
Monitoring the Dynamic Web
to respond to Continuous Queries

Sandeep Pandey
Computer Science and

Engineering
Indian Institute of Technology
Powai, Mumbai-400076, India

pandey@cse.iitb.ac.in

Krithi Ramamritham
Computer Science and

Engineering
Indian Institute of Technology
Powai, Mumbai-400076, India

krithi@cse.iitb.ac.in

Soumen Chakrabarti
Computer Science and

Engineering
Indian Institute of Technology
Powai, Mumbai-400076, India

soumen@cse.iitb.ac.in

ABSTRACT
Continuous queries are queries for which responses given to users
must be continuously updated, as the sources of interest get up-
dated. Such queries occur, for instance, during on-line decision
making, e.g., traffic flow control, weather monitoring, etc. The
problem of keeping the responses current reduces to the problem
of deciding how often to visit a source to determine if and how
it has been modified so that a user response can be updated ac-
cordingly. On the surface, this seems to be similar to the crawling
problem since crawlers attempt to keep indexes up-to-date as users
pose search queries. We show that this is not the case, both due
to the inherent differences between the nature of the two problems
as well as the performance metric. We also develop and evaluate
a novel multi-phase (ContinuousAdaptiveMonitoring) (CAM) so-
lution to the problem of maintaining the currency of query results.
Some of the important phases are: Thetracking phase, in which
changes, to an initially identified set of relevant pages, are tracked.
From the observed change characteristics of these pages, a proba-
bilistic model of their change behaviour is formulated and weights
are assigned to pages to denote their importance for the current
queries. During the next phase, theResource Allocationphase,
based on these statistics, resources, needed to continuouslymon-
itor these pages for changes, are allocated. Given these resource
allocations, theschedulingphase produces an optimal achievable
schedule for the monitoring tasks. An experimental evaluation of
our approach compared to prior approaches for crawling dynamic
web pages shows the effectiveness of our approach to monitor-
ing dynamic changes. For example, by monitoring just 5% of the
page changes, CAM is able to return 90% of the changed informa-
tion to the users. The experiments also produce some interesting
observations pertaining to the differences between the two prob-
lems of crawling—to build an index—and the problem of change
tracking—to respond to continuous queries.

Categories and Subject Descriptors
H.4.m [Information Systems]: Information Storage and Retrieval;
D.2 [Mathematics of Computing]: Probability, Linear Optimiza-
tion

General Terms
Continuous Queries, Performance, Allocation policies

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM xxx.

1. INTRODUCTION
The World Wide Web consists of an ever-increasing collection

of decentralized web pages that are modified at unspecified times
by their owners. Current search engines try to keep up with the dy-
namics of web by crawling it periodically, in the process building
an index that allows better search for pages relevant to a topic or
a set of keywords. Clearly, any good crawling technique needs to
consider the change behaviour of web pages. But, the algorithms
used for crawling and the typical frequency of crawling are insuf-
ficient to handle a class of queries known asContinuous Queries
(for example, see[11]) in which the user expects to be continu-
ously updated as and when new information of relevance to his/her
query becomes available. For example, consider a user who wants
to monitor a hurricane in progress with the view of knowing how
his/her town will be affected by the hurricane. Obviously, a system
which responds taking into account the continuous updates to the
relevant web pages will serve the users better than another which,
say, treats the query as adiscrete query, i.e., returns an answer only
when the query is submitted.

Not surprisingly, the problem of keeping track of the dynamics of
the web becomes inherently different for thecontinuous querycase
compared to thediscretequery case. We use the termmonitoring
to explicitly account for the differences from the classical crawl-
ing problem. Amonitoring taskfetches a web page, much like a
crawler does, but with the goal of fetching new information rele-
vant to one or more queries while acrawl is not done with any spe-
cific user request in mind. The work involved in handling continu-
ous queries is portrayed in Figure 1. Forcontinuousqueries, since
the system should maintain thecurrencyof responses to users, the
problem translates to one of (a) knowing which pages are relevant,
(b) tracking the changes to the pages, to determine the characteris-
tics of changes to these pages, and from these, (c) deciding when to
monitor the pages for changes, so that responses are current. The
last problem is the focus of this paper, and has several subproblems:
allocating the resources needed for monitoring the pages, schedul-
ing the actual monitoring tasks, and then monitoring. Specifically,
in this paper, we address the problem of distributing a given num-
ber ofmonitoring tasksamong the pages whose changes need to be
tracked so as to respond to a set ofcontinuousqueries. In Figure 1,
the feedback arcs from the monitoring phase to the earlier phases
indicate that observations made during the monitoring phase can be
used to adjust subsequent decisions.

It could be argued thatdiscretequeries posed every so often can
be considered to be equivalent tocontinuousqueries but the fol-
lowing reasons should help dispel this misconception: First, de-
termining the next time when thediscretequery should be posed

Scheduling
Determining

Relevant Pages
Resource
Allocation

Monitoring Tracking

Figure 1: Different phases of our approach

by the user is highly non-trivial. If the time-interval is kept small
then it may induce unnecessary load on the system, particularly
when the updates are not frequent. If we set the time-interval to
be large, it may lead to loss of information if updates are more fre-
quent than expected. Second,continuousqueries have a non-zero
lifetime and so a query system can study a query’s characteristics
carefully and can answer it more efficiently than in the case where
discretequeries, which have zero lifetime, are continuously posed.
Furthermore, unlike in the case of discrete queries, the time taken
to provide the system’s first response to acontinuous querymay
not be as important as the maintenance of currency during all the
responses. This discussion makes it clear that not only the nature of
the crawling problem but optimization goals also become different
when we move fromdiscreteto continuousquery case. To this end,
our optimization metric minimizes the information loss compared
to an idealmonitoringalgorithm which monitors every change of a
page.

