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Abstract

Consider a content distribution network consist-
ing of a set of sources, repositories and clients
where the sources and the repositories coop-
erate with each other for efficient dissemina-
tion of dynamic data. In this system, necessary
changes are pushed from sources to repositories
and from repositories to clients so that they are
automatically informed about the changes of in-
terest. Clients and repositories associate coher-
ence requirements with a data itedn denot-

ing the maximum permissible deviation of the
value ofd known to them from the value at the
source. Given a list okdata item, coherence
served by each repository and a sekaflient,
data item, coherencerequests, we address the
following problem: How do we assign clients to
the repositories, so that the fidelity, that is, the
degree to which client coherence requirements
are met, is maximized?

In this paper, we first prove that the client as-
signment problem is NP-Hard. Given the close-
ness of the client-repository assignment prob-
lem and the matching problem in combinato-
rial optimization, we have tailored and studied
two available solutions to the matching prob-
lem from the literature: (i) max-flow min-cost
and (ii) stable-marriages. Our empirical results
using real-world dynamic data show that the
presence of coherence requirements adds a new
dimension to the client-repository assignment
problem. An interesting result is that in update
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intensive situations a better fidelity can be deliv-
ered to the clients by attempting to deliver data
to some of the clients at a coherence lower than
what they desire. A consequence of this obser-
vation is the necessity for quick adaptation of
the delivered (vs. desired) data coherence with
respect to the changes in the dynamics of the
system. We develop techniques for such adap-
tation and show their impressive performance.

1 Introduction

Dynamic data is data which changes rapidly and unpre-
dictably. Examples of such data are stock prices, infor-
mation collected by sensors, network traffic, health mon-
itoring information, etc. Increasingly more and more
users are interested not only in monitoring dynamic data
but also in using it for making timely on-line decisions.
As a result, we need techniques to disseminate such data
to users as efficiently as possible. Existing techniques
for static data replicate the data closer to the users. This
may however involve large communication and compu-
tational costs for fast changing data which makes the use
of such techniques infeasible for dynamic data. To this
end, we have been focusing on techniques to build an
efficient, resilient and scalable content distribution-net
work for dynamic data dissemination consisting of a set
of cooperating sources and repositories, and clients as
shown in Figure 1.

Clients request service by specifying the coherence
requirements for the data items that they are interested
in. The coherence requiremenj @ssociated with a data
itemd denotes the maximum permissible deviation of the
value ofd at the client from the value at the source. Let
Sq(t) andUy(t) denote the value of at the source and
the client, respectively, at time Then, to maintain co-
herence, we should havet, |U(t) — Sa(t)| < c. Typ-
ically, different clients will want different data items at
different coherence requirements. For example, a user
involved in exploiting exchange disparities in different
markets or an on-line stock trader may impose stringent
coherence requirements (e.g., the stock price reported



should never be out-of-sync by more than one cent fronof assignments need to be updated in a coordinated fash-
the actual value), whereas a casual observer of currendgn for providing efficient service to the clients. There
exchange rate fluctuations or stock prices may be conterare two possible approaches for doing this - one in which
with a less stringent coherence requirement. The conterthe network dynamically adapts to the changing require-
distribution network pushes changes to the data items taments and another, where periodically a snapshot of the
various repositories such that the client requests are metlients’ needs is taken and then the repository data needs
Contrary to expectations, in [26] we showed that evenas well as client-repository assignments are recomputed.
push-based systems, unless designed carefully, can ex-

perience considerable loss in fidelity due to communica1.1 Problem: Assigning Clients to Repositories

tion delays and computgnonal overheads N for dete.rmmwe start with the assumption that the snapshot based ap-
ing whether an update is relevant for a client and if so,

L . . roach has been used for assigning data to repositories;
pushing it to the client. These overheads, if not carefullyp gning P

d and minimized lead to | in dialilit this allows us to focus on the client assignment problem.
managed and minimized, can féad to 10Ss In Y. Thatis, we assume that the data needs of the repositories

Gre already derived and examine ways to assign clients to
the repositories.

Suppose, for a data ited) we have a set of, client
quests and repositories which servéd. In a typical
content distribution network; << n. In the absence of
coherence requirements and computational delays, and
in the presence of communication delays, we would like
to matchthe clients to the repositories such that the over-
all communication delays are minimized. This can be

ments are met. Empirically, the fidelitffobserved by a
client for a data item is defined to be the total length of
time for which the desired coherence requirement is met,,
normalized by the total length of the observation. Details
of our content distribution network along with techniques
to build such a network are given in [26].

(O Source looked upon as a many-to-omesighted matching prob-

! lemt where one wants to find a matching of minimum
e Cooperatin weight, where the weights are the communication delays
o( \\Repositori s such that all the client requests are matched to the repos-

P g\. & itories.

e e The presence of coherence requirements and compu-
I Clients tational delays at the repositories complicate the problem

/ o O; P oo considerably. As mentioned earlier, different clientd wil
°. 8 92 ©° o want a data item at different coherences. We say that the

© o network is able tasatisfya client request if it can meet

the coherence needs of the client. Note that a repository
Figure 1: The Cooperative Repository Architecture  will be able to satisfy only those requests whose the co-
) _ herence requirements are less stringent or equal to that at
The issue that follows naturally from our previous which the repository is providing service. Also, note that
work is that of serving the needs of the various clientsjf e assign too many clients to a repository we could
that request service from the repositories in the networkepq up overloading the repository. This in turn could lead
Since clients obtain their data from repositories whichyg larger update propagation delays at the repository, in-
form a cooperative content distribution network, aChieV'creasing the loss in fidelity. This calls for an adaptive
ing good data fidelity for clients necessitates solutions t9pproach that adapts both repository data needs as well

two subproblems: o _ . as the coherence at which data is served to the clients.
e Assigning data to repositories Which repository

should serve which data items, and at what coherence® 2 Contributions: Solutions to the Client Assign-
The answer to this question should ideally take into ac- ment Problem

count source and repository capabilities, rate of change

of data items as well as clients’ data and coherencé&irstly, we prove thabptimal client-repository assign-
needs. ment is NP-Hardn Section 2. Since the problem is NP-

