
FUSION: A System Allowing Dynamic Web Service Composition and Automatic
Execution

Debra VanderMeer
College of Computing

Georgia Inst. of Technology
deb@cc.gatech.edu

Anindya Datta
Chutney Technologyies

adatta@chutneytech.com

Kaushik Dutta
Chutney Technologies

kdutta@chutneytech.com

Helen Thomas
Heinz Sch. of Public Policy

Carnegie Mellon Univ.
hthomas@andrew.cmu.edu

Krithi Ramamritham
Dept. Computer Sci. and Eng.
Indian Inst. of Tech., Bombay

krithi@cse.iitb.ac.in

Shamkant B. Navathe
College of Computing

Georgia Inst. of Technology
sham@cc.gatech.edu

Abstract

Service portals are systems which expose a bundle of web
services to the user, allowing the specification and subse-
quent execution of complex tasks defined over these individ-
ual services. Examples of situations where service portals
would be valuable include making travel plans or purchas-
ing a home. Service portals must be capable of converting
an abstract user goal into a correct and optimal concrete
execution plan, executing according to the plan, verifying
the result against a user’s stated satisfaction criteria, and
in the case of satisfaction failure, initiating the appropri-
ate recovery procedures. The basic framework needed to
support this functionality, from gathering the input to gen-
erating an optimal plan and executing that plan, is a pre-
requisite for all service portals, yet there are currently no
such commercial systems in existence, and the research lit-
erature has given only cursory treatment to some of these is-
sues. In this paper, we describe FUSION, a comprehensive
software system which provides the underlying framework
for a service portal. We show how using the elements of
this framework, service portal designers and architects can
easily create domain-specific service portals, e.g., a travel
service portal. We also present the Web Services Execution
Specification Language (WSESL), a language that we have
developed to describe execution plans in the context of the
FUSION services model. Finally, we develop a set of data
structures and algorithms for generating correct and opti-
mal execution plans.

1 Introduction

The Web Services paradigm allows for the develop-
ment of loosely coupled “islands” of distributed computing.
Here, independent computing resources expose an interface
of available operations, accessible over the network. For
example, a bank might expose credit card processing func-
tionality as a service, allowing, for example, a travel agency
to charge a traveler’s credit card for airline or rail bookings
across enterprise network boundaries. This type of interac-
tion is made possible by a set of standards that define how
web services are described, discovered, and invoked.

The ability to access functionality over the network in a
modular fashion leads to the potential for composing web
services. Web service composition can enable valuable
functionalities for the end user that may be difficult or im-
possible to achieve when a user must interact with “indi-
vidual” web services. For instance, suppose a user wishes
to attend an open air event on a particular day only if the
forecast for that day does not call for inclement weather.
Further suppose the existence of a weather service as well
as a service allowing the purchase of tickets for events.
It is of course possible for the user to contact these ser-
vices individually and decide whether she should purchase
a ticket and then act accordingly. Alternatively, if a system
were available that exposed the services to her from a sin-
gle point and possessed the ability to generate and execute
a “composite” plan based on her requirements, such a sys-
tem would clearly provide value over and above the total
value provided by the individual web services. It should be
noted that the example above is quite simplistic. In more
complex situations, e.g., making travel plans, or buying a
house (imagine the complex interaction between inspectors,

mortgage lenders, lawyers, etc.), the value provided by such
a system is greatly magnified. We refer to these systems
as service portals. Service portals allow users to mix and
match services based on their needs. Essentially, such sys-
tems need to provide “soup-to-nuts” functionality to users
in satisfying service based, “real-life” needs, as illustrated
in the examples given above. The need for such systems
is well-documented in the literature, particularly in the area
of service-selection for web services composition [5, 6, 7],
yet the work in describing actual systems which support the
full range of functionality of a service portal are virtually
absent from the literature. Effectively, a service portal must
perform the following tasks: (1) collect the user’s goal in-
formation; (2) map his goals into actual executable callouts,
including parameter bindings, and generate a logical rep-
resentation of his satisfaction criteria; (3) convert an ab-
stract user goal into a correct and optimal execution plan
over the service portal’s constituent services; (4) map the
execution plan to code, and manage execution; (5) upon re-
ceiving the execution result, verify that the user’s require-
ments have been satisfied; (6) for an execution not meeting
the user’s satisfaction criteria, initiate appropriate recovery
procedures; and (7) deliver the results to the user.