To our knowledge, no earlier work has focused on the aspect
of monitoring relevant web pages to respond to a set ofcontin-
uous queries. In this paper, we introduce (ContinuousAdaptive
Monitoring) (CAM), a technique to monitor changes. The goal of
CAM’s resource allocation algorithm is to allocate the monitoring
resources across pages so as to minimize the information loss com-
pared to an idealmonitoringalgorithm which monitors upon every
change of a page. This goal also differentiates crawling frommon-
itoring. Whereas most of the earlier crawling strategies assume a
Poissonupdate process, the CAM approach is more practical and
robust as it is not designed with any basic assumptions. Instead,
it tracks the changes to pages and evolves the statistics relating to
these changes as pages aremonitored. We show the optimality of
CAM’s resource allocation algorithm under specific change sce-
narios and formally prove that, in thecontinuousquery case, that
Proportionalallocation policy, in which the pages with high fre-
quency of change are allocated moremonitoring tasks, works better
thanUniform policywhich allocates equal number ofmonitoring
tasksto each page independent of its change frequency. On the sur-
face, this seems to contradict a prior result thatUniform allocation
of crawling resources produces better results than itsProportional
counterpart [3]. We justify this surprising behaviour and also give
the intuition behind it. This shows that nature of problem ofmon-
itoring of dynamic web pages for answeringcontinuousqueries is
different from the problem of devising optimal crawling techniques
addressed in earlier studies.

The rest of this paper is structured as follows: In Section 2, we
define the problem formally and also provide an overview of our
Continuous Adaptive Monitoring (CAM) approach for supporting
continuous queries. Resource allocation and scheduling are the
subject of Sections 3 and 4 respectively. Results of performance
evaluation are presented in Section 5. Conclusions are related work

are found in Section 6.

2. OVERVIEW OF THE CAM APPROACH
Consider a user who is worried about a hurricane in progress and

wants to keep abreast of the hurricane-related updates. To achieve
this, he poses a continuousm-keyword queryq = {w1,w2, . . .wm}.
In this section, we present an overview of the major ingredients of
the CAM approach.
Identifying Pages Relevant to a Set of Queries:Based on the
keywords specified by a user, we first identify pages relevant to this
query. The query is fed to a classical search engine which in turn
returns a set of pages relevant to the queries. We find, say, thatthe
National Hurricane Center, National Weather Organization, and
other tropical cyclone sites as well as news sites are relevant. The
relevance of a page to a query can be measured by standard IR
techniques based on theVector-Spacemodel (see Appendix B for
details).
Tracking the Changes to Relevant Pages to Characterize Changes:
Once relevant pages have been identified, by visiting each page at
frequent intervals during a tracking period, changes to these pages
are tracked, update statistics collected, and the relevance of the
changes, vis a vis the queries, is assessed. This is used to build
a statistical model of the changes to the pages relevant to a set
of queries. These statistics include page update instances, page
change frequency, and relevance of the changes to the pages for
current queries.

Let Q denote the set of all queries submitted in the system and
ωi denote the importance ofith query. These are input to the sys-
tem. LetP denote the set of web pages relevant to the continuous
queries,Qpi be the set of queries for whichith page is found to
be relevant, andr i, j be the estimated relevance ofith page for jth

query. It is positive for all queries q∈ Qpi and zero for all
q∈ Q - Qpi . These relevance measures are initially calculated dur-
ing the tracking period (and get updated, as explained later, after
every monitoring epoch).

It is clear that not all pages will be equally important for each
query in the system. So we rank the pages by assigning aweight
to each page using its relevance for queries. Theweightof a page,
computed as∑ j∈Q(ω j r i, j), denotes the value of current version of
the page. If the page gets updated before its current version ismon-
itored, we assume that we incur a loss ofWi .
Considerations underlying the Monitoring of Changes:

CAM does its monitoring in epochs, each epoch is of durationT
time units. The purpose of the resource allocation phase is to decide
how to allocate monitoring resources for an epoch and the goal
of scheduling is to decide when a monitoring task should execute,
given the resource allocation decisions. Monitoring is done by a
monitoring task where the task includes fetching a specified page
from its source and determining if it has changed and if so applying
the changes to return new results for those queries for which that
page is relevant.

Let C denote the total number ofmonitoring tasksthat can be
employed in a single monitoring epoch.C is derived as an aggrega-
tion of the resources needed for monitoring, including CPU cycles,
communication bandwidth, and memory1.

λi is the estimated number of changes that occur in pagei in

1For example, the authors of [8] report that with two 533 MHz
Alpha processors, 2 GB of RAM, 118 GB of local disk, a 100
Mbit/sec FDDI connection to the Internet, andMercatorunder sr-
cjava, their crawler crawled at an average download rate of 112
documents/sec and 1,682 KB/sec. Similarly the capabilities of a
given infrastructure can be mapped to the number ofmonitoring
tasksthat it is capable of on average.

T time units. Henceforth we will call it thechange frequencyfor
pagei. SupposeUi denotes the sequence of time instancesui,1,
ui,2......ui,pi at which the tracking phase determines that possible
updates occur to pagei. We assume 0≤ ui,1 ≤ ui,2.....ui,pi ≤ T and
ui,0 = 0 andui,pi = T. pi is the total number of update instances for
ith page duringT, i.e., cardinality of sequenceUi (pi=|Ui |). Note
that a page may not be updated at these time instances and so there
is a probabilityρi, j associated with each time instanceui, j that de-
notes the chances ofith page being updated at thejth instance. The
overall goal of the resource allocation and scheduling phases is to
monitor in such a way that the monitoring events occur just after
updates are expected to take place. The number of missed updates
is an indication of the amount of lost information and minimizing
this is the goal of the system.