« Assigning clients to repositorieGiven a set of client Hard, we develop principled heuristics inspired by two
requests, how do we assign them to the repositories sucf{é!l studied matching algorithms [29]. _

that the fidelity experienced by the clients is maximized? W& can consider the repositories and the client re-
This should take into account data availability at repos-dUests as sets in the bipartite graph in which we seek
itories, the dynamics of the data, as well as overheadd Matching. An edge from a client request to a reposi-

induced by the repositories to push updates to clients0TY indicates that a client request can be served by this
These two problems are clearly inter-related. Further/€POSitory. As each repository will typically serve many

more, as clients can join or leave the network or their 1y the jiterature, matching is one-to-one. Here we look at many
data needs may change with time, ideally, the two typeso-one matching.




clients, we need to do many-to-one matching. One wayhe clients by attempting to deliver data to the cliesits

to solve a many-to-one matching problem is to converta lower coherence than what the clients desifecon-

the problem instance to that of a one-to-one matchingsequence of this observation is the necessity for quick
problem by replicating the repositories appropriately andadaptation of the delivered (vs. desired) data coherence
then solve using standard matching algorithms [23, 27]to the changes in the dynamics of the system. We de-
This would however explode the problem size. Also, if velop techniques for such adaptation and show itHat

an inappropriate replication of the repositories might re-better to relax - by a large amount - the coherence of-
sult in the assignment of too many clients to a reposi-fered to a few clients, than to relax - by a small amount,
tory, thus overloading it. Another way to solve the prob- the coherence offered to all clients. That is, it might be
lem is to use anin-cost max-flovalgorithm to solve the better to be biased againsbmeclients to improve over-
assignment problem. Framing it as a min-cost flow in-all fidelity for all clients. We would like to mention that
stance not only allows us to control the number of as-this is a known result in admission control mechanisms
sighments made to each repository but enables to do sand we also observe this phenomenon here.

without increasing the problem size. Here, the problem Related work is presented in Section 5.

for all client requests for all data items can be solved at

one go. This however does not quite take the repositoryy  NP-Hardness of Client Assignment
overheads into account. This is due to the fact that it is

not just the number of clients that determine the load at Ve now define the Client Assignment Problem, and
repository but also the coherences of the clients assigneghow that it is NP-complete.

Hence the repository load is known only after the assign-Client Assignment Problem

ment is made. Inputs: We are given the following:

We deal with this conundrum as follows. We split the ® A system ofs sources{S;,Ss,...,Ss}, r reposito-
<client, data iter» pairs into parts. We then run the ries{Ri, Rs,..., R}, n clients{L;, L,,..., Ly}, and
max-flow min-cost subroutine on the parts one by onek data items{d;, da, . .., dy }.

After thei'" iteration, we know the load on each repos- e For each repository;, the list of data item®%: it
itory so far and this influences the cost function and theserves, and for eaafy € D*:, the coherence Ievef’i
capacity on the edges for the next iteration. We can spliat whichR; servesi;. Clearly,| D% | < k.

the problem into parts based on either data items, coher- ¢ A set of client coherence requirement triples

ence requirements or both. This way of incrementally(Li,dj,CJLi), stating that clienf.; needs data itend; at

solving the problem not only helps us to approximate thecoherence levalli

rgpository load better for futurt_a assignments but a judi- e The distribution from which values af; are drawn
cious split also reduces the size and hence the overaﬂ)r eachd. / '
-

;%?]Tler:jgi:llgz.c;:':r?;xact details of this approach are pre e For eacKL;, d;, cf") triple, a numbery;; such that

A completely different approach is to do bipartite 0<ay; <1 o
graph matching by usingtable marriages The abil- ® d(n1,n2), denotes the communication delay be-
ity of the stable-marriage algorithm to accommodate coWeen any two nodes; andn, in the network. A node
herence and cost-based preferences during the matcHi@Y b€ & source, a repository, or a client. _
ing process makes it an good candidate for solving our Each (parent, dependent, data itrtriple is associ-
problem. Consider a scenario, where a partial client:8t€d with a check delay and a push delay. Check delay is
repository assignment has already been made. In sudh€ time a repository takes to check if a dependent is in-
a scenario, remaining clients will prefer, say, reposito-tereSt‘?d in a particular update of the data item, and push
ries which are not heavily loaded. Repositories, in turn,d€lay iS the delay to push the update to the dependent,
would also prefer certain clients over the others. Coher/€Spectively. For the rest of this section, pgrentwe
ence requirements of the clients, load on the repositorie§1€an & source or a repository anddgpendentve mean
and the communication delays between the clients and Client or a repository, unless explicitly mentioned.
the repositories play a role in calculating the preferenceQuestion Can every clientZ; be assigned to some
of the clients and the repositories for each other. Giver/€POSItoryR2; such that for each client coherence tuple
these preferences, we can then use an algorithm for stéfLi,dk,cI,;’), we haved, € DFi and ckR" < cf and
ble marriages to give us a stable assignment of clients teuch thatl; receivesi;, with fidelity at leastu;,?
the repositories. We also propose an incremental version Proof of NP-Hardness To prove that the client as-
of this approach in Section 3. signment problem is NP-Hard, we reduce a well known

We have thoroughly evaluated these client-repositoryNP-Complete problem, Partition [15], to the client as-
assignment approaches using real world dynamic dataignment problem.
and the results of our experimentation are presented in Partition:
Section 3. An interesting result is that in highly update Input: A setS = {si,$3,...,5,} of n elements,
intensive situations a better fidelity can be delivered toeach with a positive weight; and an integek > 2.