These activities comprise a common task-set that any
service portal, regardless of application domain, must per-
form. In other words, much in the same way that applica-
tion servers provide a common infrastructure for building
web applications, there is a need for a common infrastruc-
ture to build web service portals. In this paper, we propose
the architecture and system details of FUSION, a software
infrastructure system providing the common infrastructure
elements needed to support service portals.

The reader might inquire at this point as to how this work
goes beyond what has already been reported on the issue of
dynamic web services composition, which is a well recog-
nized problem in the literature [2, 5, 6, 4, 7]. This work
takes the approach of exposing a bundle of services and
allowing the user to specify an execution plan by choos-
ing services from this bundle. Examples of such systems
include eFlow [3] and Self-Serv [1]. These systems pro-
vide users with a set execution specification primitives (e.g.,
sequencing, parallelizing, conditionals), which are usually
presented to the user in a graphical form, allowing a user to
specify a plan, which is then executed. While this approach
is clearly a step in the right direction, significant enhance-
ments are required, a few of which we enumerate below.

First, the systems mentioned above require the user to
specify procedurally how the constituent services of a com-
posite service should be invoked. It is unrealistic, indeed
infeasible in many cases, to expect the user to be able to
specify execution plans. For instance, consider a user who
wishes to book a trip for his tenth wedding anniversary, and
wishes to replicate his honeymoon. Specifically, he would

like to fly to the same Italian city (Venice), and stay in the
same hotel (the Ambassador), as he did ten years previously.
This itinerary is conditional on obtaining a room in the de-
sired hotel; if he cannot reserve a room in this hotel, he
does not want to book the itinerary. An important observa-
tion is that there are multiple possible execution plans that
could satisfy the user’s requirements. For example, either
the hotel booking or the flight booking can occur first, or,
alternatively, both bookings can take place in parallel, by
invoking the respective services simultaneously.

In this particular case, it turns out that the user is sig-
nificantly more selective in his lodging preference (he ex-
plicitly requires a room at a specific hotel) than in his trans-
portation preference (any airline would do). Therefore, the
optimal plan might be to book the hotel first, and if that
succeeds, to then book the flight to Italy. This is optimal
both from a user-preference point of view (the success or
failure of the Italy itinerary is dependent on obtaining a
reservation in a specific hotel), as well as from a cost-of-
cancellation point of view (cancellation penalties are typi-
cally much higher for airline tickets than for hotel reserva-
tions). Such reasoning, however, is complex, and cannot be
expected from a naive user attempting to arrange this trip.
Thus, a critical enhancement to existing dynamic service
composition systems is the ability to automatically generate
an optimal execution plan from the abstract requirements a
user may specify, rather than relying on the user to specify
the execution plan.

Second, once execution of a plan is complete, the service
portal should be able to verify whether the results meet the
user’s satisfaction criteria. For instance, while a user may
have requested the purchase of tickets to three Broadway
shows as part of a planned trip to New York City, he may be
willing to accept two reservations, even if the third show is
sold out. In other words, the user’s goal may often specify
more “stringent” criteria than he is willing to accept. This
is an important distinction from classical transaction seman-
tics, where the typical “all or nothing” rules apply. In order
to support this feature, the service portal system must meet
two enabling conditions: (a) there should be a mechanism
for the user to specify his “minimum requirements” for sat-
isfaction, and (b) there should be a mechanism for verifying
that such requirements are met.

Third, and finally, in the case of a service failing to
exceed satisfaction thresholds, appropriate recovery efforts
need to be initiated.

