
Client Assignment in Content Dissemination Networks for
Dynamic Data

Shetal Shah Krithi Ramamritham Chinya Ravishankar

Dept of Comp Science and Engg Comp Science and Engg Dept
Indian Institute of Technology Bombay University of California

Mumbai, India Riverside, CA

Abstract

Consider a content distribution network consist-
ing of a set of sources, repositories and clients
where the sources and the repositories coop-
erate with each other for efficient dissemina-
tion of dynamic data. In this system, necessary
changes are pushed from sources to repositories
and from repositories to clients so that they are
automatically informed about the changes of in-
terest. Clients and repositories associate coher-
ence requirements with a data item

�
, denot-

ing the maximum permissible deviation of the
value of

�
known to them from the value at the

source. Given a list of�data item, coherence�
served by each repository and a set of�client,
data item, coherence� requests, we address the
following problem: How do we assign clients to
the repositories, so that the fidelity, that is, the
degree to which client coherence requirements
are met, is maximized?

In this paper, we first prove that the client as-
signment problem is NP-Hard. Given the close-
ness of the client-repository assignment prob-
lem and the matching problem in combinato-
rial optimization, we have tailored and studied
two available solutions to the matching prob-
lem from the literature: (i) max-flow min-cost
and (ii) stable-marriages. Our empirical results
using real-world dynamic data show that the
presence of coherence requirements adds a new
dimension to the client-repository assignment
problem. An interesting result is that in update
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intensive situations a better fidelity can be deliv-
ered to the clients by attempting to deliver data
to some of the clients at a coherence lower than
what they desire. A consequence of this obser-
vation is the necessity for quick adaptation of
the delivered (vs. desired) data coherence with
respect to the changes in the dynamics of the
system. We develop techniques for such adap-
tation and show their impressive performance.

1 Introduction
Dynamic data is data which changes rapidly and unpre-
dictably. Examples of such data are stock prices, infor-
mation collected by sensors, network traffic, health mon-
itoring information, etc. Increasingly more and more
users are interested not only in monitoring dynamic data
but also in using it for making timely on-line decisions.
As a result, we need techniques to disseminate such data
to users as efficiently as possible. Existing techniques
for static data replicate the data closer to the users. This
may however involve large communication and compu-
tational costs for fast changing data which makes the use
of such techniques infeasible for dynamic data. To this
end, we have been focusing on techniques to build an
efficient, resilient and scalable content distribution net-
work for dynamic data dissemination consisting of a set
of cooperating sources and repositories, and clients as
shown in Figure 1.

Clients request service by specifying the coherence
requirements for the data items that they are interested
in. The coherence requirement (�) associated with a data
item

�
denotes the maximum permissible deviation of the

value of
�

at the client from the value at the source. Let�� ���
and	� ���

denote the value of
�

at the source and
the client, respectively, at time

�
. Then, to maintain co-

herence, we should have,
 � � �	� ��� 
 �� ��� � � �. Typ-
ically, different clients will want different data items at
different coherence requirements. For example, a user
involved in exploiting exchange disparities in different
markets or an on-line stock trader may impose stringent
coherence requirements (e.g., the stock price reported



should never be out-of-sync by more than one cent from
the actual value), whereas a casual observer of currency
exchange rate fluctuations or stock prices may be content
with a less stringent coherence requirement. The content
distribution network pushes changes to the data items to
various repositories such that the client requests are met.
Contrary to expectations, in [26] we showed that even
push-based systems, unless designed carefully, can ex-
perience considerable loss in fidelity due to communica-
tion delays and computational overheads – for determin-
ing whether an update is relevant for a client and if so,
pushing it to the client. These overheads, if not carefully
managed and minimized, can lead to loss in datafidelity,
that is, the degree to which the desired coherence require-
ments are met. Empirically, the fidelity� observed by a
client for a data item is defined to be the total length of
time for which the desired coherence requirement is met,
normalized by the total length of the observation. Details
of our content distribution network along with techniques
to build such a network are given in [26].

Source

Cooperating

Clients

Repositories

Figure 1: The Cooperative Repository Architecture

The issue that follows naturally from our previous
work is that of serving the needs of the various clients
that request service from the repositories in the network.
Since clients obtain their data from repositories which
form a cooperative content distribution network, achiev-
ing good data fidelity for clients necessitates solutions to
two subproblems:� Assigning data to repositories: Which repository
should serve which data items, and at what coherence?
The answer to this question should ideally take into ac-
count source and repository capabilities, rate of change
of data items as well as clients’ data and coherence
needs.� Assigning clients to repositories: Given a set of client
requests, how do we assign them to the repositories such
that the fidelity experienced by the clients is maximized?
This should take into account data availability at repos-
itories, the dynamics of the data, as well as overheads
induced by the repositories to push updates to clients.
These two problems are clearly inter-related. Further-
more, as clients can join or leave the network or their
data needs may change with time, ideally, the two types

of assignments need to be updated in a coordinated fash-
ion for providing efficient service to the clients. There
are two possible approaches for doing this - one in which
the network dynamically adapts to the changing require-
ments and another, where periodically a snapshot of the
clients’ needs is taken and then the repository data needs
as well as client-repository assignments are recomputed.

1.1 Problem: Assigning Clients to Repositories

We start with the assumption that the snapshot based ap-
proach has been used for assigning data to repositories;
this allows us to focus on the client assignment problem.
That is, we assume that the data needs of the repositories
are already derived and examine ways to assign clients to
the repositories.

Suppose, for a data item
�
, we have a set of� client

requests and� repositories which serve
�
. In a typical

content distribution network,� �� �. In the absence of
coherence requirements and computational delays, and
in the presence of communication delays, we would like
to matchthe clients to the repositories such that the over-
all communication delays are minimized. This can be
looked upon as a many-to-oneweighted matching prob-
lem1 where one wants to find a matching of minimum
weight, where the weights are the communication delays
such that all the client requests are matched to the repos-
itories.