Question Can the elements of sét be partitioned  partition of .S into k£ equally weighted parts.
into & parts such that the sum of the weights of the el-Proof:
ements in each part is the same. That is, §ave split Forward direction: Suppose there is a partition &f
into £ disjoint equal-weighted parts? into k equal partitions?,, P, . .., P,. The client assign-
Given an instance for partition, we convert it to an in- ment follows the partition. That is, if elemesis in the
stance for the client assignment problem by constructing)artitionpj, then clientZ; is assigned to repository;.

anetwork ofl sourcek repositoriesp clients anch data For the proof, we need only consider the time inter-
item as follows. val [0, 2], since the process cycles everyseconds. In

e Each repositony?;, 1 < j < k serves all the data this interval, data iteml; changes by 1 unit ir time
itemsd, da, . . ., dn, servingd; at a coherencel-, 1 < units. That isd; inducesw; updates ire time units, each
i < n. time changing by2-. Hence, the total number of updates

o Client L, requests data itedy at coherencel-, 1 < 4t the source iV = >, w;, and the number afiseful
i< o updates at any repository ¥ . Each repository gets all
_® The communication delay between any two nodeshese updates intime units since the propagation delays
in the network i<0. are zero.

* The push delay for any data item from any reposi-  \we claim that all updates reach the clients by time
tory to any client isu wherep = w andW = 3>, wi. 1 4 ¢ The number ofisefulupdates at any repository is

All check delays and all other push delays, including de-w «q the time taken to push these updates to the clients
lays to push changes from the source to the reposnones;E Wi _ 1 sec. sincas = £ secs. Hence. all clients qet
or from one repository to another, &e Hence, pushes all lf d;tes thé areeiint_ergsted iﬁ Witﬂil“d: time unitsg
from the source will be available immediately to all the . b y re .
Since the data values at source and clients remain equal

(rjequjgones. Repositories will push data to clients afterin the interval[l + ¢, 2], the fidelity of every data item

« The fidelity for all data items and clientsas= ¢, ~ 2cross all clients s at leasg<. . .

. L .2 Converse direction: Consider a client assignment
¢ All data items change deterministically, in accor- such that the fidelity for every pair of the forfii;, d;) is
dance with the function shown in Figure 2. A change 1—e Y yp v ) >
: L : . at least=>¢. We derive a partition of the corresponding
in value is initiated every2 time units, and the value 2 . . . .
changes by 1 unit in exactiytime units, where < £ set by making the weight of the elements in the partmon

' 2k equal to the number afsefulupdateswg, at repository
R;. Ifwg, = % for all repositoriesR;, we immediately
have a solution for the partition problem.
Supposevg, > % Since the push delay for sending
an update to a client jg, R; sends its last update to some
client no earlier tham - wg, time units. Since%# = 1,

we haveuig, = i, ~(% 1) = 1+u(ug, —¥).

t t+e t+1  t+2 t+ 4 Howeverwg, — ¥ = & (kwg, — W) > } sincewg, >
_ S . Consequentlys-wg, = 14+p(wg, — %) > 1+4£ >
Figure 2: Distribution of Data ltems 1+ 2, sincee < 2.

Under this situation, some data itedp at client L,
was in sync with the source for less than- e time
units. Hence the fidelity for thi§L, d;) pair was less

Each repository is required to serdgat coherenc%,
hence the source must seng updates to each reposi-
tory when the value oflz: changes by one unit. Since thanl=¢, which is a contradiction.
changes occur at eveytime units, the source sends 2 W .
updates ford; to all repositories at even time intervals. | Wr: < 7, then at least one other repositafyy
Every repository receives updates for all data items, bu@€Swg; > ¥ updates. We repeat the argument above
forwards only the updates for data items its clients ardor ;.

interested in. Such updates are calleskful updates.

Now, the check delays at all nodes are zero. The pusly  Client Assignment Using Min Cost Flows
delays bety\{een the source and_thg repositories are also and Stable Marriage

zero. Additionally, the communication delays between
any two nodes are zero and hence these updates reatpically, an update to a data item of interest to a client
the repositories instantaneously. The update now experis pushed to it via a network of repositories, and incurs
ences a push delay from the repository to the client intereommunication and computational delays en route to the
ested in it. Each useful update causes a delgy tifhe  client, diminishing fidelity for that update. One way
units. to improve fidelity is to lower the communication and
Claim: There is a client assignment such that the fidelitycomputational delays in the network. We present two
of every data item is at Ieaég—f if and only ifthereisa techniques for this purpose based on the Min Cost Flow



Problem and Stable Marriage Problem. These are welltex from which the flow originates, and a sink vertex at
studied combinatorial optimization problems, which we which it is absorbed.

overview below. For details see [29]. Edges in the network
e An edge of unit capacity and unit cost exists from
3.1 Using Min-Cost Network Flows the source to every vertex representing/a, dj,cfi)
triple.