We are building an infrastructure software system called
FUSION, that will allow service portal architects and de-
signers to build portals possessing the above-mentioned
functionality. In this paper, we present a comprehensive
treatment of the FUSION service portal software system,
both from an architectural perspective, as well as a sys-
tems perspective. Specifically, this work contributes: (1)

a description of a comprehensive architecture for the FU-
SION software system; (2) a model to describe a web ser-
vice method; (3) a description of how a user’s abstract spec-
ification can be mapped into method instances and satisfac-
tion criteria; a language for describing execution plans, the
Web Services Execution Specification Language (WSESL);
and a formal description of the notions of correctness and
optimality with respect to execution plans.

In summary, we regard this paper as presenting one of
the earliest (if not the first) research works in the domain
of building comprehensive systems enabling the creation
of composite web services. Indeed, we are not aware of
any other published piece of work or commercial system
that enables “true” dynamic composition, while, simultane-
ously, enabling analysis of design time specification as well
as verification of run-time results.

Due to space constraints, we are able to present only a
subset of the full details of the FUSION system in this pa-
per. Specifically, we describe the overall architecture, a de-
tailed description of the user interface to FUSION, and our
proposed web service model. The actual plan-building algo-
rithm and its theoretical underpinnings, as well as the mech-
anisms for executing plans, verifying results, recovering if
necessary, and presenting the results to the user, will be pub-
lished in an extended version of this work. The remainder
of the paper is organized as follows. Section 2 describes
a running example, which we use to illustrate the different
features of the FUSION system. We then describe the archi-
tecture of FUSION in Section 3. In Section 4, we describe
the system’s user interface in detail. Section 5 concludes
this paper.

2 Web Services Example

In this section, we present a detailed example, based on
the simple travel scenario presented in Section 1. Our trav-
eler would like to recreate his honeymoon trip, visiting the
same hotel in the same Italian city as in his original trip. If
he cannot obtain a reservation for a room at this particular
hotel, he does not want to book the Italy trip at all. To make
the example more realistic, further suppose that our trav-
eler specifies a set of travel preferences in addition to the
Italian hotel. In particular, for his first preference itinerary,
he indicates that any airline will suffice for traveling to and
from Italy, but that he is interested in three particular tour
excursions, and that he would like to go on at least one,
but as many of these three excursions as are available. Fig-
ures 1[A] and 1[B] graphically depict two possible com-
positions of the component web services our travel service
application may invoke in the process of fulfilling the trav-
eler’s request. Which execution ordering is better? This is
dependent on the criteria used to evaluate the plan. One of
the major goals of the FUSION system is to provide the un-

derlying mechanisms required to support the evaluation of
plans according to different criteria, and, given a goal crite-
rion, to build an optimal plan for it.

Ha Ta Tb Tc

TS

Aa Ab

Airline ServicesHotel Service Tour Services

Ta Tb Tc

TS

Aa Ab

Airline Services

Ha

Hotel Service Tour Services

[A] [B]

Figure 1. Example Travel Service Invocation

3 System Architecture of FUSION

As described previously, FUSION is a software system
providing the base functional elements required of a service
portal. Such a portal, given a user service specification,
automatically generates a correct and optimized execution
plan, then executes this plan and verifies the result. Fig-
ure 2 shows the FUSION system architecture. The system
is divided into six subsystems: (1) User Specification Sub-
system (USS), (2) Web Services Dynamic Plan Generator
Subsystem (WGS), (3) Plan Execution Subsystem (PES), (4)
Verification Subsystem (VS), (5) Recovery Subsystem (RS),
and (6) User Response Generation Subsystem (URGS).

In this section we provide an overview of how the sys-
tem works at a high level, by describing the functionality
of each subsystem. (The detailed functioning of these sub-
systems is described in detail in subsequent sections.) As
shown in Figure 2, the input to the system is a set of user
requirements, which specify the service needs of the user
and his satisfaction conditions. These inputs are fed into
the User Specification Subsystem, described next.

3.1 User Specification Subsystem

The User Specification Subsystem (USS) is a graphical
form-based interface that allows the user to (a) specify his
abstract requirements, and (b) convert this abstract specifi-
cation into a more structured form suitable for consumption
by the downstream plan generator subsystem in the archi-
tecture. User specifications include the set of methods to
be invoked and a logical expression representing the user’s
satisfaction conditions.

