance to commit before
validity of data expires than transactions do not
satisfy condition 2.

. If condition 1 is false, then it is not possible for the
transaction to commit before validity of data X
expires. The transaction is placed in the Wait_Queue
where it remains until X is updated. Once X has
been updated the conditions are checked again.
After which it is moved to CPU_Queue (if
condition 2 is true) or Wait_Queue (if condition 1
is true but condition 2 is false).

The following algorithm summarizes the FWR policy:

Algorithm: Condition checking in FWR policy

if ðtþRtðT Þ � vieðXÞÞ then
T Continues;

else if ðtþ EtðT Þ < vieðXÞÞ then

Place T in Sleep_Queue;

else

Place T in Wait_Queue;

end;

With FWR, the following combined policies are tested:

. Earliest Deadline First with FWR (EDF-FWR),

. Earliest Data-Deadline First with FWR (EDDF-FWR),

. Least Slack First with FWR (LSF-FWR), and

. Data-Deadline based Least Slack First with FWR
(DDLSF-FWR).

4.3.3 A Mechanism to Implement Forced Wait

As mentioned in Section 3.3, there is no database
concurrency control for temporal objects. However, to
implement forced wait, there are three latch modes for
temporal objects in the system: read (R), write (W) and notify
(N). The compatibility of these latches is shown in Table 1.
When a temporal object is read or written, a read or write
latch is set. When a user transaction is forced to wait, a
notify latch [6] is set. A user transaction that is forced to
wait needs to be notified when a write latch is released, i.e.,
the corresponding temporal object has been updated
successfully. Notify mode is compatible with all other
modes, and can be treated like a free mode. When a write
latch is released, all the user transactions with notify latches
are awakened.

4.4 Policies with Similarity

It is often the case that the values of data objects do not
change much from one update to another. In this case,
versions of a data object that are only slightly different are
indistinguishable to transactions reading the data. This is
the basic concept of data similarity that has been explored in
detail in [13], [14]. Similarity is based on the idea that a past
version of data that is not current but close to the current
version can be used in processing if it does not adversely
affect the outcome. This can be used to improve perfor-
mance. Two versions of a data object are similar if a
transaction which reads the data object considers them as
similar. As pointed out in [13], [14], similarity is a binary
relation on the domain of a data object. It is reflexive and
symmetric, but not necessarily transitive. In our paper, the
assumption is that it is not transitive. In our model, if
valueðXiÞ read by a transaction is similar to valueðXiþ1Þ,
then its vi is extended as follows:3

viðXiÞ ¼ ½vibðXiÞ; vieðXiþ1ÞÞ;

In Fig. 1, the data-deadline of T becomes t4 once it reads
data object Z. But, if T cannot commit before t4 then T is
aborted after t4. However, if the version of Z before and
after t4 are similar then T can commit after t4. Again, EDF,
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Latch Compatibility Table
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data-deadlines.



EDDF, LSF, and DDLSF policies do not take advantage of
the similarity semantics of temporal data objects that a
transaction accesses. It is reasonable to combine the notion
of data similarity with data-deadline. For example, a
transaction may miss its data-deadline but not its transac-
tion deadline because a data object that it read becomes
invalid (because it is updated). If this happens and
similarity is used, the system checks if the current version
of the data is similar to the version that it read. If the current
version is similar to the version that it read, then the data
deadline of the transaction is extended and the transaction
continues instead of being aborted; otherwise the transac-
tion is aborted. Again, our hypothesis is that, by taking
advantage of similarity, data-deadline misses can be
reduced and performance can be improved.

4.5 Policies with Both Forced Wait and Similarity

Not surprisingly, forced wait and similarity can be combined.
In this case, forced wait is employed when a data object is
read, and similarity is employed if a version read by a
transaction becomes invalid, but is similar to the current
version. Consider the situation illustrated by Fig. 2. As in
Fig. 1, transaction T needs to read both data Y and Z.T begins
at time t1. At this time, the current version of Y is valid in the
interval ½t0; t5Þ, and the current version of Z is valid in the
interval ½t0; t4Þ. At time t2,T reads a version ofY that is valid in
the interval ½t0; t5Þ. However, at time t3, T is not allowed to
read the current version ofZ that is valid in the interval ½t0; t4�
by the forced wait policy. Here T is forced to wait for the next
version of Z, which is valid from time t4. After T reads this
new version of Z, it proceeds and completes its work at time
t6. But at t6, the version of Y read by T is already invalid.
However, the current version of Y is similar to the version of
Y read by T . Because similarity is employed, transaction T
can commit at time t6, which is before its deadline. It should be
noted that T may be aborted at time t5 if the version of Y read
by T is not similar to the current version of Y .