In this model, we permit a client; to obtain each data o An edge exists from eaciL;, d; CLi) triple to ev-
[ E RV g ]

item d; of interest from a different repoii'tory: AS Men- ay repositoryR;, that can serve, to L;. The cost of this
tioned earlier, assigning thegd;,d;, ¢;*) triples to  edge is a function of the delay between the reposifyry
repositories is a many-to-one weighted assignment proband the client.;, the coherence valuéf" the client spec-

lem, which can be solved using min-cost network ﬂows.iﬁes ford;, and the coherence valuﬁ’“ atwhichRy, can

The cost of an assignment would ideally be'a function 0fservedj. This function assigns lower costs to reposito-
the communication delays, coherence requirement of thé

H R L;
client and the repository and the load on the repository/ €S for whiche;™ < ¢;, and lowers costs further when

The load on the repositories can be roughly balanced by}* — cf’“ is small. Such a cost function helps assign

placing a limit on the number c(fL,-,dj,cfi) triples that clients o repositories whose requirements are close to

a repository can serve. theirs, and hence optimizes the number of messages re-
The Min-Cost Network Flow Problem: The input ~ quired for data dissemination.

to a Min Cost Network Flow problem is a network of e A zero-cost edge exists from every vertex represent-

vertices and edges. Each edge has (i) a capacity whicing a repository to the sink, with capacity equal to the

indicates the maximum flow the edge can support, andnaximum number of L;, d;, c;*) triples that a reposi-

(i) a cost associated per unit of flow. The vertices maytory can support.

also have some quantity of flow associated with them. We now find a min-cost flow in this network. It is

The network has a source node and a sink node and theell-known that the max flow in the network is inte-

problem is to find a maximum flow of minimum cost in gral when the capacities are positive integers. We en-

the network. sure that eaclL;, d;, cfi) triple is assigned to at most
one repository by assigning unit %apacity to the edge be-
3.1.1 Client Assignment Using Network Flows tween the source and eafl;, d;, c;*) vertex, and to the

edge between ead{L;, d;, cf") vertex and a repository
that can serve the client. By ensuring sufficient capacity
on the repository-sink edges, we obtain the solution for
all (Li,dj,cfi) triples. This gives us an assignment of
all the clients to the repositories.

Figure 3 shows our approach to solving the client assign
ment using min cost network flows.

3.1.2 Ilterative Min Cost Network Flow

We have tried to roughly balance loads by bounding the

A capacities of each repository. Unfortunately, this ap-
-~/ Sinkproach is simplistic. The load due to {d;,d;,c}?)
C triple depends on the coherence requirement. The load
on a repository depends on the assignments made to the
repository, and the assignments, in turn, depend on the
repository loads. This is a chicken-and-egg problem.
To get better estimate of the load, we split the problem
into smaller units and solve by iteration. That is, rather
than solve the network flow problem on &lL;, d;, cf*’)
triples simultaneously, we split the input into parts and
then execute the network flow solver on each part. In
each iteration, we estimate the load on the repositories
@ <client, data item, coherence> triples due to the assignment made to them so far and use this to
make further assignments.

Figure 3: Min Cost Flow Formulation of the Client As-  We proceed as follows. We split the;, d;, ¢;*)

Unit capacity edges
———————————— = Capacity: # clients the repository is willing to serv

signment Problem triples into ranges, based on the coherence requirements.
We run the network flow solver for successive ranges.
Vertices in the network: Once we have assignments for a range, we calculate the

Each repository and eao@,-,d,-,cf") triple is repre- approximate load on the repositories. The approximate
sented by a vertex in the network. There is a source veroad at a repository due to a trip{€;, d;, cf") being as-



signed to it is given b)(cf")—? Our reasoning is as fol- 3.2.2 Client Assignment Using Stable Marriages

lows: if the coherence is and a data iterd is modelled . . L.
as a random walk, then the number of updates generateff€ can consider the repositories and tig, d;, ;)

is proportional toc% [26]. This gives us a rough indica- triples as the sets in the blipartite graph in which we seek

tion of the load due to the assignment of a single client to® Matching. EacliL;, d;, ¢;*) triple ranks the reposito-

the repository. This also implies that more stringent the/I€S Using a suitable preference function, based on factors
uch as the communication delays, load on the reposito-

coherence requirement for a data item, more is the load X S
imposed on the repository. Due to this, we run the solvef /€S and coherence requirements. The repositories can
in the decreasing order of coherence stringency. similarly rank the (L, d;, ¢;*) triples. If there aren

The approximate load is then used to determine théepositories, V\f can, in each iteration, a_ssign Seme
capacity of the repositories for the next range as foIIows.S tfal[glee (rﬁ;ﬁ{éc{a lgltrg)rl.?ﬁr:]o Ephe':(;reggzgﬁr;]e;sliﬁggéhzn-

Let t_here ber repositorigs ana (L;, d;, CJL.i> trip!es, tage that the g3anki%1g Ifunc.tionI in ggch iteration can thke
current teration. The ttal oad due 10 the assignment'1C 2ccunt the the load at each repository due to the
in this iteration is’%. Let the current load of a repository i, ds ¢;") triples already assigned. |ts chief disadvan-

R; be A; and the average current load ieWe ask how tage is that it is based only on the ordering of preferences,

A X rather than actual parameter values.
many of thes€L;, d;, ¢k triples should be assigned to . . . ,
eachR;. This should Jthen be the capacity of the edge. We consider the data items one at a time. The clients

from R; to the sink. We would like to do this to balance interested in some data itethrepresent thez_ men in
. the stable marriage problem and the repositories which
the load as much as possible.