The input to the USS is an abstract goal and associated
satisfaction conditions, specified through a set of forms.
The output of the USS consists of two parts: (a) a set of pa-
rameterized method calls

���������
	 ���������	�	�	�������	 ���������
where

������	�	�	������
are all web services accessible from the

portal, and
����	 ��

refers to the �!#" method available from
the published interface to

�$�
(the parameter bindings for

these methods are omitted in the expression above); and

(b) the user’s satisfaction specifications, represented with
an Execution Satisfaction Expression (ESE) � . For the
goal specified above, the user may wish to invoke Air-
line and Hotel services with the following respective
methods: getFlight and getRoom. In this case,

�
=
�
Airline.getFlight(), Hotel.getRoom()

�
.

Further assume that the user has specified the following suc-
cess criteria: both the hotel reservation AND the airline
must be obtained. In this case the satisfaction expression
� � �����������
	�� 	 ��������������� ���������������	 ������������ �����

.

Result (R)

Service

Verified
Result

R
ec

ov
er

y
In

iti
at

io
n

R
eq

ue
st

User
Requirements User Specification

Subsystem (USS)

Subsystem (URGS)
Generation

User Response

User
Response

Recovery
Subsystem (RS)

Verification
Subsystem (VS)

Response
Service

Request
Service

Plan Execution
Subsystem (PES)

Subsystem (WGS)
Plan Generator

Dynamic
Web Services

No
S’ = True

S

L

Yes
Results Incomplete

T

R
ec

ov
er

y
R

es
ul

t (
R

’)

Recovery Request

Recovery Response

Services

Figure 2. FUSION System Architecture

3.2 Dynamic Plan Generator Subsystem

The Web Services Dynamic Plan Generator Subsystem
(WGS) takes as input the set of parameterized method calls�

produced by the USS and generates a correct and optimal
execution plan, denoted by � in Figure 2, which describes
the “how” of executing the method calls in

�
. The plan

is nothing but an expression stated in a language we pro-
pose called the Web Services Execution Specification Lan-
guage (WSESL). A WSESL expression describes procedu-
rally how a user’s desired set of method instances are to be
executed. Here, we first provide a few examples to give the
reader an intuitive understanding of what we refer to as an
execution plan. As shown in Figure 2, the WGS outputs an
execution plan (�), which is passed to the Plan Execution
Subsystem, described next.

3.3 Plan Execution Subsystem

The Plan Execution Subsystem (PES) takes as input the
plan � generated by the WGS, evaluates � , maps it to ex-
ecutable code, and actually invokes the method instances
described by � . The PES produces a result set � , which
contains the set of service responses received from the com-
pletion of method processing, at each step of plan execution.

The PES interacts with the Verification Subsystem (VS)
(described next) at each step of processing an execution
plan. Here, as each web service method invocation com-
pletes processing, the PES sends the current result set for
the execution plan to the VS, which checks the (possibly
partial) results against the satisfaction expression � , to de-
termine if (1) the expression is satisfied (i.e., � evaluates
to TRUE); or (2) the expression cannot be satisfied, given
the result set; or (3) the result set is insufficient to deter-
mine whether � is satisfied or not (i.e., further processing is
required), denoted by the “Results Incomplete” interaction
between VS and PES in Figure 2.

3.4 Verification Subsystem

The Verification Subsystem (VS) verifies that the service
result meets the user specified satisfaction criteria. The VS
receives two distinct inputs: (a) the service result � for-
warded by the PES (as shown in Figure 2), and (b) the Ex-
ecution Satisfaction Expression (ESE) � forwarded by the
User Specification Subsystem (USS). Based on this dual in-
put, the output of the VS is a binary relation (��� , �), where
��� is an attribute denoting the satisfaction or failure of sat-
isfaction of the expressions � (or incompleteness of infor-
mation for determining satisfaction of failure), and � is the
service result received by the VS from the PES. ��� is TRUE
when the Satisfaction Checker in the VS detects no satis-
faction condition violations, FALSE when the VS detects
satisfaction condition violations, and INCOMPLETE when
the result set in � provides insufficient information to de-
termine whether � is satisfied or not.