With these considerations in mind, decisions are made about the
allocation of a given number ofmonitoring tasksamong a set of
relevant pages while also decidingwhenthese allocatedmonitoring
tasksshould ideally occur within an epoch. The basic idea is that
these monitoring epochs of lengthT repeat everyT units of time
and we will make decisions pertaining to the monitoring tasks to
be carried out in one monitoring epoch using both new data and the
results from the previous epochs.
Resource Allocation Phase:

It should be clear that if we decide tomonitorat some instance,
then it should be at the potential update time instance only because
there is no reason to delay it beyond when a update might occur.
If number ofmonitoring tasksallocated for a page is equal to the
number of update instances, then we can always maintain a fresh
version of this page bymonitoringat all possible update instances.
But in practice we will not be able to perform as many monitoring
tasks as the number of update instances. So we need to pick a set
of update instances at which the page is to be monitored and not
at others. Hence with every update time instance, we associate a
variableyi, j where

yi, j = 1 if monitoringof ith page is done at timeui, j , 0, otherwise
if we monitorthe ith pagexi times, then∑pi

j=0(yi, j) = xi holds.
The resource allocation phase decidesyi. j values, that is, the time

instances at whichmonitoringshould be done given that the track-
ing phase has identified the time instances when changes may oc-
cur.
Scheduling the Monitoring Tasks: In the schedulingphase, we
take theyi, j values as inputs and prepare a feasible schedule to meet
our optimization measures.

In practice, we have a set ofM parallel monitoring processes
which continuously perform these monitoring tasks. Now our goal
is to map amonitoring taskto one of theseM parallel monitor-
ing processes and determine its time of invocation. While deter-
mining any schedule, our aim is to minimize the total delay oc-
curring between the ideal time instances and the actual scheduled
time instances. This, the scheduling step involves taking the ideal
timings for the monitoring of each page and obtaining an optimal
achievable schedule out of it. We map this problem toflow-shop
scheduling problem [12] with the goal of minimizing the average
completion time. Next wemonitorthese pages according to the de-
signed schedule and at the end of thismonitoring epochupdate the
statistics of these pages on the basis of the observations made in the
preceding epoch.

In general, based on the results of monitoring tasks of an epoch,
scheduling, resource allocations, change statistic computations, and
page relevance can all be revisited. These, as mentioned earlier,
correspond to the arcs going from the monitoring phase to the ear-
lier phases of Figure 1.

3. RESOURCE ALLOCATION IN CAM
As noted earlier, we need to distinguish between pages on the

basis of two metrics. One is the nature of page change behaviour
and the other is the importance of a page for one or more queries.
Page change behaviour is studied during atracking phase and is
characterized by associating a probability of change with every po-
tential update instance. Next we show the way in which pages can
be ranked by assigningweightsto them using relevance measures.
These relevance measures are determined for each page for each
query during thetrackingperiod.

3.1 Goals of the Resource Allocation Phase
CAM aims is to minimize the weighted importance of changes

that are not reported to users, that is,

min∑
iεP

(WiEi)

whereEi denotes expected number of lost changes forith page. We
assume that each update instance is independent of others, that is,
with each update of a page, information from the preceding update
is completely lost. Also, one update is assumed to be independent
of another. That is, the number of lost updates is an indication
of the amount of lost information. While these may not always be
true, they give us a simple way to state the goal to be accomplished.
Thus,

Ei = ∑
j∈Ui

ρi, j (1−yi, j)

Resource constraint is given by

∑
i∈P

∑
j∈Ui

yi, j = C,

where C denotes the total number of availablemonitoring tasks.
Implicitly, we assume that during the monitoring epoch of length
T, the relevance of each updated version of page for queries re-
mains the same as estimated duringtrackingperiod. At the end of
amonitoring epoch, we update these relevance measures on the ba-
sis of the monitored information. So unlessT is very large or page
updates are very erratic, our assumption is practical.

It is important to point out that it is relatively easy to accommo-
date the following extensions to the above model. In certain cases,
we may have more information about specific changes than the case
described above. For example, if we can measure change behaviour
of ith page with respect tojth query, then it would be possible to
allocate resources even more efficiently. For example, suppose we
get to know during the tracking period that a particular news site
mainly declares health updates only once at the start of day and
in the rest of the time, it remains mainly concerned about political
and sports updates, then we can better characterize the change be-
haviour of this page with respect to queries concerned with sports,
medical and political domain.
Supposeρi, j,k denotes the probability of change ofith page atjth

update instance where this change is relevant for queryk. Then Ei ,
the weighted expected number of lost changes forith page is,

∑
k∈Q

ωk.r i,k. ∑
j∈Ui

ρi, j,k(1−yi, j)

If we can extract even more information by measuring not only
the probability of change ofith page at update instanceui, j but also

the average importance of change at this time instance, then it can
make better resource allocation. For example, suppose we find that
a particular research site compiles and announces all its previous
day’s research updates daily at 10:00 a.m. in the morning and
in rest of day, it updates its page only when some new research
breakthrough takes place. Then it is clear that visit to this page
at 10:00 a.m. is certainly more fruitful than any other visit to this
page.

3.2 The Resource Allocation Algorithm
The formulated resources allocation problems are discrete, sep-

arable and convex.

1. Discrete: because variableyi, j can take only discrete values.
Our problem is inherently discrete due to discrete nature of
monitoring. Either a monitoring task is allocated to a page or
it won’t be. There can’t be anything between these.

2. Separable: because optimizing function could be expressed
in terms ofyi, j only.

3. Convex: due to convex nature of optimizing function.

Discrete, Separable and Convex problems have been well-studied
[9]. Formally it can be stated as minimizing∑G

i=1Fi(xi) with re-
source constraint:∑G

i=1xi = Z, wherex′is are discrete andF ′
i s are

convex. Agreedyalgorithm exists for the discrete case [6]. There is
a faster algorithm also for our problem, due to Galil and Megiddo,
which has complexityO(G(logZ)2). The fastest algorithm is due
to Frederickson and Johnson [7] and it has complexity
O(max{G,Glog(Z/G)}). In our case, the output of these algo-
rithms is a set ofyi, j ’s. This set in turn gives us the number of
monitoring tasksallocated to a page (xi=∑pi

j=0(yi, j)) as well as the
ideal time instances, (namely, thejs for whichyi, j is 1), at which
these allocatedmonitoring tasksshould be executed.