L be th b T Ly tripl ioaned served represent the women. Since ours is a many-to-
et tih e the nun?lerdot i’dﬂf’ ¢;’) triples aSS|g_|rl1iz) one assignment problem, the marriage is polyandrous.
to R;. Then the total load oR; after assignmentwill be 1 \ymper of clients that a repository can accept is a

Aitti/a?. To balance the load amongst the rep(.)Sitori('lsfunction of the number of clients and the repositories.
we equate this to the average load on a repository after Once the preferences of the clients and the reposito-

a25|gnment whichisl + 72> Hence we get; = i+ ioq are calculated, we assume they remain unchanged
a®(A — Ai)_- ] till the next snapshot. Clients preferences are based on
Whent; is negative 2; has become more loaded than coherence requirements and repository loads, and pre-
the other repositories, so we give a nominal capacity ofer |ightly loaded repositories with coherence require-
1 for the R;-sink edge for that range. ments equal to (or more stringent than) the clients’ re-
quirements. Given a clienf which wants data item
d at coherencecc and repositoryP which servesd
at coherence:p, the heuristic to calculate the prefer-
Considern men andn women, and let each man and ence is given by:Peyrrent_toad * ‘;—g if(ep < c¢) and
each woman rank all the members of the opposite sex b¥P....rent_1oad * g—g x 1007 f(cc < cp). The smaller the
preference. The problem is to findstable marriagebe-  preference value, the more preferred is the repository.
tween the sets of men and women, defined to be a pairingince the client would prefer to be served by a reposi-
of men with women, in which there is no manand no  tory whose requirements are more stringent than its own,
womanw such thatm prefersw to his current partner we multiply the preference factor by a large constant if
andw prefersm to her current partner. Since we exclude ¢cp > ¢¢ This way, repositories with requirements less
pairs of men only or women only, this is equivalent to astringent than the clients’ will get a lower preference
bipartite graph matching. value. Of the repositories that can serve the client, we
would like to choose a less loaded repository for the ser-
vice. The current load at the repository is calculated as
a function of the coherence requirements of the clients

This is an iterative algorithm for the stable marriage @ssigned to it as given in Section 3.1.2.

problem. In the first iteration, each man proposes to the The repositories rank the clients based on the commu-
woman he ranks highest, and each woman rejects evefication delay between the repository and clients and the
proposal except the one from the man she ranks highcoherence requirement of the client. A repository prefers
est, whom she keeps pending. In the next iteration, eaclients whose coherence specifications are close to, but
rejected man proposes to the women next in their prefless stringent than its own. They also prefer clients to
erence list. Each woman again ranks the new proposa®hom the communication delays are lower.

and any proposal she has pending, and keeps the one sheOnce these preference values are calculated, the Gale-
ranks highest pending, rejecting the rest. This procesShapley algorithm is executed and clients assigned to the
continues till no further rejections take place. This al-repositories in accordance with the resulting stable mar-
gorithm is known to terminate and to provide a stableriage.

marriage inO(n?) time using efficient data structures.  Some notes and optimizations:

3.2 Client Assignment via Stable Marriage

3.2.1 The Gale-Shapely Algorithm



If a repository with loose coherence requirements isobtain a new data value approximately once per second(
matched to a client with stringent coherence require-3*3600/10000). Since stock prices change at a slower
ments, the client will miss a lot of updates. To avoid rate than once per second, the traces can be considered
such mismatches, the clients and the repositories are spliv be real-time traces.
into two groups - one where stringent coherence and one
with loose coherence. For each data item, the algorithm
is executed once for each group, ensuring that clients getCompany| Date Time Interval Min Max
repositories in the same group. One can determine theMSFT Feb 12| 22:46-01:46 hours| 60.09 | 60.85
range of stringent and loose coherences from the coher-SUNW Feb 1 | 21:30-01:22 hours| 10.60 | 10.99

ence requirements served by the repositories. This opt|- DELL Jan 30| 00:43-04:12 hourg 27.16 | 28.26
mization alone improved the fidelity obtained by 20%. | QCOM | Feb 12| 22:46-01:46 hours| 40.38 | 41.23
INTC Jan 30| 00:43-04:12 hours| 33.66 | 34.239

Oracle Feb1 | 21:30-01:22 hours| 16.51| 17.10
Characteristics of some of the Traces used for the experiment

3.3 Augmentation

It is not always possible to find a repository satisfying
a clients’ needs. For e.g., a cliehtmay be interested Repositories and Clients — Data and Coherency
in a data itemd with coherence requiremeft01 but all  characteristics: Each repository and client requests a
the repositories in the network servidgre serving ata subset of data items, with a particular data item chosen
coherence 00.02 or above. In this case, we can do one with 50% probability. A coherence requiremenis as-
of the following: sociated with each of the chosen data items. We use dif-
) . ] ferent mixes of data coherence, ttie associated with
1. Best-Effort Mapping:In this we try and find the  the data in a client or repository are a mix of stringent
repository whose requirements are as close to thaj|erances (varying from 0.01 to 0.09) and less strin-
qf the clients. While the .cli'ent will not get every gent tolerances (varying from 0.1 to 0.99F% of the
single change that (s)he is interested in, this is theyata items have stringent coherence requirements (the re-
best that the network can provide. In the above €X1maining (100 — T)%, of data items have less stringent
ample, L will be served with a coherence 6f02.  coherence requirements). To give an indication of the
The client may experience a higher loss in fidelity hnymper of client requests in the network: if the number
but it will continue to get best possible service from of clients is. say 100, and number of data items is, say
the network. 200, then the total number of the client requests will be

' . _ i 00%200 _ )
2. Augmentation: In this, we augment the require- ap%rr?xé?ggﬁ\llﬁtw%rk—to Oél(())OO and delavsThe phvs-
ments of the repository chosen for the clients by. y hology ys: pny

best effort mapping. For a data item, the coherencécal network consists of nodes (routers, repositories,
served by a repositbry is then the mbst stringent ofources and c!|ents) and links. The router topology_was
that of the clients assigned to it. For example, in thegenerated using BRITE (http://www.cs.bu.edu/brite).