3.5 Recovery Subsystem

If the value of � � is FALSE, the output of the VS is
routed to the Recovery Subsystem (RS), which then initiates
a recovery process, which rolls back (to the extent possible)
the effects of the execution up to the point where �!� is found
to be FALSE. The results of these “undo” actions are com-
bined with the result set � , to create a new result set �"� ,
and passed to the User Response Generator Subsystem for
presentation to the user.

3.6 User Response Generation Subsystem

The verified result produced by the VS is input to the
User Response Generation Subsystem (URGS), which is re-
sponsible for preparing and delivering the final response to
the user. The output of the URGS is a user deliverable re-
sponse, e.g., an HTML page. If any satisfaction condition
violations were detected by the VS (i.e., �#� evaluated to
FALSE), then the appropriate error messages are included
in the user response. The URGS receives this information

from the RS, in the result set � � . Otherwise, the user re-
sponse contains the results of the optimal plan (e.g., a travel
itinerary) drawn from � , obtained from the VS.

Having described the main components in the system,
we now discuss our work with respect to these components.

4 The User Specification Subsystem

In this section, we describe the USS subsystem in greater
detail. Recall from Section 3 that the USS converts a user’s
service requirements and satisfaction specification into a set
of parameterized web service method calls

�
and an Execu-

tion Satisfaction Expression (ESE) � . This is accomplished
through the three modules of the USS: the User Interface
(UI), the Method Mapper (MM), and the Execution Satis-
faction Expression Generator (EG). Figure 3 depicts these
three modules graphically.

User
Interface Method

Mapper

Input
Parameters

Input
Satisfaction
Conditions

T

User Specification Subsystem (USS)

ESE

S

Generator
T

Figure 3. The User Specification Subsystem

4.1 The User Interface Component

The UI is primarily responsible for gathering user input.
Here, the user is presented with a graphical form-based in-
terface, which lists the available service options, and allows
the user to specify satisfaction constraints over the services.

The UI also allows users to specify an element of the
output of one service method as an input to another. For
example, our traveler might wish to contract with an airport
shuttle service to travel from his hotel to the airport for his
return flight. Here, the service method for the Shuttle
service may take as input the airline, flight number, and de-
parture time of the user’s outgoing flight, all of which are
available as outputs from the Airline service.

4.2 The Method Mapper Component

Once the user has completed the service and parameter
forms, the data collected from these forms is passed to the
MM. The MM produces service method invocations based
on the service and parameter specifications input by the
user. For this, we will need a model of a web service, which
we describe next.

4.2.1 A Web Services Model

The interface to a web service
�

is a set of methods��� � ����� ���
	���	�	�	������ �
. We denote the � !#" method

of a web service
�

as
� 	 ��

. Two distinct notions need to
be modeled with regard to methods: (1) a method schema,
and (2) a method invocation instance. The schema for a
method

� 	 ��
is simply a two-tuple ��� � � � ���

, where � �
is an ordered set of � input parameters

� � ��� � 	�	�	 � ��� ! � for
method

��
, and � �

is the return object of
���

. We can
fully specify the schema of a web service method as fol-
lows:

� 	 ��� � � � � � � �
. The schema for all methods in

�
is

exposed through
�

’s WSDL file.
Distinct from the notion of a schema is an actual invo-

cation instance of a method. (Clearly, for a given method,
there is always a unique schema, but many possible invoca-
tions). An invocation instance of a method models all the
information that is necessary to execute that invocation as
well as verify the result of the execution. Notationally, we
will denote an invocation of method

� 	 ���
as
� 	 ���

(i.e.,
uppercase letters will apply to the method schema, while
lowercase letters indicate an invocation instance), which is
modeled as a three-tuple � � ����� �������

, where � is an in-
stance of � � ,

���
is the return object resulting from the ex-

ecution of
��� � � � , i.e.,

� �
is an instance of � �

, and
�!�

is
a boolean-valued logical expression representing the user’s
success criteria for that specific invocation, i.e., a condition
which must be met in order for the method invocation to be
considered successful.