Given the design of the above resource allocation algorithm, the
yi, js that result are optimal, i.e., maximize the value of the returned
information, when the updates are quazi deterministic, i.e., occur
at specific time instances and the actual occurrence of a change is
associated with a probability.

4. SCHEDULING OF MONITORING TASKS
As mentioned earlier, our goal is to schedule the allocatedmon-

itoring tasksamongM parallel monitoring processes with the aim
of minimizing the total delay between the ideal time instances and
the actual scheduled time instances when a monitoring task must
be executed.

Let pagePi be allocatedxi number ofmonitoring tasksin an op-
timal resource allocation. Also the time instances at which thesexi
monitoring tasksshould be employed aret1, t2, t3....txi , as identified
in the resource allocation phase. Letf etchi be the average fetching
time for theith page. The scheduling problem can be easily mapped
to parallel shop scheduling problem.

In this problem, eachjob has to be processed on exactly one of
M identicalmachines. Eachmonitoring taskcould be regarded as
a job whereas the monitoring processes are equivalent tomachines.
Suppose there are a total ofn such jobs. In scheduling problems,
the time at which a job becomes available for processing is called
the release time(relj) and the time for which it needs a machine is
called theprocessing time. So in our case, idealmonitoring time
instancest1, t2, t3........txi would be therelease timesand fetching
times of pages correspond toprocessing times (pj) for jobs. Our
goal is to minimize the delaydi between idealmonitoringtime in-
stance(reli) and actual time instancesi of scheduling.

In our case all the jobs are equally important as there is no weight
assigned with eachmonitoring. So our problem can be formulated
in scheduling notation asR|M|rel j ≥ 0|∑ j Cmj meaning thatR jobs
of non-trivial release times are available for scheduling atM ma-
chines with goal of minimizing the average completion time. Here
Cmj denotes completion time for jobj. Minimizing the average
completion time leads to minimization of average delay time be-
causeTotal Completion Time

= ∑R
i=1(Cmi)

= ∑R
i=1(si + pi)

= ∑R
i=1(reli +di + pi)

= ∑R
i=1(di)+∑R

i=1(reli)+∑R
i=1(pi)

As ∑R
i=1(reli) and∑R

i=1(pi) are constants, minimizing average com-
pletion time is same as minimizing delay time. Note thatCmi is
the same assi + pi because ofnon-preemptivescheduling. Un-
fortunately even the simpler problemR|1|rel j ≥ 0|∑ j Cmj do not
have any polynomial time algorithm and has been proved to beNP-
Complete[10]. So we have to look forapproximation algorithms.
For completion time problem there is an 1.58-approximation algo-
rithm [10] which we used in our experiments.

5. EXPERIMENTAL EVALUATION
In this section, after explaining the setup for the experiments, we

describe the results.

5.1 Experimental setup and performance
metric

Comparison with Alternative Algorithms: In previous sections,
we presented the optimalresources allocation policyincorporated
in CAM for monitoring changes in pages relevant tocontinuous
queries. Here we evaluate our policy by comparing it with some
classical policies using a synthetic data set. These policies [3] are:
Uniform in which resources i.e.,(monitoring tasks)are allocated
uniformly across all pages, and
Proportional in which resources are allocated proportional to change-
frequencies of pages respectively.
As suggested in [15], it would be fair to compare with the weighted
version of these policies than the unweighted ones: In theWeighted
Uniform scheme, the number ofmonitoring tasks(xi) allocated to a
page depends on theweights(Wi) associated with the page but is in-
dependent of its change frequency(λi): xi ∝Wi . In theProportional
scheme,xi ∝ (λiWi).
Parameters of the Experiment: As mentioned earlier, each page
has an estimated change frequency(λi) associated with it which de-
notes the expected number of changes that occur in a page inT
time duration. Also there is a sequence of update instances(ui, j)
for each page(Ui) which enumerates the time instances at which
changes can occur in a page. With each update instance(ui, j), there
is an associated probability(ρi, j) which denotes the probability with
which a change can occur at this instance. In our experiments, to
make it simple, we make this sequence of update instances(U) the
same for each page. On the first sight, it seems to be in contrast
with the model we described in Section 2. There we said that each
page will have its own sequence ofUi and it will vary from page
to page. But note that fixing of update sequence(U) doesn’t cre-
ate any difference if we choose it to be theunion of Ui of each
page. This is because of the following two reasons: Firstly uni-
versal sequence(U) does contain all possible update instance of all
the pages, so no update instance of any page is lost. Secondly if a
page doesn’t have some update instance in itsUi which is inU , then
we can always correct it by making the probability associated with

this update instance inU for this page zero. So model for change
behaviour of each and every page remains unaffected. Other pa-
rameters are decided as below :

1. Nq : number of queries submitted in the system. It is set to
500.

2. N : number of pages found relevant the for the queries sub-
mitted. It is also set to 500. This implies that set of relevant
pages for queries have common elements in them.

3. C : number ofmonitoring tasksavailable. It is varied from
1000 to 50000 in our experiments. IfT is set to be 15 minutes
(for example, the Google-News site is said to use crawlers
which visit relevant sites every 15 minutes), then 50000mon-
itoring taskswould require a downloading speed of 56 docu-
ments/sec approximately.