The presence of coherence requirements and compu-
tational delays at the repositories complicate the problem
considerably. As mentioned earlier, different clients will
want a data item at different coherences. We say that the
network is able tosatisfya client request if it can meet
the coherence needs of the client. Note that a repository
will be able to satisfy only those requests whose the co-
herence requirements are less stringent or equal to that at
which the repository is providing service. Also, note that
if we assign too many clients to a repository we could
end up overloading the repository. This in turn could lead
to larger update propagation delays at the repository, in-
creasing the loss in fidelity. This calls for an adaptive
approach that adapts both repository data needs as well
as the coherence at which data is served to the clients.

1.2 Contributions: Solutions to the Client Assign-
ment Problem

Firstly, we prove thatoptimal client-repository assign-
ment is NP-Hardin Section 2. Since the problem is NP-
Hard, we develop principled heuristics inspired by two
well studied matching algorithms [29].

We can consider the repositories and the client re-
quests as sets in the bipartite graph in which we seek
a matching. An edge from a client request to a reposi-
tory indicates that a client request can be served by this
repository. As each repository will typically serve many

1In the literature, matching is one-to-one. Here we look at many-
to-one matching.



clients, we need to do many-to-one matching. One way
to solve a many-to-one matching problem is to convert
the problem instance to that of a one-to-one matching
problem by replicating the repositories appropriately and
then solve using standard matching algorithms [23, 27].
This would however explode the problem size. Also, if
an inappropriate replication of the repositories might re-
sult in the assignment of too many clients to a reposi-
tory, thus overloading it. Another way to solve the prob-
lem is to use amin-cost max-flowalgorithm to solve the
assignment problem. Framing it as a min-cost flow in-
stance not only allows us to control the number of as-
signments made to each repository but enables to do so
without increasing the problem size. Here, the problem
for all client requests for all data items can be solved at
one go. This however does not quite take the repository
overheads into account. This is due to the fact that it is
not just the number of clients that determine the load at a
repository but also the coherences of the clients assigned.
Hence the repository load is known only after the assign-
ment is made.

We deal with this conundrum as follows. We split the�client, data item� pairs into parts. We then run the
max-flow min-cost subroutine on the parts one by one.
After the ��� iteration, we know the load on each repos-
itory so far and this influences the cost function and the
capacity on the edges for the next iteration. We can split
the problem into parts based on either data items, coher-
ence requirements or both. This way of incrementally
solving the problem not only helps us to approximate the
repository load better for future assignments but a judi-
cious split also reduces the size and hence the overall
running time. The exact details of this approach are pre-
sented in Section 3.

A completely different approach is to do bipartite
graph matching by usingstable marriages. The abil-
ity of the stable-marriage algorithm to accommodate co-
herence and cost-based preferences during the match-
ing process makes it an good candidate for solving our
problem. Consider a scenario, where a partial client-
repository assignment has already been made. In such
a scenario, remaining clients will prefer, say, reposito-
ries which are not heavily loaded. Repositories, in turn,
would also prefer certain clients over the others. Coher-
ence requirements of the clients, load on the repositories
and the communication delays between the clients and
the repositories play a role in calculating the preferences
of the clients and the repositories for each other. Given
these preferences, we can then use an algorithm for sta-
ble marriages to give us a stable assignment of clients to
the repositories. We also propose an incremental version
of this approach in Section 3.

We have thoroughly evaluated these client-repository
assignment approaches using real world dynamic data
and the results of our experimentation are presented in
Section 3. An interesting result is that in highly update
intensive situations a better fidelity can be delivered to

the clients by attempting to deliver data to the clientsat
a lower coherence than what the clients desire. A con-
sequence of this observation is the necessity for quick
adaptation of the delivered (vs. desired) data coherence
to the changes in the dynamics of the system. We de-
velop techniques for such adaptation and show thatit is
better to relax - by a large amount - the coherence of-
fered to a few clients, than to relax - by a small amount,
the coherence offered to all clients. That is, it might be
better to be biased againstsomeclients to improve over-
all fidelity for all clients. We would like to mention that
this is a known result in admission control mechanisms
and we also observe this phenomenon here.

Related work is presented in Section 5.

2 NP-Hardness of Client Assignment

We now define the Client Assignment Problem, and
show that it is NP-complete.
Client Assignment Problem:
Inputs: We are given the following:� A system of� sources��� � �� � � � � � �� �, � reposito-
ries �� � � � � � � � � � � � �, � clients �� � � � � � � � � � �� �, and 

data items��� � �� � � � � � �! �.� For each repository� ", the list of data items#$% it
serves, and for each

�& ' # $% , the coherence level�$ %&
at which� " serves

�&
. Clearly,

�# $% � (  
.� A set of client coherence requirement triples)� " � �& � �*%& +

, stating that client�" needs data item
�&

at

coherence level�*%& .� The distribution from which values of
�&

are drawn,
for each

�&
.� For each

)� " � �& � �*%& +
triple, a number,"& such that- � ,"& � ..� / �� � � � � �, denotes the communication delay be-

tween any two nodes� � and�� in the network. A node
may be a source, a repository, or a client.

Each
)
parent, dependent, data item

+
triple is associ-

ated with a check delay and a push delay. Check delay is
the time a repository takes to check if a dependent is in-
terested in a particular update of the data item, and push
delay is the delay to push the update to the dependent,
respectively. For the rest of this section, byparentwe
mean a source or a repository and bydependentwe mean
a client or a repository, unless explicitly mentioned.
Question: Can every client�" be assigned to some
repository�&

such that for each client coherence tuple)� " � �! � �*%! +
, we have

�! ' #$0 and �$0! ( �*%! , and
such that�" receives

�!
with fidelity at least,"!?