5 EXPERIMENTAL EVALUATION OF THE PROTOCOLS

This section presents the experimental setup and the
assumptions made in the experiments. Each set of experi-
ments is discussed and an analysis of the results is presented.
All experiments are conducted in a main memory database
setting. In the following discussion, EDF, EDDF, and all the
variations of those policies are referred to as deadline based,
and LSF, DDLSF, and their variations are referred to as slack
based policies. The primary performance metric is Missed
Deadline Percentage (MDP) of user transactions, i.e., the
percentage of user transactions that miss their deadlines,
which is a traditional metric used to evaluate performance in
real-time database systems.

LetNmiss denote the number of user transactions that miss
deadlines, and Nsucceed denote the number of user transac-

tions that succeed. The MDP is given by the following
expression:

MDP ¼ Nmiss
Nmiss þNsucceed

� 100:

In our study, a transaction is aborted as soon as its deadline
expires. This corresponds to a firm real-time transaction. This
policy assumes that finishing a transaction after its deadline
expires does not impart any value to the system. As
mentioned in Section 4, sensor transactions always get higher
priority than user transactions, and they are scheduled by the
earliest deadline first policy. Our study focusses on policies to
assign priorities to user transactions based on their deadlines
and the constraints on temporal data objects that they access.

Another metric, Data-Deadline Abort Ratio (DDAR), is
defined as:

DDAR ¼ Total No: of data� deadline aborts
Total No: of User Transactions

:

A simulator, called RADEx [23], was developed to
perform our experiments. It was implemented using the
DeNet Simulation Language [17]. In the experiments,
90 percent confidence intervals have been obtained whose
widths are less than 10 percent of the point estimate for the
Missed Deadline Percentage (MDP).

5.1 Baseline Parameters

In this section, the workload model is described. Let Uði; jÞ
denote a uniformly distributed integer valued random
variable in the range ½i; j�. The length, LðT Þ, of a
transaction T is given as a number of object accesses:

LðT Þ ¼ Uð6; 12Þ; T& UT
Uð1; 1Þ; T& ST;

�

where UT and ST stand for user transactions and sensor
transactions, respectively. Let LtðT Þ denote the remaining
length of transaction T at time t. The estimate that is used for
EtðT Þ is:

EtðT Þ ¼ LtðT Þ 
 CPU time per object access:

The deadline of a user transaction T is set using the following
formula:

dðT Þ ¼ aðT Þ þ ð1þ SlackÞ 
 EaðT ÞðT Þ;

where Slack is a uniformly distributed random variable
within a specified range. The deadline of a sensor
transaction is equal to the end of its period.

The parameter load used in our experiments is very
similar to that used in [23]. In order to define load the
arrival rates and service rates of UT and ST transactions are
specified. The arrivals of UT are generated according to a
Poisson process with mean interarrival time of 1=*UT time
units, and those of ST transactions are generated according
to the periods of sensor transactions which are uniformly
distributed between a specified range with mean of 1=*ST
time units. The arrival rates are calculated using the
following two equations, where all other quantities except
the arrival rates are assumed to be known. In the first
equation, the load is defined to be the ratio of work
generated to the total processing capacity of the system.
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Let 1=+UT and 1=+ST denote the average total execution
time of UT and ST transactions, respectively, and Ncpu the
number of CPUs in the system. In the second equation,
fracST is the fraction of load that is contributed by the class
ST transactions.

load ¼
*UT
+UT

þ *ST
+ST


Nto
Ncpu

fracST ¼
*ST
+ST


Nto
*UT
+UT

þ *ST
+ST


Nto
:

If the values of load, fracST , 1=+UT , and 1=+ST are given,
then 1=*UT and 1=*ST can be computed from the above
equations. When the system is fully loaded, i.e., load ¼ 1:0,
fracST is

fracST ¼ *ST 
Nto
+ST 
Ncpu

:

System settings are controlled by the parameters listed in
Table 2. In our experiments, the similarity relationship is
not transitive. Transaction characteristics are controlled by
the parameters listed in Table 3. Table 4 and Table 5 show
the system and transaction parameter settings, respectively,
for our baseline experiments. The Period of a sensor
transaction is equal to the length of the vi of the data object
that it updates.

With the parameter settings in Table 4 and Table 5, the
load from sensor transactions is about 20 percent when the
system is fully loaded, i.e., load ¼ 1:0. No sensor transac-
tions miss their deadlines in our experiments because they
are assigned higher priority than user transactions. In our
simulations, since the load is fixed for a single run, running
averages of CPUSFt and CCSFt are kept from the begining
of the simulation. The performance numbers that are
referred to in the following discussion are absolute values
of MDP.