4. Change frequency distribution: The change frequencies(λi ’s)
are chosen according toZipf distribution with parametersN
andθ. θ varies from 0 to 2. Such distributions run the spec-
trum from highly skewed (whenθ is 2) to uniform (whenθ
is 0). Unless otherwise specified,θ is set to 2 in experiments.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Change Frequency

0

50

100

150

200

250

300

350

N
um

be
r

of
 p

ag
es

Figure 2: Change frequency distribution

5. Update probability distribution: Update instances ofU are
assumed to be uniformly distributed throughout the duration
T. In our experiments, we have dividedT in 480 update
instances. Probabilities (ρi, j) associated with these update
instances(ui, j) are varied between 0 and 0.3 and follow aZipf
distribution. Henceforth we will refer to this distribution as
update probability distribution. Zipf is chosen because of the
fact that most of the web pages have time durations when
they are updated with greater probabilities in comparison to
the rest of the time durations. News sites can have multi-
ple hot time durations and that can be modeled by generating
many “humps” in theirupdate probability distributionwith
probability varying in the vicinity of every hump inZipf fash-
ion. Note that the probabilities(ρi, j) for all update instances
of a page should sum up to expected change-frequency(λi)
of that page. Also note that we vary thezipf parameter of

thisupdate probability distributionfrom 0 to 2 in our experi-
ments and so we get a correspondingupdate probability dis-
tribution for a page inT varying from a uniform to a highly
skewed distribution. This makes our experiments free from
a priori assumptions about page change behaviour and helps
in evaluating our policies for real scenarios.

6. Weight of queries: All queries are assigned the sameim-
portance measure(ωi). It means that there is no distinction
made among queries and they are defined to have equal im-
portance.

7. Page Weight Distribution: Recent studies [14] show that
popularity of pages vary inzipf fashion as shown in Fig 3.
Drawing an analogy, we chooser i, j , the relevance of page

0 2 4 6 8 10 12 14 16 18

Frequency of Access

0

500

1000

1500

2000

2500

N
um

be
r

of
 p

ag
es

Figure 3: Observed popularity distribution

j for a queryi, from azipf distribution. Also the more dy-
namic a page, the more more popular it is too, as shown in
[16]. So we make the the more dynamic more have higher
relevance in our experiments to a page in abiasedrandom
manner. The summation of relevance measures of a page for
all the queries gives us the weight(Wi) for this page as dis-
cussed in Section 3. The distribution according to whichWi
varies is referred to aspage weight distribution.

8. Monitoring-change ratio: denotes the ratio of the total num-
ber ofmonitoring tasksto, (∑iεP λi), i.e., the number of actual
changes expected in timeT.

Performance Metric: Returned Information ratio : Proportion
of the changedinformation returned by a given number of moni-
toring tasks is called asReturned Information Ratio. From section
3,

∑i∈PWi .∑ j∈U (ρi, j .yi, j)

∑i∈P(Wi .λi)

Note that the maximum possible value ofreturned information ra-
tio is 1 and it is attained when all thoseyi, js are made 1 for which
correspondingρi, js are non-zero. This is the performance metric
on the basis of which we compare various allocation policies in our
experiments.

5.2 Comparison of Resource Allocation
Policies

In this experiment, we evaluate the aforementioned resource al-
location polices and also observe the effects ofupdate probability
distributionandpage weight distributionon their performance.

5.2.1 Uniform page weights and update probabilities
We make both these distributions uniform and set theZipf pa-

rameter ofchange frequency distributionto 2 as shown in Fig. 2.
Uniform page weight distributionmeans that all pages have equal
importance while uniformupdate probability distributionleads to
equal probability of change to a page at any update instance inT.
Fig. 4 shows the performance of different resource allocation poli-
cies. There are two important observations.

2.0 3.0 4.0 5.0 6.0 7.0 8.0

Monitoring-Change Ratio

0.00

0.10

0.20

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM
Proportional
Uniform

Figure 4: Performance under uniform page weight and update
probability distribution

1. Proportional policy performs better than itsUniform coun-
terpart. This is very surprising as earlier studies showed the
reverse to be true [3] [15]. The reason becomes clear when
we delve into the nature of the crawling vs. the monitor-
ing problem. In our case, we answercontinuousqueries
and our aim is to detect as many changes as possible. So
when all other parameters (page-weight and update proba-
bility distribution) are uniform, one would certainly expect
more benefits bymonitoring those pages which have high
change frequency (λi) because these pages have considerable
chances of changing. This is whatProportionalpolicy does
and so it performs better thanUniformpolicy. Earlier studies
solved the problem for answering discrete queries and aimed
to maximizefreshnessof page which is found to be of acon-
vexnature. So the performance ofUniform becomes better
thanProportional in their case. We offer a formal proof of
why Uniformdoes not work as well asProportionalfor con-
tinuousqueries in an Appendix.

2. Optimal policy also allocates moremonitoring tasksto more
dynamic pages but it does it even more aggressively than
Proportional. Fig. 5 shows that our CAM approach allo-
cates all itsmonitoring tasksto only a few pages (for clarity,
for the sake of this graph, 50 pages of consecutive page in-
dices have been grouped into a bin) and delivers most of the
information to queries from these pages. Again the pages
monitoredare those which have high probability of actually
changing.Proportionaltoo does this but it allocatesmonitor-
ing tasksin a proportional manner only while CAM does it in

0 50 100 150 200 250 300 350 400 450 500

Page Bins (50 pages in a bin)

0.000

0.100

0.200

0.300

0.400

fr
ac

tio
n

of
 to

ta
l i

nf
or

m
at

io
n Total Information of a bin

Returned by CAM

Returned by Proportional

Returned by Uniform

Figure 5: Characteristics of Resource Allocation Policies

a more biased way and so it gets even better performance. It
is evident from the graph that optimal policy performs 300%
better thanProportionalpolicy and around 600% better than
Uniformpolicy!

If we decrease the skewness, i.e., thezipf parameter of thechange
frequency distributionthe policies start coming closer and in the
extreme case, they all become the same when frequencies are made
to be distributed in a uniform manner (Zipf parameter set to 0).