Proof of NP-Hardness: To prove that the client as-
signment problem is NP-Hard, we reduce a well known
NP-Complete problem, Partition [15], to the client as-
signment problem.

Partition :
Input : A set

� 1 ��� � �� � � � � � �� � of � elements,
each with a positive weight2 " and an integer

 3 4
.



Question: Can the elements of set
�

be partitioned
into

 
parts such that the sum of the weights of the el-

ements in each part is the same. That is, can
�

be split
into

 
disjoint equal-weighted parts?

Given an instance for partition, we convert it to an in-
stance for the client assignment problem by constructing
a network of. source,

 
repositories,� clients and� data

item as follows.� Each repository�&
, . ( 5 (  

serves all the data
items

�� � �� � � � � � �� , serving
�" at a coherence

�
6% , . (

� ( �.� Client� " requests data item
�" at coherence

�
6% , .

(
� ( �.� The communication delay between any two nodes
in the network is

-
.� The push delay for any data item from any reposi-

tory to any client is7 where7 1 !8 and9 1 : " 2 ".
All check delays and all other push delays, including de-
lays to push changes from the source to the repositories
or from one repository to another, are

-
. Hence, pushes

from the source will be available immediately to all the
repositories. Repositories will push data to clients after
delay7 .� The fidelity for all data items and clients is, 1 �;<� .� All data items change deterministically, in accor-
dance with the function shown in Figure 2. A change
in value is initiated every

4
time units, and the value

changes by 1 unit in exactly= time units, where= � >�! .

t+ 4t+2t+1t t+ ε

Figure 2: Distribution of Data Items

Each repository is required to serve
�" at coherence

�
6% ,hence the source must send2 " updates to each reposi-

tory when the value of
�" changes by one unit. Since

changes occur at every
4

time units, the source sends2 "
updates for

�" to all repositories at even time intervals.
Every repository receives updates for all data items, but
forwards only the updates for data items its clients are
interested in. Such updates are calledusefulupdates.
Now, the check delays at all nodes are zero. The push
delays between the source and the repositories are also
zero. Additionally, the communication delays between
any two nodes are zero and hence these updates reach
the repositories instantaneously. The update now experi-
ences a push delay from the repository to the client inter-
ested in it. Each useful update causes a delay of7 time
units.
Claim: There is a client assignment such that the fidelity
of every data item is at least

�;<� if and only if there is a

partition of
�

into
 

equally weighted parts.
Proof:

Forward direction: Suppose there is a partition of
�

into
 

equal partitions? � � ?� � � � � � ? !
. The client assign-

ment follows the partition. That is, if element�" is in the
partition?& , then client�" is assigned to repository�&

.
For the proof, we need only consider the time inter-

val @- � 4A, since the process cycles every
4

seconds. In
this interval, data item

�" changes by 1 unit in= time
units. That is,

�" induces2 " updates in= time units, each
time changing by

�
6 % . Hence, the total number of updates

at the source is9 1 :" 2 ", and the number ofuseful
updates at any repository is

8! . Each repository gets all
these updates in= time units since the propagation delays
are zero.

We claim that all updates reach the clients by time. B =. The number ofusefulupdates at any repository is8! , so the time taken to push these updates to the clients
is

8 >! 1 . sec, since7 1 !8 secs. Hence, all clients get
all updates they are interested in within. B = time units.
Since the data values at source and clients remain equal
in the interval @. B = � 4A, the fidelity of every data item
across all clients is at least

�;<� .
Converse direction: Consider a client assignment

such that the fidelity for every pair of the form
�� " � � " � is

at least
�;<� . We derive a partition of the corresponding

set by making the weight of the elements in the partition
equal to the number ofusefulupdates2$% at repository�". If 2$%

1 8! for all repositories� ", we immediately
have a solution for the partition problem.

Suppose2$% � 8! . Since the push delay for sending
an update to a client is7, �" sends its last update to some
client no earlier than7 C 2$% time units. Since

8 >! 1 .,
we have7 C2$% 1 7 C2$% 
 �8 >! 
 .� 1 .B7 �2$% 


8! �
.

However,2$% 

8! 1 �! � 2$% 
 9 � 3 �! since2$% �8! . Consequently,7 C2$%

1 .B 7 �2$% 

8! � 3 .B >! �. B 4=, since= � >�! .

Under this situation, some data item
�!

at client�!
was in sync with the source for less than. 
 = time
units. Hence the fidelity for this

�� ! � �! �
pair was less

than
�;<� , which is a contradiction.

If 2$% � 8! , then at least one other repository�&
gets2$0 � 8! updates. We repeat the argument above
for �&

.

3 Client Assignment Using Min Cost Flows
and Stable Marriage

Typically, an update to a data item of interest to a client
is pushed to it via a network of repositories, and incurs
communication and computational delays en route to the
client, diminishing fidelity for that update. One way
to improve fidelity is to lower the communication and
computational delays in the network. We present two
techniques for this purpose based on the Min Cost Flow



Problem and Stable Marriage Problem. These are well-
studied combinatorial optimization problems, which we
overview below. For details see [29].

3.1 Using Min-Cost Network Flows

In this model, we permit a client�" to obtain each data
item

�&
of interest from a different repository. As men-

tioned earlier, assigning these
�� " � �& � �*%& �

triples to
repositories is a many-to-one weighted assignment prob-
lem, which can be solved using min-cost network flows.
The cost of an assignment would ideally be a function of
the communication delays, coherence requirement of the
client and the repository and the load on the repository.
The load on the repositories can be roughly balanced by
placing a limit on the number of

�� " � �& � �*%& �
triples that

a repository can serve.
The Min-Cost Network Flow Problem: The input

to a Min Cost Network Flow problem is a network of
vertices and edges. Each edge has (i) a capacity which
indicates the maximum flow the edge can support, and
(ii) a cost associated per unit of flow. The vertices may
also have some quantity of flow associated with them.
The network has a source node and a sink node and the
problem is to find a maximum flow of minimum cost in
the network.

