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ABSTRACT 1. INTRODUCTION

Continuous queries are queries for which responses given to users The World Wide Web consists of an ever-increasing collection
must be continuously updated, as the sources of interest get upr decentralized web pages that are modified at unspecified times
dated. Such queries occur, for instance, during on-line decision by their owners. Current search engines try to keep up with the dy-
making, e.g., traffic flow control, weather monitoring, etc. The namics of web by crawling it periodically, in the process building
problem of keeping the responses current reduces to the probleman index that allows better search for pages relevant to a topic or
of deciding how often to visit a source to determine if and how a set of keywords. Clearly, any good crawling technique needs to
it has been modified so that a user response can be updated acconsider the change behaviour of web pages. But, the algorithms
cordingly. On the surface, this seems to be similar to the crawling used for crawling and the typical frequency of crawling are insuf-
problem since crawlers attempt to keep indexes up-to-date as userdicient to handle a class of queries knownGantinuous Queries
pose search queries. We show that this is not the case, both dudfor example, see[11]) in which the user expects to be continu-
to the inherent differences between the nature of the two problemsously updated as and when new information of relevance to his/her
as well as the performance metric. We also develop and evaluatequery becomes available. For example, consider a user who wants

a novel multi-phaseGontinuousAdaptiveM onitoring) (CAM) so- to monitor a hurricane in progress with the view of knowing how
lution to the problem of maintaining the currency of query results. his/her town will be affected by the hurricane. Obviously, a system
Some of the important phases are: Thacking phasgin which which responds taking into account the continuous updates to the

changes, to an initially identified set of relevant pages, are tracked. relevant web pages will serve the users better than another which,
From the observed change characteristics of these pages, a prob&say, treats the query asl&screte queryi.e., returns an answer only
bilistic model of their change behaviour is formulated and weights when the query is submitted.
are assigned to pages to denote their importance for the current Notsurprisingly, the problem of keeping track of the dynamics of
queries. During the next phase, tResource Allocatiophase, the web becomes inherently different for gntinuous quergase
based on these statistics, resources, needed to continunogly ~ compared to theliscretequery case. We use the temonitoring
itor these pages for changes, are allocated. Given these resourcéo explicitly account for the differences from the classical crawl-
allocations, theschedulingphase produces an optimal achievable ing problem. Amonitoring taskfetches a web page, much like a
schedule for the monitoring tasks. An experimental evaluation of crawler does, but with the goal of fetching new information rele-
our approach compared to prior approaches for crawling dynamic vant to one or more queries whileceawl is not done with any spe-
web pages shows the effectiveness of our approach to monitor-cific user request in mind. The work involved in handling continu-
ing dynamic changes. For example, by monitoring just 5% of the Ous queries is portrayed in Figure 1. Fmntinuousgueries, since
page changes, CAM is able to return 90% of the changed informa- the system should maintain tiearrencyof responses to users, the
tion to the users. The experiments also produce some interestingProblem translates to one of (a) knowing which pages are relevant,
observations pertaining to the differences between the two prob- (b) tracking the changes to the pages, to determine the characteris-
lems of crawling—to build an index—and the problem of change tics of changes to these pages, and from these, (c) deciding when to
tracking—to respond to continuous queries. monitorthe pages for changes, so that responses are current. The
last problem is the focus of this paper, and has several subproblems:
) ] ] allocating the resources needed for monitoring the pages, schedul-
Categories and Subject Descriptors ing the actual monitoring tasks, and then monitoring. Specifically,
in this paper, we address the problem of distributing a given num-
ber ofmonitoring task&among the pages whose changes need to be
tracked so as to respond to a setohtinuougjueries. In Figure 1,
the feedback arcs from the monitoring phase to the earlier phases
indicate that observations made during the monitoring phase can be
General Terms used to adjust subsequent decisions.
. . . . It could be argued thatiscretequeries posed every so often can
Continuous Queries, Performance, Allocation policies be considered to be equivalent ¢ontinuousqueries but the fol-
Copyright is held by the author/owner(s). lowing reasons should help dispel this misconception: First, de-
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are found in Section 6.