5.2.2 Skewed page update probabilities
We skew theupdate probability distributionwith zipf parame-

ter set to 1. So pages are still of equal importance but for each
page, the update instances are no more equi-probable, in changing.
Fig. 6 shows the performance. Again, CAM performs best leav-
ing other allocation policies far behind. It is 12 times better than
Uniform policy. But in this case, the pages which aremonitored
by CAM turn out to be quite diversified as pages with even lesser
change frequency have some update instances with a good chance
of actually changing as shown in Fig. 7.

2.0 3.0 4.0 5.0 6.0 7.0 8.0

Monitoring-Change Ratio

0.00

0.10

0.20

0.30

0.40

0.50

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM
Proportional
Uniform

Figure 6: Under skewed update probability and uniform page
weight distribution

5.2.3 When page weights are skewed

0 50 100 150 200 250 300 350 400 450 500

Page Bins (50 pages in a bin)

0.000

0.100

0.200

0.300

0.400

fr
ac

tio
n

of
 to

ta
l i

nf
or

m
at

io
n Total Information of a bin

Returned by CAM

Returned by Proportional

Returned by Uniform

Figure 7: Characteristics of resource allocation policies

If we makepage-weightdistribution skewed while keepingup-
date probability distributionuniform, we find that optimal again
performs far better than others as shown in Fig. 8. Also, now it
allocatesmonitoring tasksto those pages which have high impor-
tance and a higher probability of getting changed.

2.0 3.0 4.0 5.0 6.0 7.0 8.0

Monitoring-Change Ratio

0.00

0.10

0.20

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM
Proportional
Uniform

Figure 8: Performance under skewed page weight and uniform
update probability distribution

In summary, CAM’s resource allocation approach performs bet-
ter than the previously proposedUniformandProportionalapproaches
across a wide spectrum of distributions. In particular, the more
skewed the distributions, the more pronounced the performance im-
provement.

5.3 Effect of varying the skewness of the up-
date probability distribution

Fig. 9 compares performance of different resource allocation
policies whenmonitoring-change ratiois kept at 9 andpage weight
distribution is uniform. It is clear from the curves that for this data
set, CAM’s resource allocation policy always performs better than
the other resource allocation policies. To emphasize the difference,
we varied theupdate probability distributionkeeping other param-
eters same as before. As is evident from Fig. 9, CAM’s resource al-
location policy starts performing even much better than other poli-
cies asupdate distributionis made more and more skewed. It ex-

0.0 0.5 1.0 1.5

Zipf parameter

0.00

0.20

0.40

0.60

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM
Proportional
Uniform

Figure 9: Performance under varying skewness of update prob-
ability distribution

hibits a 5-fold improvement overUniform resource allocation pol-
icy at zerozipf parameter but whenzipf parameter is set to 1.5, its
performance sees a 10-fold improvement.

This is because of the fact that in CAM’s resource allocation
policy, monitoring is done at those update instances which have a
high probability of returning relevant information and so, asupdate
probability distributionis made more and more skewed, it responds
to the skewness of data by selecting the most beneficial instances
for monitoringand performs even better than before. But this is
not the case withUniformandProportionalpolicies as they do not
take into account the granularity of update instances and decide to
monitor based on weight and change frequency. (Note that when
zipf parameter is set to zero, it does not mean that update probabil-
ities become uniformly distributed, instead of this it means that all
update probability values occur equal number of times.)

5.4 Identifying the Parameters to get even Bet-
ter Results for Continuous Queries

In the previous experiment, we observed that even when we have
9 times moremonitoring tasksavailable than expected number of
changes inT, the loss of information remains significant. This is

0.0 3.0 6.0 9.0 12.0 15.0

Monitoring-Change Ratio

0.000

0.200

0.400

0.600

0.800

1.000

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

zipf parameter=2.0
zipf parameter=1.0
zipf parameter=0.5

Figure 10: Performance with varying skewness of update prob-
ability distribution

because of the distributed and uncertain nature of page change be-
haviour which make the number ofmonitoring tasksrequired for
good performance very large (Section 5.2.1). In the ideal case,
we will require continuous monitoring of web pages and so even
a large number ofmonitoring tasks(until they become comparable
the to number of update instances) will not be of much help.

Fig. 10 shows how performance varies with theupdate proba-
bility distribution of page change behaviour. It is also evident that
pages with almost uniformupdate probability distributionwill re-
quire more monitoring than the skewed case. We find thatpage

2.0 4.0 6.0 8.0

Monitoring-Change Ratio

0.00
0.10
0.20
0.30
0.40
0.50
0.60

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

zipf parameter=1
Uniform weights

Figure 11: Performance with different skewness of page weight
distribution

weight distribution also affects the performance in a significant
way. This is intuitive: if we can somehow figure out duringtracking
phasethat a particular set of pages is serving a major part of report-
ings to users for answering query, then we can improve our perfor-
mance by assigning them a major share ofmonitoring tasks. Fig.
11 shows the effect ofpage-weightdistribution on the performance
of allocation techniques. In general,Continuous queries can be
responded to even more efficiently by extracting meta-information
about the change behaviour of web pages.

5.5 Effect of Monitor-change Ratio on Con-
tinuous Queries

0 10 20 30 40 50

Monitoring-Change Ratio

0.000

0.200

0.400

0.600

0.800

1.000

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

CAM

Figure 12: Performance of optimal policy

Here we evaluate the practical application of our proposed scheme.
As evident from Fig. 12, 90% of the Information is returned in our
technique whenmonitor-change ratiois 20. Without using CAM,
retrieving 90% of the information would requiremonitoringof at

least 432 monitoring instances while CAM needs only 20monitor-
ing tasks(5% of the maximum needed monitoring tasks).