3.1.1 Client Assignment Using Network Flows

Figure 3 shows our approach to solving the client assign-
ment using min cost network flows.

D D D DD D D DD D D DD D D DD D D D
E E EE E EE E EE E EE E E

F F F FF F F FF F F FF F F FF F F F
G G GG G GG G GG G GG G G

H H H HH H H HH H H HH H H HH H H H
I I II I II I II I II I I
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L L L LL L L LL L L LL L L LL L L L
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O O OO O OO O OO O OO O O

P P P PP P P PP P P PP P P PP P P P
Q Q QQ Q QQ Q QQ Q QQ Q Q

<client, data item, coherence> triples

Repositories

SinkSource

Capacity: # clients the repository is willing to serve
Unit capacity edges

Figure 3: Min Cost Flow Formulation of the Client As-
signment Problem

Vertices in the network:
Each repository and each

)� " � �& � �*%& +
triple is repre-

sented by a vertex in the network. There is a source ver-

tex from which the flow originates, and a sink vertex at
which it is absorbed.
Edges in the network:� An edge of unit capacity and unit cost exists from
the source to every vertex representing a

)� " � �& � �*%& +
triple.� An edge exists from each

)� " � �& � �*%& +
triple to ev-

ery repository�!
that can serve

�&
to �". The cost of this

edge is a function of the delay between the repository�!
and the client�", the coherence value�*%& the client spec-

ifies for
�&

, and the coherence value�$R& at which�!
can

serve
�&

. This function assigns lower costs to reposito-
ries for which�$R& � �*%& , and lowers costs further when

�*%& 
 �$R& is small. Such a cost function helps assign
clients to repositories whose requirements are close to
theirs, and hence optimizes the number of messages re-
quired for data dissemination.� A zero-cost edge exists from every vertex represent-
ing a repository to the sink, with capacity equal to the
maximum number of

)� " � �& � �*%& +
triples that a reposi-

tory can support.
We now find a min-cost flow in this network. It is

well-known that the max flow in the network is inte-
gral when the capacities are positive integers. We en-
sure that each

)� " � �& � �*%& +
triple is assigned to at most

one repository by assigning unit capacity to the edge be-
tween the source and each

)� " � �& � �*%& +
vertex, and to the

edge between each
)� " � �& � �*%& +

vertex and a repository
that can serve the client. By ensuring sufficient capacity
on the repository-sink edges, we obtain the solution for
all

)� " � �& � �*%& +
triples. This gives us an assignment of

all the clients to the repositories.

3.1.2 Iterative Min Cost Network Flow

We have tried to roughly balance loads by bounding the
capacities of each repository. Unfortunately, this ap-
proach is simplistic. The load due to a

)� " � �& � �*%& +
triple depends on the coherence requirement. The load
on a repository depends on the assignments made to the
repository, and the assignments, in turn, depend on the
repository loads. This is a chicken-and-egg problem.
To get better estimate of the load, we split the problem
into smaller units and solve by iteration. That is, rather
than solve the network flow problem on all

)� " � �& � �*%& +
triples simultaneously, we split the input into parts and
then execute the network flow solver on each part. In
each iteration, we estimate the load on the repositories
due to the assignment made to them so far and use this to
make further assignments.

We proceed as follows. We split the
)� " � �& � �*%& +

triples into ranges, based on the coherence requirements.
We run the network flow solver for successive ranges.
Once we have assignments for a range, we calculate the
approximate load on the repositories. The approximate
load at a repository due to a triple

)� " � �& � �*%& +
being as-



signed to it is given by
��*%& �;�

. Our reasoning is as fol-
lows: if the coherence is�, and a data item

�
is modelled

as a random walk, then the number of updates generated
is proportional to

�
ST [26]. This gives us a rough indica-

tion of the load due to the assignment of a single client to
the repository. This also implies that more stringent the
coherence requirement for a data item, more is the load
imposed on the repository. Due to this, we run the solver
in the decreasing order of coherence stringency.

The approximate load is then used to determine the
capacity of the repositories for the next range as follows.

Let there be� repositories and� )� " � �& � �* %& +
triples,

each with coherence requirement,, to be assigned in the
current iteration. The total load due to the assignments
in this iteration is �UT . Let the current load of a repository�" beV " and the average current load beV . We ask how
many of these

)� " � �& � �*%& +
triples should be assigned to

each� ". This should then be the capacity of the edge
from � " to the sink. We would like to do this to balance
the load as much as possible.

Let
�" be the number of

)� " � �& � �*%& +
triples assigned

to �". Then the total load on� " after assignment will beV" B �" W,
�
. To balance the load amongst the repositories,

we equate this to the average load on a repository after
assignment which isV B �!UT . Hence we get

�" 1 �! B
,
� �V 
 V" �.
When

�" is negative,� " has become more loaded than
the other repositories, so we give a nominal capacity of. for the� "-sink edge for that range.

3.2 Client Assignment via Stable Marriage

Consider� men and� women, and let each man and
each woman rank all the members of the opposite sex by
preference. The problem is to find astable marriagebe-
tween the sets of men and women, defined to be a pairing
of men with women, in which there is no manX and no
woman2 such thatX prefers2 to his current partner
and2 prefersX to her current partner. Since we exclude
pairs of men only or women only, this is equivalent to a
bipartite graph matching.