above example, the repositry senvinguil now 202 R o e e e
start serving? with a coherence d.01. P P '

same plane as that of the routers and connected each to

. the closest router. For each repository and client, the data
4 Experimental Methodology and Results  jtems of interest were first generated and then coherences

We now present the experimental methodology and theN/€r€ chosen from the desired range. o
results for the performance evaluation of client assign- Our experiments use node-node communication de-
ment techniques. lays derived from a heavy tailed Pareto [24] distribution:
Traces — Collection procedure and characteristics: % — ﬁ + =1 wherea is given by 7%, 7 being the
The performance characteristics of our solution are inimean and:; is the minimum delay a link can have. For
vestigated using real world stock price streams as exenmour experimentsg was 15 ms (milli secs) angh; was 2
plars of dynamic data - the presented results are based ans. As a result, the average nominal node-node delay in
stock price traces (i.e., history of stock prices) obtainedour networks was around 20-30 ms. This is lower than
by continuously pollinghttp://finance.yahoo.comWe the delays reported based on measurements done on the
collected 1000 traces making sure that the correspondnternet [13]. Depending on the nature of the queries,
ing stocks did see some trading during that day. The dethe check delay (see Section 3.1.2) can be short for a
tails of some of the traces are listed in the table belowsimple check to the tune of a few tens of milliseconds
to suggest the characteristics of the traces uséthx( for some complex query processing [10, 19]. We derive
andMin refer to the maximum and minimum prices ob- the checking delay for each data item for each repository
served in the 10000 values polled during the indicatedrom a heavy tailed Pareto distribution withas 5 ms
Time Intervalon the givenDate in Jan/Feb 2002.) As andz; 1 ms. The average checking delay was around
we obtained 10000 polls in roughly 3 hrs, we were able to4 ms. The push delay was also derived using a Pareto



distribution withz as 1 ms andc; 0.125ms. We also repositorieg. Due to this, forT’ = 20, the percentage of
experimented with other check and push delays. stringent requests that can be satisfied by the network is
Metrics: The key metric for our experiments is the smaller than af” = 50 or T' = 80. Since, GH-be, Min
loss in fidelity of the data. Fidelity is the degree to Cost Flows (MCF), and Stable Marriages(SM) do best
which a user’s desired coherency requirements are megffort mapping, for thel’ = 20 case, the loss in fidelity
and is measured as the total length of time for which thds high even for a small number of requests.
coherence requirements are met normalized by the to- The Global Heuristic (GH) assigns the unsatisfied
tal length of the observations. The fidelity of a client clients to the source. When number of clients is small,
is the mean fidelity over all data items requested at thathis does well but as the number of clients increases, the
repository, while the overall fidelity of the system is the source gets overloaded and the heuristic starts to degrade
mean fidelity of all clients. The loss in fidelity is simply rapidly. In fact, beyon@00 clients, the loss in fidelity is
(100% —fidelity). Clearly, the lower this value, the better considerably higher than that offered by the other tech-
the overall performance of a dissemination algorithm. niques. Hence, we do not show the results of GH beyond
Min Cost Network Flow Solver: The maximum flow @ point - the loss is much higher tha%.
of minimum cost in the network was obtained using an  In Figure 4, we see that GH-be and MCF and SM are
algorithm by Bertsekas et al [6] who use a relaxationfairly comparable. On further experimentation, we found
method to solve the network flow problem. The solverthat the stringent requests are the ones which determine
that we used was RelaxIV; the code for which was ob-the fidelity observed by the network. If we cannot meet
tained from [1]. these requests, then the observed loss in fidelity could be
Iterative Min Cost Flows: In iterative min cost flows, high (as seen in the T=20 case). At the same time, they
we split the coherences required into ranges and exedlso add considerably to the load and hence, if not as-
cute the network flow solver on each range. For the resigned properly, could also result in high loss in fidelity.
sults shown, the ranges used wéée01 — 0.03,0.03 — In the networks above, for a given data item, about 2-
0.07,0.07—0.2,0.2 — 1}. 8 repositories were serving the data item at a stringent
An On-line Global Heuristic for Comparison: coherence. The best effort based approaches tend to dis-

The techniques developed in this paper are Comparegibute the stringent requests amongst these repositories
amongst themselves and also with an on-line globaHence, as long as the best effort techniques do some sim-
heuristic [4]: For each data item}, a selector node in Ple load balancing, these techniques could be considered
the network maintains information about (a) the repos_to be Comparable at least for small to medium number of
itories which servel and their coherence requirements, 'équests.

(b) the number of clients already assigned to each reposi- The results in Figure 4 also show that the fidelity ob-
tory and (c) the communication delays between the nodegerved by the clients is dependent on the coherence of
in the network. When a client needs service from the netthe data at the repositories. We can see that if the net-
work, for each data item, the corresponding selector triegvork can satisfy all the requests, as given by the curves
to find a repository such that (a) the coherence requireln MCF_aug and SMaug, then the loss in fidelity due
ment of the client is satisfied and (b) the sum of the com{0 data dissemination is very low. This would lead one
munication and computation delays is minimized. Theto the conclusion that using augmentation would reduce
Computationa| de|ay at reposito@ is approximated by the dependence of flde'lty on the data assignm_ent so that
the number of clients served . We present results of for even a naive data assignment, one can enjoy reason-
two versions of this heuristic: ({5H: In this heuristic, ~ably high fidelity. In Section 4.3, we show that this is

if no repository can meet the requirements of the clientnot always true and also discuss ways of reducing this
then the source serves the client. H-be This does dependence.

best effort mapping as explained in Section 3.3.
4.2 MCEF is the Preferred Approach