5.6 Reallocating Resources

0.0 30.0 60.0 90.0 120.0 150.0

Epoch Index

0.00

0.20

0.40

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

Performance Curve

Figure 13: Effect of Resource Reallocation after every epoch

As we said while describing our CAM technique that after every
epoch of lengthT, we update page change behaviour and accord-
ingly modify resource allocations for next epoch. But this may
become very expensive especially whenT is small. So, we next
study the effect of the theresource allocation delayto determine
how often it might be beneficial to reallocate the resources.

We start withpage update probability distribution’s zipf param-
eter being set to 1. Then we generate an actual event based on this
update probability distributionby tossing a biased coin at every up-
date instance and declaring a change at an instance if it falls head.
Before the next epoch, we modify theupdate probability distribu-

0.0 30.0 60.0 90.0 120.0 150.0

Epoch Index

0.00

0.20

0.40

0.60

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

After every epoch
After 5 epochs
 After 10 epochs

Figure 14: Effect of Varying the Resource Reallocation Delay

tionbased on the recent epoch by modifying update probabilities(ρi, j)
of those update instances which getmonitoredin the epoch. We
do this modification simply by estimating the average rate of oc-
currence of updates: if a page was updated five times in the last
10 monitoring instances, 0.5 is assigned as the probability of ex-
pecting a change at the next update instance. Then we reallocate
resources accommodating this newupdate probability distribution.
As Fig. 13 shows that performance of such a reallocation policy
does increase in the initial epochs and then becomes steady. This
is what one would expect because after a large number of epochs,
theupdate probability distributionitself becomes steady. Also we

plotted 2 more graphs as shown in Fig. 14 to study the effect of
delayed resource allocation: Here the statistics are updated after a
set of epochs. We find that resource allocation is not required to be
done after every epoch and can be delayed without incurring any
significant loss provided thetracking phasewas used to capture the
initial page change behaviour. This study shows that it is possible to
adapt to the change behaviour using the CAM approach and derive
additional benefits in terms of the quality of information returned.

5.7 Performance of the Scheduling algorithm

0 8 16 24 32 40 48 56 64

Size(in KB)

0.0

5.0

10.0

15.0

20.0

Pe
rc

en
ta

ge

Figure 15: Size of web documents

In this experiment, we test our scheduling algorithm and show
its performance.Change frequency distribution’s zipf parameter
is set to 2 andupdate probability distribution’s zipf parameter to 1.
Sizes of the documents are generated as shown in Fig. 15 as per [8].
Also, the more popular pages’ sizes are set to be smaller [5]. We
define averagemonitoring capacityas available bandwidth divided
by average size of documents. As shown in Fig. 16, ourschedul-
ing algorithm performs very well and is almostlosslesswhen the
number ofmonitoring tasksis less than the averagemonitoring ca-
pacity. Even when the number ofmonitoring tasksrequired to be
scheduled exceeds the averagemonitoring capacity, the loss of in-
formation incurred in theschedulingphase remains quite negligi-
ble in comparison ofresource allocationphase. The two kinds of
losses incurred are:

1. As the number ofmonitoring tasksto be scheduled becomes
more than the averagemonitoring capacity, somemonitoring
tasksremain undone and so some loss of information occurs.

2. As number of monitoring tasks increases, the chances of ex-
ceeding themonitoring capacityat an instance also becomes
high. So thesemonitoring tasksget delayed, leading to loss
of information.

The experimental results lead to the following observations:

• CAM produces query results with higher coherency than ei-
ther Proportional or Uniform can. Often the amount of re-
turned information with CAM’s approach is 5-10 times that
returned by Uniform or Proportional. The more skewed the
page update and page weight distribution, the better the im-
provement. Increased availability of monitoring resources
(as indicated by the monitoring-change ration) also leads to
a larger performance improvement with CAM than with the
others.

• By deploying a relatively very small number of monitoring
tasks, e.g., 5% of the total number of update instances, CAM’s

0.0 3.0 6.0 9.0 12.0

Monitoring-Change Ratio

0.000

0.200

0.400

0.600

0.800

R
et

ur
ne

d
In

fo
rm

at
io

n
R

at
io

Average probing capacity = 7.6*No. of expected changes

After Resource Allocation
After Scheduling

Figure 16: Allocation vs. Scheduling Decisions

resource allocation and scheduling algorithms are able to re-
turn a very large proportion, in the above case, 90%, of the
changed information.

• It is possible to improve performance further by updating the
page change statistics using of the changes monitored during
each epoch. We showed that in fact, it is possible to achieve
considerable performance improvement even if such adap-
tation is not done after every epoch, but once after several
epochs suffices.

6. CONCLUSIONS AND RELATED WORK
In this paper, we examined the problem of keeping responses

to continuous queries current by focusing on the problem of dy-
namically monitoring the sources of information relevant to the
queries. From the change characteristics of these pages—observed
in a tracking phase, a probabilistic model of their change behaviour
is formulated and weights are assigned to pages to denote their
importance for the current queries. During the Resource Allo-
cation phase, based on these statistics, resources, needed to con-
tinuously monitor these pages for changes, are allocated. Given
these resource allocations, the scheduling phase produces an opti-
mal achievable schedule for monitoring. We also presented experi-
mental evidence for the effectiveness of our approach which offers
several-fold improvement in the returned information, compared
to the classicalUniform andProportional techniques. In general,
CAM performance improves even more under skewed page update
and page weight distributions. We also showed that these tech-
niques do not work well for answering continuous queries because
of the specific nature of continuous queries. We formally proved
that Proportional allocation works better thanUniform policy for
the continuous query case. CAM’s resource allocation algorithm
is deisgned to be optimal: It maximizes the value of the returned
information, when the updates are quazi deterministic, i.e., when
updates occur at specific time instances and the actual occurrence
of a change is associated with a probability. Similar resource allo-
cation techniques can be developed to be optimal for other types of
update behaviours.