3.2.1 The Gale-Shapely Algorithm

This is an iterative algorithm for the stable marriage
problem. In the first iteration, each man proposes to the
woman he ranks highest, and each woman rejects every
proposal except the one from the man she ranks high-
est, whom she keeps pending. In the next iteration, each
rejected man proposes to the women next in their pref-
erence list. Each woman again ranks the new proposals
and any proposal she has pending, and keeps the one she
ranks highest pending, rejecting the rest. This process
continues till no further rejections take place. This al-
gorithm is known to terminate and to provide a stable
marriage inY ��

� �
time using efficient data structures.

3.2.2 Client Assignment Using Stable Marriages

We can consider the repositories and the
�� " � �& � �*%& �

triples as the sets in the bipartite graph in which we seek
a matching. Each

�� " � �& � �*%& �
triple ranks the reposito-

ries using a suitable preference function, based on factors
such as the communication delays, load on the reposito-
ries and coherence requirements. The repositories can
similarly rank the

�� " � �& � �* %& �
triples. If there are�

repositories, we can, in each iteration, assign some�
of the

�� " � �& � �*%& �
triples to these repositories using the

stable marriage algorithm. This approach has the advan-
tage that the ranking function in each iteration can take
into account the the load at each repository due to the�� " � �& � �*%& �

triples already assigned. Its chief disadvan-
tage is that it is based only on the ordering of preferences,
rather than actual parameter values.

We consider the data items one at a time. The clients
interested in some data item

�
represent the� men in

the stable marriage problem and the repositories which
serve

�
represent the� women. Since ours is a many-to-

one assignment problem, the marriage is polyandrous.
The number of clients that a repository can accept is a
function of the number of clients and the repositories.

Once the preferences of the clients and the reposito-
ries are calculated, we assume they remain unchanged
till the next snapshot. Clients preferences are based on
coherence requirements and repository loads, and pre-
fer lightly loaded repositories with coherence require-
ments equal to (or more stringent than) the clients’ re-
quirements. Given a clientZ which wants data item�

at coherence�[ and repository? which serves
�

at coherence�\ , the heuristic to calculate the prefer-
ence is given by:?S]�� ^�� _`a

� b ScSd �� ��\ ( �[ �
and

?S]�� ^�� _`a
� b SdSc b .-- �� ��[ � �\ �

. The smaller the
preference value, the more preferred is the repository.
Since the client would prefer to be served by a reposi-
tory whose requirements are more stringent than its own,
we multiply the preference factor by a large constant if�\ � �[ This way, repositories with requirements less
stringent than the clients’ will get a lower preference
value. Of the repositories that can serve the client, we
would like to choose a less loaded repository for the ser-
vice. The current load at the repository is calculated as
a function of the coherence requirements of the clients
assigned to it as given in Section 3.1.2.

The repositories rank the clients based on the commu-
nication delay between the repository and clients and the
coherence requirement of the client. A repository prefers
clients whose coherence specifications are close to, but
less stringent than its own. They also prefer clients to
whom the communication delays are lower.

Once these preference values are calculated, the Gale-
Shapley algorithm is executed and clients assigned to the
repositories in accordance with the resulting stable mar-
riage.
Some notes and optimizations:



If a repository with loose coherence requirements is
matched to a client with stringent coherence require-
ments, the client will miss a lot of updates. To avoid
such mismatches, the clients and the repositories are split
into two groups - one where stringent coherence and one
with loose coherence. For each data item, the algorithm
is executed once for each group, ensuring that clients get
repositories in the same group. One can determine the
range of stringent and loose coherences from the coher-
ence requirements served by the repositories. This opti-
mization alone improved the fidelity obtained by 20%.

3.3 Augmentation

It is not always possible to find a repository satisfying
a clients’ needs. For e.g., a client� may be interested
in a data item

�
with coherence requirement

- �- . but all
the repositories in the network serving

�
are serving at a

coherence of
- �-4

or above. In this case, we can do one
of the following:

1. Best-Effort Mapping: In this we try and find the
repository whose requirements are as close to that
of the clients. While the client will not get every
single change that (s)he is interested in, this is the
best that the network can provide. In the above ex-
ample,� will be served with a coherence of

- �-4
.

The client may experience a higher loss in fidelity
but it will continue to get best possible service from
the network.

2. Augmentation: In this, we augment the require-
ments of the repository chosen for the clients by
best effort mapping. For a data item, the coherence
served by a repository is then the most stringent of
that of the clients assigned to it. For example, in the
above example, the repository serving� will now
start serving

�
with a coherence of

- �- ..
4 Experimental Methodology and Results

We now present the experimental methodology and then
results for the performance evaluation of client assign-
ment techniques.

Traces – Collection procedure and characteristics:
The performance characteristics of our solution are in-
vestigated using real world stock price streams as exem-
plars of dynamic data - the presented results are based on
stock price traces (i.e., history of stock prices) obtained
by continuously pollinghttp://finance.yahoo.com. We
collected 1000 traces making sure that the correspond-
ing stocks did see some trading during that day. The de-
tails of some of the traces are listed in the table below
to suggest the characteristics of the traces used. (Max
andMin refer to the maximum and minimum prices ob-
served in the 10000 values polled during the indicated
Time Intervalon the given#e�f in Jan/Feb 2002.) As
we obtained 10000 polls in roughly 3 hrs, we were able to

obtain a new data value approximately once per second(
3*3600/10000). Since stock prices change at a slower
rate than once per second, the traces can be considered
to be real-time traces.