5.2 Data-Deadline Based Policies

In the first set of experiments the performances of policies
that account only for the data-deadline, i.e., EDDF and
DDLSF are compared to the performances of the baseline
policies EDF and LSF. The results are presented in Fig. 3.
The results show that at medium loads, the policies exhibit
similar performance. At high loads, the slack-based policies
outperform the deadline-based policies. For instance, when
the load is 0:9, DDLSF reduces the MDP by 8 percent with
respect to EDDF whose performance is very close to the
performance of EDF. As load increases, the difference
between deadline-based policies and slack-based policies
increases. Also, between DDLSF and LSF, DDLSF reduces
the MDP for all loads by around 3 percent. Among the
deadline-based policies, taking the data-deadline into ac-
count does not seem to make much difference.

The total and useful CPU utilizations of all policies were
analyzed and the following was observed: The useful CPU
utilizations for all policies are about the same at medium
load. But as load increases, the useful CPU utilizations of
slack-based policies are higher than those of deadline-based
policies. This is because, as observed by Haritsa et al. [8],
deadline-based policies give the highest priority to transac-
tions that are close to missing their deadlines at high loads,
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thus aggravating deadline misses and perform worse than
slack-based policies. This explains why the slack-based
policies outperform deadline-based policies at high load.

At medium loads, deadline-based policies outperform
the slack-based policies and at high loads this trend is
reversed. Overall, taking only data-deadline into account
only marginally improves performance.

5.3 Policies with Forced Wait

The second set of experiments was conducted to evaluate
the benefits of using execution/response time estimates in
choosing between the present version of a data object and a
future version. The results are presented in Fig. 4, Fig. 5,
and Fig. 6, respectively. Fig. 4 compares the performance of
the four forced wait algorithms EDF-FWE, EDDF-FWE,
LSF-FWE, and DDLSF-FWE. The results show that at
medium loads, deadline-based policies perform better than
slack-based policies. At high loads DDLSF-FWE outper-
forms the other policies. For instance, DDLSF-FWE outper-
forms LSF-FWE by 5 percent, EDF-FWE and EDDF-FWE by
about 3 percent when the load is 0:9. As load increases,
deadline-based policies deteriorate more sharply than slack-
based policies.

With the forced wait policy FWR, as shown in Fig. 5, the
LSF-FWR performs the worst for all workloads. From the
graph it can be observed that, when compared to the
priority assignment policies without forced wait and with
forced wait, the difference between slack-based policies and
deadline-based policies decreases significantly at high loads.

In this case, there is almost no difference between deadline-
based policies and slack-based policies. In general, it was
observed that using forced wait brought down the MDP of
deadline-based policies more than it brought down the MDP
of slack-based policies at high loads. This, however, is due to
the nature of EDF at high loads. As observed by Haritsa
et al. [8], EDF aggravates deadline misses at high loads and
performs worse than most other policies. This is because
EDF gives the highest priority to transactions that are close
to missing their deadlines. When EDF is integrated with
forced wait, high priority transactions that are close to
missing their deadlines may be forced to wait. In this
manner, lower priority transactions can be executed and the
number of deadline misses is reduced.

In Fig. 6, the performances of data-deadline based

policies (EDDF and DDLSF) are compared with different

forced wait policies. The comparisons of variations of EDF

and LSF policies are similar and not repeated. As can be

seen from Fig. 6, the performance gain due to the addition

of forced wait to deadline-based policies increases sharply as

load increases. For instance, when the load is 0.9, EDDF-

FWR outperforms EDDF-FWE by 7 percent, while EDDF-

FWE outperforms EDDF by more than 15 percent. As can be

seen from Fig. 7, when the load is 0.9, forced wait policies

reduce the data-deadline abort ratio by more than 10 percent

with respect to the policies without forced wait. For slack-

based policies, the addition of forced wait also improves
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Fig. 4. FWE.

Fig. 5. FWR.
Fig. 7. No forced wait versus FWE/FWR.

Fig. 6. No forced wait versus FWE/FWR.



performance significantly. But, as can be seen from Fig. 6,
DDLSF-FWR outperforms DDLSF-FWE only marginally.

In summary, forced wait policies improve the perfor-
mance significantly in comparison to policies without
forced wait.