2. OVERVIEW OF THE CAM APPROACH

Consider a user who is worried about a hurricane in progress and
Scheduling wants to keep abreast of the hurricane-related updates. To achieve
this, he poses a continuoaskeyword queryg = {wy,Ws, ... Wm}.
In this section, we present an overview of the major ingredients of
the CAM approach.
Identifying Pages Relevant to a Set of QueriesBased on the
keywords specified by a user, we first identify pages relevant to this
Figure 1: Different phases of our approach query. The query is fed to a classical search engine which in turn
returns a set of pages relevant to the queries. We find, sayhthat
National Hurricane CenterNational Weather Organizatigrand
other tropical cyclone sites as well as news sites are relevant. The
by the user is highly non-trivial. If the time-interval is kept small  relevance of a page to a query can be measured by standard IR
then it may induce unnecessary load on the system, particularly techniques based on thector-Spacenodel (see Appendix B for
when the updates are not frequent. If we set the time-interval to details).
be large, it may lead to loss of information if updates are more fre- Tracking the Changes to Relevant Pages to Characterize Changes:
quent than expected. Secomdntinuousqueries have a non-zero  Once relevant pages have been identified, by visiting each page at
lifetime and so a query system can study a query's characteristicsfrequent intervals during a tracking period, changes to these pages
carefully and can answer it more efficiently than in the case where are tracked, update statistics collected, and the relevance of the
discretequeries, which have zero lifetime, are continuously posed. changes, vis a vis the queries, is assessed. This is used to build
Furthermore, unlike in the case of discrete queries, the time takena statistical model of the changes to the pages relevant to a set
to provide the system’s first response te@antinuous querynay of queries. These statistics include page update instances, page
not be as important as the maintenance of currency during all the change frequency, and relevance of the changes to the pages for
responses. This discussion makes it clear that not only the nature ofcurrent queries.
the crawling problem but optimization goals also become different et Q denote the set of all queries submitted in the system and
when we move frondiscreteto continuougjuery case. Tothisend,  «; denote the importance df' query. These are input to the sys-
our optimization metric minimizes the information loss compared tem. LetP denote the set of web pages relevant to the continuous
to an ideamonitoringalgorithm which monitors every change of a queries,Qp be the set of queries for whidH page is found to

page. ) be relevant, and; ; be the estimated relevance it page forjth

To our k_nowledge, no earlier work has focused on the_aspect query. Itis positive for all queries@Qp, and zero for all
of monitoring relevant web pages to respond to a setaftin- g€ Q- Qp. These relevance measures are initially calculated dur-
uous queries In this paper, we introduceContinuousAdaptive ing the tracking period (and get updated, as explained later, after

Monitoring) (CAM), a technique to monitor changes. The goal of every monitoring epoch).

CAM'’s resource allocation algorlthmlls.to allogate the monitoring It is clear that not all pages will be equally important for each
resources across pages so as to minimize the information loss comyyery in the system. So we rank the pages by assigningight
pared to an |deahon|t9r|ngalgor|thm Whlch monitors upon every o each page using its relevance for queries. Whightof a page,
change of a page. This goal also differentiates crawling finuon- computed a§ jco(wjri j), denotes the value of current version of
itoring. Whereas most of the earlier crawling strategies assume ape page. If the page gets updated before its current versioaris
Poissonupdate process, the CAM approach is more practical and jiored, we assume that we incur a lossviit

robust as it is not designed with any basic assumptions. Instead,considerations underlying the Monitoring of Changes

it tracks the changes to pages and evolves the statistics relating to caM does its monitoring in epochs, each epoch is of durafion
these, changes as pages arenitored We show the optimality of  tjme units. The purpose of the resource allocation phase is to decide
CAM's resource allocation algorithm under specific change sce- how to allocate monitoring resources for an epoch and the goal
narios and formally prove that, in thentinuousquery case, that  of scheduling is to decide when a monitoring task should execute,
Proportionalallocation policy in which the pages with high fre-  given the resource allocation decisions. Monitoring is done by a

quency of change are allocated marenitoring tasksworks better  mponitoring task where the task includes fetching a specified page
than Uniform policy which allocates equal number ofonitoring from its source and determining if it has changed and if so applying
tasksto each page independent of its change frequency. On the sur-the changes to return new results for those queries for which that
face, this seems to contradict a prior result tdatform allocation page is relevant.

of crawling resources produces better results thaRmbportional Let C denote the total number @honitoring taskghat can be
counterpart [3]. We justify this surprising behaviour and also give  employed in a single monitoring epoddis derived as an aggrega-
the intuition behind it. This shows that nature of problemmain-  tion of the resources needed for monitoring, including CPU cycles,
itoring of dynamic web pages for answeringntinuousqueries is communication bandwidth, and meméry

different from the problem of devising optimal crawling techniques  ): is the estimated number of changes that occur in page
addressed in earlier studies.

The rest of this paper is structured as follows: In Section 2, we “For example, the authors of [8] report that with two 533 MHz
define the problem formally and also provide an overview of our Alpha processors, 2 GB of RAM, 118 GB of local disk, a 100

. . S - Mbit/sec FDDI connection to the Internet, ahtércatorunder sr-
Continuous Adaptive MonitoringdAM) approach for supporting cjava, their crawler crawled at an average download rate of 112

continuous queries. Resource allocation and scheduling are thejocuments/sec and 1,682 KB/sec. Similarly the capabilities of a
subject of Sections 3 and 4 respectively. Results of performance given infrastructure can be mapped to the numbemohitoring
evaluation are presented in Section 5. Conclusions are related worktasksthat it is capable of on average.