Company Date Time Interval Min Max
MSFT Feb 12 22:46-01:46 hours 60.09 60.85
SUNW Feb 1 21:30-01:22 hours 10.60 10.99
DELL Jan 30 00:43-04:12 hours 27.16 28.26
QCOM Feb 12 22:46-01:46 hours 40.38 41.23
INTC Jan 30 00:43-04:12 hours 33.66 34.239
Oracle Feb 1 21:30-01:22 hours 16.51 17.10

Characteristics of some of the Traces used for the experiment

Repositories and Clients – Data and Coherency
characteristics: Each repository and client requests a
subset of data items, with a particular data item chosen
with 50% probability. A coherence requirement� is as-
sociated with each of the chosen data items. We use dif-
ferent mixes of data coherence, the�’s associated with
the data in a client or repository are a mix of stringent
tolerances (varying from 0.01 to 0.09) and less strin-
gent tolerances (varying from 0.1 to 0.99).g % of the
data items have stringent coherence requirements (the re-
maining

�.-- 
 g �
%, of data items have less stringent

coherence requirements). To give an indication of the
number of client requests in the network: if the number
of clients is, say 100, and number of data items is, say
200, then the total number of the client requests will be
approximately

�hhi�hh� 1 .- � ---.
Physical Network – topology and delays:The phys-

ical network consists of nodes (routers, repositories,
sources and clients) and links. The router topology was
generated using BRITE (http://www.cs.bu.edu/brite).
Once the router topology was generated we randomly
placed the repositories, clients and the sources in the
same plane as that of the routers and connected each to
the closest router. For each repository and client, the data
items of interest were first generated and then coherences
were chosen from the desired range.

Our experiments use node-node communication de-
lays derived from a heavy tailed Pareto [24] distribution:j k �

l mn B j � where, is given by olol
;� , pj being the

mean andj � is the minimum delay a link can have. For
our experiments,pj was 15 ms (milli secs) andj � was 2
ms. As a result, the average nominal node-node delay in
our networks was around 20-30 ms. This is lower than
the delays reported based on measurements done on the
internet [13]. Depending on the nature of the queries,
the check delay (see Section 3.1.2) can be short for a
simple check to the tune of a few tens of milliseconds
for some complex query processing [10, 19]. We derive
the checking delay for each data item for each repository
from a heavy tailed Pareto distribution withpj as 5 ms
and j � 1 ms. The average checking delay was around
4 ms. The push delay was also derived using a Pareto



distribution with pj as 1 ms andj� 0.125ms. We also
experimented with other check and push delays.

Metrics: The key metric for our experiments is the
loss in fidelity of the data. Fidelity is the degree to
which a user’s desired coherency requirements are met
and is measured as the total length of time for which the
coherence requirements are met normalized by the to-
tal length of the observations. The fidelity of a client
is the mean fidelity over all data items requested at that
repository, while the overall fidelity of the system is the
mean fidelity of all clients. The loss in fidelity is simply�.--q 


fidelity
�
. Clearly, the lower this value, the better

the overall performance of a dissemination algorithm.
Min Cost Network Flow Solver: The maximum flow

of minimum cost in the network was obtained using an
algorithm by Bertsekas et al [6] who use a relaxation
method to solve the network flow problem. The solver
that we used was RelaxIV; the code for which was ob-
tained from [1].

Iterative Min Cost Flows: In iterative min cost flows,
we split the coherences required into ranges and exe-
cute the network flow solver on each range. For the re-
sults shown, the ranges used were�- �- . 
 - �-r � - �-r 
- �-s � - �-s 
 - �4 � - �4 
 .�.

An On-line Global Heuristic for Comparison :
The techniques developed in this paper are compared
amongst themselves and also with an on-line global
heuristic [4]: For each data item

�
, a selector node in

the network maintains information about (a) the repos-
itories which serve

�
and their coherence requirements,

(b) the number of clients already assigned to each reposi-
tory and (c) the communication delays between the nodes
in the network. When a client needs service from the net-
work, for each data item, the corresponding selector tries
to find a repository such that (a) the coherence require-
ment of the client is satisfied and (b) the sum of the com-
munication and computation delays is minimized. The
computational delay at repository� is approximated by
the number of clients served by� . We present results of
two versions of this heuristic: (i)GH: In this heuristic,
if no repository can meet the requirements of the client,
then the source serves the client. (ii)GH-be: This does
best effort mapping as explained in Section 3.3.

4.1 BaseLine Results

Figure 4 presents the initial results of our experimenta-
tion. Figure 4(a) shows the results for T=20, i.e., when
20% of the data item requests are stringent; also only
20% of the data items served by a repository are served
with stringent coherences. In a network of

4-
reposito-

ries, for T=20, only about
4

repositories will serve the
data item from the stringent range which is

- �- . 
 - �-t
for our experiments. Our data assignment randomly as-
signs a value to serve from the range. Hence, it is quite
likely that for some data items, we may have client re-
quests which are more stringent than those served by the

repositories2. Due to this, forg 1 4-
, the percentage of

stringent requests that can be satisfied by the network is
smaller than atg 1 u-

or g 1 v-
. Since, GH-be, Min

Cost Flows (MCF), and Stable Marriages(SM) do best
effort mapping, for theg 1 4-

case, the loss in fidelity
is high even for a small number of requests.

The Global Heuristic (GH) assigns the unsatisfied
clients to the source. When number of clients is small,
this does well but as the number of clients increases, the
source gets overloaded and the heuristic starts to degrade
rapidly. In fact, beyond

4--
clients, the loss in fidelity is

considerably higher than that offered by the other tech-
niques. Hence, we do not show the results of GH beyond
a point - the loss is much higher than

r-q
.

In Figure 4, we see that GH-be and MCF and SM are
fairly comparable. On further experimentation, we found
that the stringent requests are the ones which determine
the fidelity observed by the network. If we cannot meet
these requests, then the observed loss in fidelity could be
high (as seen in the T=20 case). At the same time, they
also add considerably to the load and hence, if not as-
signed properly, could also result in high loss in fidelity.
In the networks above, for a given data item, about 2-
8 repositories were serving the data item at a stringent
coherence. The best effort based approaches tend to dis-
tribute the stringent requests amongst these repositories.
Hence, as long as the best effort techniques do some sim-
ple load balancing, these techniques could be considered
to be comparable at least for small to medium number of
requests.