5.4 Policies with Similarity

The third set of experiments was conducted to evaluate the
performance of policies that are based on the idea of
similarity. For these experiments, Psim = 0.5, 1.0, respectively.
When Psim = 1.0, every version of a data object is similar to its
preceding version. The results are presented in Fig. 8 and
Fig. 9. From those graphs, it is observed that similarity does
not affect the conclusion drawn from Fig. 3. That is, with
similarity, deadline-based policies outperform slack-based
policies marginally at medium loads, and slack-based policies
outperform deadline-based policies significantly at high loads.
This should be obvious since similarity does not affect the
relative performance of different scheduling policies. In
Fig. 10, the results of experiments with baseline policies
(EDDF and DDLSF) which do not take similarity into account
and policies which consider similarity are plotted. Two
values of Psim are considered, 0.5 and 1.0. It is observed from
the graph that policies taking similarity into account do
reduce the MDP. The higher the probability of similarity, the
better the performance. In particular, when estimates of
execution (response) time are not available, using data
similarity enhances performance. This can be observed from
the performance of deadline based policies in Fig. 10.

5.5 Policies with Both Forced Wait and Similarity

The last set of experiments was conducted to evaluate the

performance of policies with both forced wait and similarity.

As discussed in Section 4.4, if similarity is exploited, it may

reduce the additional performance gain from using forced

wait. The results are presented in Fig. 11. In the experiments,

Psim is set to 1.0. The performances of the EDDF and DDLSF

policies without forced wait, and with FWE and FWR are

compared. From the graph, it is observed that EDDF (DDLSF)

policies with FWR outperform EDDF (DDLSF) policies with

FWE, which again outperform EDDF (DDLSF) policies

without forced wait. For instance, EDDF-FWE outperforms

EDDF by about 5 percent when the load is 0.9. But, compared

to Fig. 6, the performance gain of EDDF-FWE over EDDF is

reduced from 14 percent to 5 percent. The additional

performance improvement due to forced wait is less when

similarity is used compared to when similarity is not used.
Further experiments with forced wait policies were

conducted to explore the sensitivity of the result to the
similarity probability. The results are presented in Fig. 12 and
Fig. 13. In each figure, 0.0, 0.5, and 1.0 represent the value of
similarity probability (Psim). It is observed from both graphs
that the value of Psim has little effect on performance. This
shows that forced wait policies play a dominant role in the
performance when both forced wait and similarity policies
are used. Fig. 14 compares the performance of variations of
DDLSF policy.Psim is set to 1.0 for policies with similarity. It is
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Fig. 8. Baseline and data-deadline policies (Psim ¼ 0:5.)

Fig. 9. Baseline and data-deadline policies (Psim ¼ 1:0).

Fig. 10. Using versus not using similarity.

Fig. 11. No forced wait versus FWE/FWR (Psim ¼ 1:0).



observed that, for the given workload, DDLSF benefits more

from forced wait than from similarity.
From these experiments, it is observed that taking data

similarity into consideration improves performance signifi-
cantly when forced wait policy is not applied. But when
combined with forced wait, the influence of data similarity
decreases.

6 CONCLUSIONS

Although transaction scheduling and concurrency control

aspects of real-time databases have been studied in detail, not

much attention has focused on maintaining temporal

consistency. The question of how to improve system

performance while transactions maintain data temporal

consistency and meet their deadlines poses a new and

challenging problem. In this paper, issues involved in

designing a real-time database which ensures data temporal

consistency are adressed. The ideas of data-deadline and forced

wait are developed. Based on these ideas, transaction

scheduling and concurrency control policies are developed

and evaluated with detailed simulation studies. Scheduling

policies that take advantage of the similarity between

different versions of temporal data objects are also evaluated.
The main conclusions are:

. Taking data-deadline into consideration for schedul-
ing improves performance. Considerable additional

performance improvement is achieved when it is
combined with forced wait policy.

. Using extra information such as estimates of execu-
tion times to avoid infeasible validity intervals
enhances the performance of user transactions
significantly, as can be seen from the experiments
conducted in Section 5.3. Further, using more
accurate information such as estimates of remaining
response times to avoid infeasible validity interval
makes forced wait policy perform even better than
just using estimates of execution times.

. Exploiting similarity in transaction scheduling can
reduce data-deadline aborts, thereby resulting in
better performance. But data similarity does not
produce additional performance improvement when
combined with forced wait. However, when esti-
mates of execution (response) time are not available,
using data similarity enhances performance.

. When forced wait and similarity policies are
combined, forced wait plays a dominant role in
enhancing the performance of user transactions.

Therefore, forced wait and similarity are recommended for

temporal consistency maintenance in a centralized real-time

database system.
In distributed real-time database systems, data temporal

consistency is even harder to maintain than centralized

systems. Many open questions still remain. For example,

how to maintain data temporal consistency in distributed

systems? How can data similarity be used to help maintain

temporal consistency? Such issues need to be studied in the

future.
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