There have been several studies of web crawling in an attempt
of capturing web dynamics. The earliest study to our knowledge is
by Brewington and Cybenko. In [1], they not only studied the dy-
namics of web but also raise some very interesting issues for devel-
oping better crawling techniques. They showed that page change
behaviour varies significantly from page to page and so crawling
them equal number of times is a fallacious technique. [3] and

[2] address a number of issues relating to the design of effective
crawlers. In [4][15], authors approached the problem formally and
devised an optimal crawling technique. (Some aspects of our for-
mal are adopted from [15] and modified to suit our problem defi-
nition.) A common assumption made in most of these studies is
that page changes are aPoissonor memorylessprocess. In fact it
has shown to hold true for a large set of pages but it is also found in
[1] that most of web pages are modified during US working hours,
i.e.,5 a.m. to 5 p.m. In our case, we go beyond these assumptions
and present an optimal monitoring technique for answering contin-
uous queries independent of any assumption about page change be-
haviour. Instead, we collect and build page change statistics during
a tracking period and only on the basis of this collected informa-
tion, we doresource allocation. Then we keep on updating this
information after everyT time units based on the result of the mon-
itoring done. This makes our solution robust and adaptable in any
web scenario.

It is important to mention the push-based alternative to answer-
ing continuous queries: information ispushedfrom web sources
instead of userspulling it as is assumed in our scheme [13]. Here
users register their queries with the sources and when the sources
update the relevant pages they themselves propagate their changes
to the users. This, of course, is applicable only to push-based Web
sites, and even in that case, the onus of consolidating and aggre-
gating the information returned from the sources is left to the end
application.

7. REFERENCES
[1] B. E. Brewington and G. Cybenko. How dynamic is the

Web?Computer Networks (Amsterdam, Netherlands: 1999),
33(1–6):257–276, 2000.

[2] J. Cho and H. Garcia-Molina. The evolution of the web and
implications for an incremental crawler. InProceedings of
the Twenty-sixth International Conference on Very Large
Databases, 2000.

[3] J. Cho and H. Garćıa-Molina. Synchronizing a database to
improve freshness.In Proceedings of 2000 ACM
International Conference on Management of
Data(SIGMOD), 30(1–7):161–172, 2000.

[4] E. Coffman, J. Z. Liu, and R. R. Weber. Optimal robot
scheduling for web search engines.Journal of Scheduling,
1998.

[5] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of
World Wide Web Client-based Traces. Technical Report
BUCS-TR-1995-010, Boston University, CS Dept, Boston,
MA 02215, April 1995.

[6] B. Fox. Discrete optimization via marginal analysis.
Management Science, 13(3):211–216, 1966.

[7] G. N. Frederickson and D. B. Johnson. The complexity of
selection and ranking in x + y and matrices with sorted
columns.Journal of Computer and System Sciences,
24:197–208, 1982.

[8] A. Heydon and M. Najork. Mercator: A scalable, extensible
web crawler.World Wide Web, 2(4):219–229, 1999.

[9] T. Ibaraki and N. Katoh. Resource allocation problems:
Algorithmic approaches.MIT Press, Cambridge, MA, 1988.

[10] J.K.Lenstra, A. Kan, and P.Brucker. Complexity of machine
scheduling problems.Annals of Discrete Mathematics,
1:343–362, 1977.

[11] L. Liu, C. Pu, and W. Tang. Continual queries for internet
scale event-driven information delivery.Knowledge and
Data Engineering, 11(4):610–628, 1999.

[12] M.R.Garey, D.S.Johnson, and R.Sethi. The complexity of
flowshop and jobshop scheduling.Mathematics Operation
Research, 1:117–129, 1976.

[13] C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. InSIGMOD
Conference, 2001.

[14] J. Pitkow and P. Pirolli. Life, death, and lawfulness on the
electronic frontier. InProceedings of the Conference on
Human Factors in Computing Systems CHI’97, 1997.

[15] J. Wolf, M. Squillante, P.S.Yu, J.Sethuraman, and L. Ozsen.
Optimal crawling strategies for web search engines.In
WWW, 2002.

[16] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R.
Karlin, and H. M. Levy. On the scale and performance of
cooperative web proxy caching. InSymposium on Operating
Systems Principles, pages 16–31, 1999.

Appendix A: Proof that Proportional Policy is better than Uni-
form for Continuous Queries
Assumption : Update distributionis uniform.
We compare weightedUniform and weightedProportional poli-
cies.

Number of crawls allocated toith page in proportional policy is
C.Wi .λi

∑i (Wi .λi)
whereWi andλi are weight and change frequency ofith page
respectively.
So Information gained for this page is equal to

C.Wi
2.λi .ρi

∑i (Wi .λi)
whereρi is the update probability forith page at any update instance.
Information gained in case ofUniformAllocation for the same page
is equal to

C.Wi
2.ρi

∑i Wi

So ratio of performance of Proportion toUniformpolicy over all
pages becomes

∑i λi .∑i Wi

∑i (Wi .λi)

As we know∑i ai .∑i bi ≥ ∑i (ai .bi) for non-negativeai ’s andbi ’s,
above ratio is always greater than 1.
This proves thatProportional policy always performs better than
Uniform policy no matter how page weights and change frequen-
cies are distributed.

Appendix B: Determining Relevant PagesGiven an-word doc-
umenta = {w1,w2, . . .wn} and a set ofn recognized words, one
can representq anda each as a vector of word frequencies~q and
~a. A common measure of similarity between two word frequency
vectors~a and~q weighted by inverse document frequency (id f) is
the cosine distance between them:

score(q,a) =
∑w∈q,a λ2

w · fq(w) · fa(w)√
∑w∈q(λw fq(w))2 ·∑w∈a(λw fa(w))2

,

where fd(w) is the number of times wordw appears in the docu-
mentd andλw is the inverse document frequency of the wordw
defined as:

λw = log

(
|D|

|{d ∈ D : fd(w) > 0}|

)
whereD is the document set in consideration.