4.1 Baseline Results To compare the techniques in scenarios where the clients

. I . can choose from a larger set of repositories, we experi-
Figure 4 presents the initial results of our experimenta- 9 P P

tion. Figure 4(a) shows the results for T=20, i.e., Whenmented with topologies where all the repositories serve

20% of the data item requests are stringent; also OnIX;jlll the data items at the most stringent coherence re-

205 o th daa tems s by a repostory are seref 1 110110 M 0% 0.0 b2 e Dok
with stringent coherences. In a network2tf reposito- 9 P

ries, for T=20, only aboug repositories will serve the to choose from. The results of this experimentation are

for our experiments. Our data assignment randomly as- q P 9

signs a value to serve from the range. Hence, it is quiténc:reases, the best effort techniques start to perform bet-

likely that for some data items, we may have client re- 2y feel that, even in a real network, one cannot always ersate
quests which are more stringent than those served by thal the client requests will be satisfied by the network.
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Figure 5: MCF Performs Best:1 source, 10 repositories, 5®items

ter than GH with MCF doing better than GH-be and SM. 4.3 Feedback driven Adaptive Augmentation

In fact, in some cases, MCF did better than GH-be by asl_ N .

much as a factor of 9 in the resultant fidelity. We further he. curves in Elgqre .4 indicate that one of wvays of
investigated this by calculating the average queueing de@chlevmg h.'gh fidelity is to augment the repositories to
lay at the repositories. As we have mentioned earlier, wd'€€! the client needs. However, Figure 6 shows that this
feel that a way to improve fidelity offered by the network can be counter productive, especially when the load is
is to reduce the delays in the system. We noticed tha igh. If the r_'“mbef of requests and hence thg load on
after a certain point the queueing delays for all the best® Nétwork increases (say, after number of clients ex-
effort heuristics tend increase exponentially but the risec€€ds 400) then MCRug starts to perform worse than
of the delays for MCF is much slower than that ofGH-be.MCF’ the approach without augmentation. We discuss

We feel this is because MCF explicitly takes repositorythe curves marked with adapt later in this section. The

load into account (Section 3.1.2) as opposed to GH_bt,__,results indicate that for large number of requests, one

Note that for these graphs, augmentation performs simig’hoUId either not _augment or do_ selective augmentation.
explored the issue of selective augmentation. There

two possible ways of doing this.

lar to the corresponding best effort approach as the net*
work can meet the needs of the clients and hence separa?é
curves are not shown for MCi&ug and SMaug.

From Figures 4 and 5, we can see that the solution
obtained from stable marriages can do fairly well, in fact
sometimes even better than the other techniques. How-
ever, we prefer to use MCF rather than SM as we found
SM to be very sensitive to the client-repository prefer-
ence orderings of each other. We found that a different
ordering resulted in an increase in the loss of fidelity ob-
tained from 0.89 to 14.2 - a factor of almost 14.

We
e

Loss in Fidelity (%)
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Figure 6: Client Assignment with Adaptation



In Figure 7(b), we see that the fidelity loss with MCF
increases as we relax the coherence of service provided.
This is because of the best effort service of MCF: as the
coherence of service becomes looser, the fidelity drops.
On the other hand, in both 7(a) and (b), M@Eg shows

an interesting behaviour. As we relax the coherence of
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Figure 7: Towards Adaptive Augmentation (1 source, 10 riépags, 200 data items, 600 clients

1. ABiased Approachin this, we augment only a frac- server,800 data items,100 clients andl"’ = 80% topol-

tion of those requests that need augmentation. Esagy, the loss in fidelity was about 4.5% - out of this about
sentially, in this approach, some of the clients will 90% was due to the delays at the source. OHs of

not be served at their desired coherences but the restie loss was due to the rest of the network.

will be. The difference in the desired and served co- The lowest loss in fidelity observed in Figure 7(a) for
herence might be high, sometimes even greater thaMCF_aug is less than that observed in Figure 7] %
than 100%, as explained in Section 3.3. Figure 7(ays 4.2). Note that in Figure 7(a) some of the clients
shows the result of this experimentation. The totalare served at a coherence which is at least than 100%
number of client requests was aba0t 000 and of  of the requested coherence. The loss in fidelity however
these about5% needed augmentation. Tl&axis  is lower than that obtained by increasing the coherence
shows the percentage of these requests that weraf service provided to all by 1%. This brings us to an-
augmented. The leftmost point in the curve is theother interesting observatioiit is better to relax - by a
fidelity offered by best effort (MCF) and the right- large amount - the coherence offered to a few clients than
most point is MCEaug which offers 100% augmen- to relax - by a small amount, the coherence offered to all
tation. clients. That is, it might be better to be biased against
some clients to improve overall fidelity fall clients.

) A_Fa|r Approa_lch In this approach, we Serve all the The observations mentioned above lead us towards a
clients at a slightly looser coherence. In this, we re-

laxed the coherence (i.e., made it looser) at which eedback based adaptation for providing service to the

L ) lients.
the repositories served data falt the clients. We clients

present these results in figure 7(b). We relaxed the 1. For every data item, the source maintains a list of

coherence of service provided from 0% to 100%  unique coherences that it serves in the network and

and present the results for both MCF and M&g. the number of clients being served for each coher-

Figure 7(b) only shows the trend from 0% to 10%, ence. For each data item, this list is stored in the

for the remaining values a linear increase inthe loss  ascending order of coherences.

in fidelity was observed.