The results in Figure 4 also show that the fidelity ob-
served by the clients is dependent on the coherence of
the data at the repositories. We can see that if the net-
work can satisfy all the requests, as given by the curves
in MCF aug and SMaug, then the loss in fidelity due
to data dissemination is very low. This would lead one
to the conclusion that using augmentation would reduce
the dependence of fidelity on the data assignment so that
for even a naive data assignment, one can enjoy reason-
ably high fidelity. In Section 4.3, we show that this is
not always true and also discuss ways of reducing this
dependence.

4.2 MCF is the Preferred Approach

To compare the techniques in scenarios where the clients
can choose from a larger set of repositories, we experi-
mented with topologies where all the repositories serve
all the data items at the most stringent coherence re-
quired. With this we focus on that part of a network
where a large number of clients have more repositories
to choose from. The results of this experimentation are
in Figure 5. Initially, a for small number of requests, the
techniques are comparable but as the number of requests
increases, the best effort techniques start to perform bet-

2We feel that, even in a real network, one cannot always ensurethat
all the client requests will be satisfied by the network.
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Figure 4: BaseLine Results: 1 source, 20 repositories, 200 data items.
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Figure 5: MCF Performs Best:1 source, 10 repositories, 50 data items

ter than GH with MCF doing better than GH-be and SM.
In fact, in some cases, MCF did better than GH-be by as
much as a factor of 9 in the resultant fidelity. We further
investigated this by calculating the average queueing de-
lay at the repositories. As we have mentioned earlier, we
feel that a way to improve fidelity offered by the network
is to reduce the delays in the system. We noticed that
after a certain point the queueing delays for all the best
effort heuristics tend increase exponentially but the rise
of the delays for MCF is much slower than that of GH-be.
We feel this is because MCF explicitly takes repository
load into account (Section 3.1.2) as opposed to GH-be.
Note that for these graphs, augmentation performs simi-
lar to the corresponding best effort approach as the net-
work can meet the needs of the clients and hence separate
curves are not shown for MCFaug and SMaug.

From Figures 4 and 5, we can see that the solution
obtained from stable marriages can do fairly well, in fact
sometimes even better than the other techniques. How-
ever, we prefer to use MCF rather than SM as we found
SM to be very sensitive to the client-repository prefer-
ence orderings of each other. We found that a different
ordering resulted in an increase in the loss of fidelity ob-
tained from 0.89 to 14.2 - a factor of almost 14.

4.3 Feedback driven Adaptive Augmentation

The curves in Figure 4 indicate that one of ways of
achieving high fidelity is to augment the repositories to
meet the client needs. However, Figure 6 shows that this
can be counter productive, especially when the load is
high. If the number of requests and hence the load on
the network increases (say, after number of clients ex-
ceeds 400) then MCFaug starts to perform worse than
MCF, the approach without augmentation. We discuss
the curves marked with adapt later in this section. The
results indicate that for large number of requests, one
should either not augment or do selective augmentation.
We explored the issue of selective augmentation. There
are two possible ways of doing this.
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Figure 6: Client Assignment with Adaptation
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Figure 7: Towards Adaptive Augmentation (1 source, 10 repositories, 200 data items, 600 clients

1. A Biased Approach: In this, we augment only a frac-
tion of those requests that need augmentation. Es-
sentially, in this approach, some of the clients will
not be served at their desired coherences but the rest
will be. The difference in the desired and served co-
herence might be high, sometimes even greater than
than 100%, as explained in Section 3.3. Figure 7(a)
shows the result of this experimentation. The total
number of client requests was about

u- � ---
and of

these about.uq needed augmentation. Thew axis
shows the percentage of these requests that were
augmented. The leftmost point in the curve is the
fidelity offered by best effort (MCF) and the right-
most point is MCFaug which offers 100% augmen-
tation.

2. A Fair Approach: In this approach, we serve all the
clients at a slightly looser coherence. In this, we re-
laxed the coherence (i.e., made it looser) at which
the repositories served data forall the clients. We
present these results in figure 7(b). We relaxed the
coherence of service provided from 0% to 100%
and present the results for both MCF and MCFaug.
Figure 7(b) only shows the trend from 0% to 10%,
for the remaining values a linear increase in the loss
in fidelity was observed.

In Figure 7(b), we see that the fidelity loss with MCF
increases as we relax the coherence of service provided.
This is because of the best effort service of MCF: as the
coherence of service becomes looser, the fidelity drops.
On the other hand, in both 7(a) and (b), MCFaug shows
an interesting behaviour. As we relax the coherence of
service or reduce the percentage of requests that are aug-
mented, the fidelity actually improves before dropping.
This brings us to an interesting conclusion:it might be
better to serve the clients at a looser coherence than re-
quired by the clients, as the number of clients increases
in the network. A more stringent coherence requirement
might increase the load at the source and the reposito-
ries and this might result in a higher loss in the fidelity
than serving a client request at a looser coherence re-
quirement. In fact, source overload is a large contribut-
ing factor to the loss in fidelity. We observed that for ax

server,
v--

data items,.-- clients andg 1 v-q
topol-

ogy, the loss in fidelity was about 4.5% - out of this aboutt-q
was due to the delays at the source. Only.-q of

the loss was due to the rest of the network.
The lowest loss in fidelity observed in Figure 7(a) for

MCF aug is less than that observed in Figure 7(b) (
r �.4

vs x �4). Note that in Figure 7(a) some of the clients
are served at a coherence which is at least than 100%
of the requested coherence. The loss in fidelity however
is lower than that obtained by increasing the coherence
of service provided to all by 1%. This brings us to an-
other interesting observation:it is better to relax - by a
large amount - the coherence offered to a few clients than
to relax - by a small amount, the coherence offered to all
clients. That is, it might be better to be biased against
some clients to improve overall fidelity forall clients.