Using this notation, we fully specify a web ser-
vice invocation as follows (for conciseness, we
omit the relational operators and parameter values):����	 ��� � � ��� � 	�	�	 ��� ��� ����� ����� �

. Given the model described
above, we can now describe precisely how a user’s input is
mapped to a set of method instances.

4.2.2 Mapping User Input to Method Instances

In order to map the user input to methods, we must first
create an instance of each service method selected by the
user based on the method schema, then fill in the parame-
ters the user has specified for that method instance. These
parameters are available in each method’s WSDL descrip-
tion. The constraintSet is populated by the Execution Satis-
faction Generator Component, which we describe next.

4.3 The Execution Satisfaction Expression Gen-
erator Component

The Execution Satisfaction Expression Generator (EG)
takes as input

�
and the user “satisfaction criteria” input,

maps those criteria to methods, producing an Execution Sat-
isfaction Expression � , and populates the

�"�
member of

each method instance
���

in
�

.

As noted above, a user may provide satisfaction con-
ditions on both the service selection forms and parameter
specification forms of the UI. Through these conditions,
the user indicates the “acceptability” criteria for the results
that would be returned from a service method invocation
as well as the final plan execution. These conditions are
of two types: (1) intra-method conditions and (2) inter-
method conditions. An intra-method condition specification
is a condition imposed on the return values of a specific
method. An inter-method satisfaction specification involves
the specification of an arbitrary logical expression which
expresses a condition across multiple method invocations.
The final expression � is a concatenation of all the intra-
method and inter-method constraints, joined by the AND
operator. It is passed to the Verification Subsystem (VS),
where it is evaluated during the processing of the execution
plan.

5 Conclusions and Future Work

In this paper, we have identified the requirements of a
new breed of systems, which we refer to as service portals.
We have described the FUSION service portal infrastructure
system, which addresses these requirements by allowing
portal designers to build portals that allow the design, im-
plementation, and execution of arbitrarily specified multi-
service plans. We have reported the architecture of FUSION
and the web services model that FUSION implements. Fu-
ture work will present fuller details of the FUSION system,
including a description of how to actually build correct and
optimal execution plans, how to execute such plans, verify
the results, recover if necessary, and present the results to
the end user. Further, future work will also report on the
performance of the FUSION system.

References

[1] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declarative
composition and peer-to-peer provisioning of dynamic web
services. In Proceedings of the International Conference on
Data Engineering (ICDE), 2002.

[2] A. Berfield, P. Chrysanthis, I. Tsamardinos, M. Pollack, and
S. Banerjee. A scheme for integrating e-services in establish-
ing virtual enterprises. In Proceedings of the Workshop on
Research Issues in Data Engineering (RIDE), 2002.

[3] F. Casati, S. Ilnicki, L.-J. Jin, and M.-C. Shan. An open, flexi-
ble, and configurable system for service composition. In Pro-
ceedings of the Second International Workshop on Advanced
Issues of E-Commerce and Web-Based Information Systems,
Milpitas, CA, June 2000.

[4] M.-C. Fauvet, M. Dumas, B. Benatallah, and H.-Y. Paik. Peer-
to-peer traced execution of composite services. In Proceed-
ings of the Second International Workshop on Technologies
for E-Services (TES), pages 103–117, Rome, Italy, Septem-
ber 2001.

[5] D. Mennie and B. Pagurek. An architecture to support dy-
namic composition of service components. In Proceedings
of the Fifth International Workshop on Component-Oriented
Programming (WCOP), Sophia Antipolis, France, June 2000.

[6] G. Piccinelli and L. Mokrushin. Dynamic e-service composi-
tion in dysco. In Proceedings of the 21st International Con-
ference on Distributed Computing Systems Workshops (ICD-
CSW), Mesa, AZ, April 2001.

[7] J. Yang, M. P. Papazoglou, and W.-J. van den Heuvel. Tack-
ling the challenges of service composition in e-marketplaces.
In Proceedings of the 12th International Workshop on Re-
search Issues in Data Engineering (RIDE), San Jose, CA,
February 2002.