2. Once the clients are assigned to the repositories,
during the actual dissemination of data in the net-
work, if the source or repository observes that the
gueueing delays are large (i.e., the delays are more
than a threshold, say;) then it informs the source
to relax the coherences for some of the clients.

service or reduce the percentage of requests that are augs. For each data iterd;, the source then takes the
mented, the fidelity actually improves before dropping.  most stringent cohereneg and of these selects the
This brings us to an interesting conclusiaghmight be < d;,c! > pair that has the minimum number of

i

better to serve the clients at a looser coherence than re-  clientsp,;. The network will now not provide ser-
quired by the clients, as the number of clients increases yjce to these clients at that coherence but the next
in the network A more stringent coherence requirement in the list,¢2. We addn; to the number of clients
might increase the load at the source and the reposito- requesting:?.

ries and this might result in a higher loss in the fidelity

than serving a client request at a looser coherence re-4. The source now waits for a suitable time interval for
quirement. In fact, source overload is a large contribut- the queueing delays to reduce. If the delays fall be-
ing factor to the loss in fidelity. We observed that fot a low the threshold, the node now informs the source



to stop relaxing the coherences. Else, the previouglients. The data at a repository is not exactly a replica of
step is repeated. the data at the source rather it can be seen as a projection
) _of the sequence of updates seen at the source.

5. If the queueing delays at the node become fairly  pechanisms for disseminating fast changing docu-
small, we then start resuming service at the prénents using multicast-based push has been studied in
vious coherence - in the Last Out First In fashion. 551 The difference though is that recipients receive
The source similarly waits for some time for the de- 5| ypdates to an object (thereby providing strong consis-
lays to stabilize, before resuming service of moreiency) whereas our focus is on disseminating only those
requests, till they reach another threshoids. updates that are necessary to meet user-specified coher-

Figure 6 presents our results using this strategy. wencee tolerances. Mult.icast tree constrL_Jction algorithms
in the context of application-level multicast have been

setth; as 400 ms andh, as 40 ms in this experiment. o . .
We also experimented with different thresholds varyingStUd'fd. in [14]. Wher(.aas.thes'e algorlthms_ are generic,
hed’t in our case, which is akin to an application-level

f 1 tol - te that ta it h . . oo L
rom 1 sec to 100 ms - (note that our data items ¢ angé ulticast tree, is specifically optimized for the problem

every 1-2 seconds) and observed a gain in the fidelit);n S :
obtained for all these values. For 500 clients, the loss irft and, namely maintaining coherence of dynamic data.
fidelity for MCF_aug augmentation drops from 7.8% to Several research groups and startup companies have
3.56%, by more than half! designed adaptive techniques for web workloads [9, 2].

In summary, we can state that an approach that comBut as far as we know, these efforts have not focused
bines the (a) bhilosophy of Min Cost Max Flow Ap- on distributing very fast changing content through their

proach, (b) augmentation and (c) adaptive coherence sef€MWOrks, instead, handling highly dynamic data at the

ting, works well even in situations when the number of SEIVer end. Our approaches are motivated by the goal

client requests is large or the data is very dynamic. of offloaliding this work to repositories at the edge of the
network.

The concept of approximate data at the users is stud-
5 Related Work ied in [22, 21]; the approach focuses on pushing individ-
Push-based dissemination techniques that have been deal data items directly to clients, based on client coher-
veloped include broadcast disks [3], publish/subscribeence requirements. We believe that the two approaches
applications [20, 5], web-based push caching [17], andare complementary since our approaches to cooperative
speculative dissemination [7]. repository based dissemination can be used with their ba-
The design of coherence mechanisms for web worksic source-client based dissemination.
loads has also received significant attention recently. Our work can be seen as providing support for ex-
Proposed techniques include strong and weak consiscuting continuous queries over dynamically changing
tency [19] and the leases approach [12, 30]. Our condata [19, 10]. Continuous queries in the Conquer sys-
tributions in this area lie in the definition of coherence intem [19] are tailored for heterogeneous data, rather than
combination with the fidelity requirements of users. Co-for real time data, and uses a disk-based database as its
herency maintenance has also been studied for cooperback end. NiagraCQ [10] focuses on efficient evaluation
tive web caching in [31, 28, 30]. The difference betweenof queries as opposed to coherent data dissemination to
these efforts and our work is that we focus on rapidly-repositories (which in turn can execute the continuous
changing dynamic web data while they focus on web datajueries resulting in better scalability). [16] looks atlpul
that changes at slower time-scales (e.g., tens of minutdsased approaches to satisfy a data aggregator needs. The
or hours)—an important difference that results in verywork from this paper can used to determine data coher-
different solutions. ence needs to execute queries over dynamic data so that
Efforts that focus ordynamicweb content include query results satisfy coherence requirements.
[18] where push-based invalidation and dependence
graphs are employed to determine where to push inval6 Conclusions and Future Work
idates and when. Scalability can be improved by ad-
justing the coherence requirements of data items [32]In this paper we have discussed the client assignment
The difference between these approaches and ours is thatoblem in a content distribution network for dynamic
repositories don’t cooperate with one another to maintairdata. Besides proving that the client assignment problem
coherence. is NP-Hard, we have cast the client assignment problem
Work on scalable and available replicated serversas an application of two well studied algorithms from
[32], and distributed servers [11] are related to our goalscombinatorial optimization. The techniques we have de-
[32] addresses the issue of adaptively varying the consisveloped can be used periodically to (re)assign clients to
tency requirement in replicated servers based on networkepositories.
load and application specific requirements. Our work We are currently investigating the mechanisms men-
on the building, and dissemination of dynamic data intioned here in a real network setting, as exemplified by
a network is based on the coherence requirements of thelanetLab.



Whereas our approach uses push-based disseming7] J. Gwertzman and M. Seltzer. The case for geographicsth pu
tion, other dissemination mechanisms such as adaptive

pull [16, 33] or adaptive combinations of push and pull

[8], could be used to disseminate data through our repod8l

itory overlay network. The use of such alternative dis-

semination mechanisms is the subject of future researcrhg]
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