The observations mentioned above lead us towards a
feedback based adaptation for providing service to the
clients.

1. For every data item, the source maintains a list of
unique coherences that it serves in the network and
the number of clients being served for each coher-
ence. For each data item, this list is stored in the
ascending order of coherences.

2. Once the clients are assigned to the repositories,
during the actual dissemination of data in the net-
work, if the source or repository observes that the
queueing delays are large (i.e., the delays are more
than a threshold, say

�y�
) then it informs the source

to relax the coherences for some of the clients.

3. For each data item
�", the source then takes the

most stringent coherence�
�
" and of these selects the� �" � �

�
" � pair that has the minimum number of

clients� ". The network will now not provide ser-
vice to these clients at that coherence but the next
in the list, �

�
" . We add� " to the number of clients

requesting�
�
" .

4. The source now waits for a suitable time interval for
the queueing delays to reduce. If the delays fall be-
low the threshold, the node now informs the source



to stop relaxing the coherences. Else, the previous
step is repeated.

5. If the queueing delays at the node become fairly
small, we then start resuming service at the pre-
vious coherence - in the Last Out First In fashion.
The source similarly waits for some time for the de-
lays to stabilize, before resuming service of more
requests, till they reach another threshold -

�y�
.

Figure 6 presents our results using this strategy. We
set

�y�
as 400 ms and

�y�
as 40 ms in this experiment.

We also experimented with different thresholds varying
from 1 sec to 100 ms - (note that our data items change
every 1-2 seconds) and observed a gain in the fidelity
obtained for all these values. For 500 clients, the loss in
fidelity for MCF aug augmentation drops from 7.8% to
3.56%, by more than half!

In summary, we can state that an approach that com-
bines the (a) philosophy of Min Cost Max Flow Ap-
proach, (b) augmentation and (c) adaptive coherence set-
ting, works well even in situations when the number of
client requests is large or the data is very dynamic.

5 Related Work
Push-based dissemination techniques that have been de-
veloped include broadcast disks [3], publish/subscribe
applications [20, 5], web-based push caching [17], and
speculative dissemination [7].

The design of coherence mechanisms for web work-
loads has also received significant attention recently.
Proposed techniques include strong and weak consis-
tency [19] and the leases approach [12, 30]. Our con-
tributions in this area lie in the definition of coherence in
combination with the fidelity requirements of users. Co-
herency maintenance has also been studied for coopera-
tive web caching in [31, 28, 30]. The difference between
these efforts and our work is that we focus on rapidly-
changing dynamic web data while they focus on web data
that changes at slower time-scales (e.g., tens of minutes
or hours)—an important difference that results in very
different solutions.

Efforts that focus ondynamicweb content include
[18] where push-based invalidation and dependence
graphs are employed to determine where to push inval-
idates and when. Scalability can be improved by ad-
justing the coherence requirements of data items [32].
The difference between these approaches and ours is that
repositories don’t cooperate with one another to maintain
coherence.

Work on scalable and available replicated servers
[32], and distributed servers [11] are related to our goals.
[32] addresses the issue of adaptively varying the consis-
tency requirement in replicated servers based on network
load and application specific requirements. Our work
on the building, and dissemination of dynamic data in
a network is based on the coherence requirements of the

clients. The data at a repository is not exactly a replica of
the data at the source rather it can be seen as a projection
of the sequence of updates seen at the source.

Mechanisms for disseminating fast changing docu-
ments using multicast-based push has been studied in
[25]. The difference though is that recipients receive
all updates to an object (thereby providing strong consis-
tency), whereas our focus is on disseminating only those
updates that are necessary to meet user-specified coher-
ence tolerances. Multicast tree construction algorithms
in the context of application-level multicast have been
studied in [14]. Whereas these algorithms are generic,
the

�z �
in our case, which is akin to an application-level

multicast tree, is specifically optimized for the problem
at hand, namely maintaining coherence of dynamic data.

Several research groups and startup companies have
designed adaptive techniques for web workloads [9, 2].
But as far as we know, these efforts have not focused
on distributing very fast changing content through their
networks, instead, handling highly dynamic data at the
server end. Our approaches are motivated by the goal
of offloading this work to repositories at the edge of the
network.

The concept of approximate data at the users is stud-
ied in [22, 21]; the approach focuses on pushing individ-
ual data items directly to clients, based on client coher-
ence requirements. We believe that the two approaches
are complementary since our approaches to cooperative
repository based dissemination can be used with their ba-
sic source-client based dissemination.

Our work can be seen as providing support for ex-
ecuting continuous queries over dynamically changing
data [19, 10]. Continuous queries in the Conquer sys-
tem [19] are tailored for heterogeneous data, rather than
for real time data, and uses a disk-based database as its
back end. NiagraCQ [10] focuses on efficient evaluation
of queries as opposed to coherent data dissemination to
repositories (which in turn can execute the continuous
queries resulting in better scalability). [16] looks at pull-
based approaches to satisfy a data aggregator needs. The
work from this paper can used to determine data coher-
ence needs to execute queries over dynamic data so that
query results satisfy coherence requirements.

6 Conclusions and Future Work

In this paper we have discussed the client assignment
problem in a content distribution network for dynamic
data. Besides proving that the client assignment problem
is NP-Hard, we have cast the client assignment problem
as an application of two well studied algorithms from
combinatorial optimization. The techniques we have de-
veloped can be used periodically to (re)assign clients to
repositories.

We are currently investigating the mechanisms men-
tioned here in a real network setting, as exemplified by
PlanetLab.



Whereas our approach uses push-based dissemina-
tion, other dissemination mechanisms such as adaptive
pull [16, 33] or adaptive combinations of push and pull
[8], could be used to disseminate data through our repos-
itory overlay network. The use of such alternative dis-
semination mechanisms is the subject of future research.
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