T time units. Henceforth we will call it thehange frequencfor 3. RESOURCE ALLOCATION IN CAM

pagei. Supposel; denotes the sequence of time instanges As noted earlier, we need to distinguish between pages on the
Ui 2.....LU p &t which the tracking phase determines that possible pasis of two metrics. One is the nature of page change behaviour
updates occur to pageWe assume € U1 < Ujp.....Uip <T and and the other is the importance of a page for one or more queries.
U0 =0anduip =T. p; is the total number of update instances for - page change behaviour is studied duringagking phase and is

it" page duringT, i.e., cardinality of sequendd; (pi=|U;). Note characterized by associating a probability of change with every po-
that a page may not be updated at these time instances and so thenential update instance. Next we show the way in which pages can
is a probabilityp; j associated with each time instangg that de- be ranked by assigningeightsto them using relevance measures.

notes the chances Bf page being updated at t§# instance. The These relevance measures are determined for each page for each
overall goal of the resource allocation and scheduling phases is toquery during theracking period.

monitor in such a way that the monitoring events occur just after .

updates are expected to take place. The number of missed updateg"l Goals of the Resource Allocation Phase

is an indication of the amount of lost information and minimizing CAM aims is to minimize the weighted importance of changes

this is the goal of the system. that are not reported to users, that is,
With these considerations in mind, decisions are made about the . .
. . o miny (WE;)
allocation of a given number ahonitoring tasksamong a set of £

relevant pages while also decidingpenthese allocatethonitoring .

tasksshould ideally occur within an epoch. The basic idea is that WhereE; denotes expected number of lost changes'fqrage. We
these monitoring epochs of lengihrepeat everyT units of time assume that each update instance is independent of others, that is,
and we will make decisions pertaining to the monitoring tasks to With each update of a page, information from the preceding update

be carried out in one monitoring epoch using both new data and theis completely lost. Also, one update is assumed to be independent
results from the previous epochs. of another. That is, the number of lost updates is an indication

Resource Allocation Phase of the amount of lost information. While these may not always be

It should be clear that if we decide monitorat some instance,  true, they give us a simple way to state the goal to be accomplished.
then it should be at the potential update time instance only becauseThus,
there is no reason to delay it beyond when a update might occur. E = pii(1=yi))
If number ofmonitoring tasksallocated for a page is equal to the i '
number of update instances, then we can always maintain a fresh
version of this page bgnonitoringat all possible update instances.
But in practice we will not be able to perform as many monitoring ~ Resource constraint is given by
tasks as the number of update instances. So we need to pick a set L
. . ) ; yi,j =C,
of update instances at which the page is to be monitored and not igpje i
at others. Hence with every update time instance, we associate a

variabley; j where where C denotes the total number of availablenitoring tasks
¥i,j = 1 if monitoringof it page is done at tima j, 0, otherwise Implicitly, we assume that during the monitoring epoch of length
if we monitortheith pagex; times, therﬁ?i:()(yi‘j) =x; holds. T, the relevance of each updated version of page for queries re-

The resource allocation phase decidigsvalues, that is, the time ~ Mains the same as estimated duriragking period. At the end of
instances at whicmonitoringshould be done given that the track-  @Mmonitoring epochwe update these relevance measures on the ba-
ing phase has identified the time instances when changes may ocSis of the monitored information. So unleBss very large or page

Ccur. updates are very erratic, our assumption is practical.
Scheduling the Monitoring Tasks: In the schedulingphase, we Itis important to point out that it is relatively easy to accommo-
our optimization measures. we may have more information about specific changes than the case

which continuously perform these monitoring tasks. Now our goal ©f i page with respect tg"" query, then it would be possible to
is to map amonitoring taskto one of theseM parallel monitor- allocate resources even more efficiently. For example, suppose we
ing processes and determine its time of invocation. While deter- g€t to know during the tracking period that a particular news site
mining any schedule, our aim is to minimize the total delay oc- Mainly declares health updates only once at the start of day and
curring between the ideal time instances and the actual scheduled™ the rest of the time, it remains mainly concerned about political
time instances. This, the scheduling step involves taking the ideal @d Sports updates, then we can better characterize the change be-
timings for the monitoring of each page and obtaining an optimal haviour of this page with respect to queries concerned with sports,
achievable schedule out of it. We map this problenildav-shop medical and political domain. ) _
scheduling problem [12] with the goal of minimizing the average SUPPOS&; jk denotes the probability of change 8t page atj""
completion timeNext wemonitorthese pages according to the de-  Update instance where this change is relevant for gkiefyien E;,
signed schedule and at the end of tmisnitoring epochupdate the  the weighted expected number of lost changes'fgrage is,
statistics of these pages on the basis of the observations made in the
preceding epoch

In general, based on the results of monitoring tasks of an epoch, %Ukri‘k- Pijk(1—Yij)
scheduling, resource allocations, change statistic computations, and Ke =V
page relevance can all be revisited. These, as mentioned earlier,

correspond to the arcs going from the monitoring phase to the ear- _ _ )
lier phases of Figure 1. If we can extract even more information by measuring not only

the probability of change ot page at update instanagj but also



the average importance of change at this time instance, then it can In our case all the jobs are equally important as there is no weight
make better resource allocation. For example, suppose we find thatassigned with eacimonitoring So our problem can be formulated

a particular research site compiles and announces all its previousin scheduling notation é&M|rel; > 0| ¥ ; Cm; meaning thaR jobs
day’s research updates daily at 10:00 a.m. in the morning and of non-trivial release times are available for schedulinfylatna-

in rest of day, it updates its page only when some new researchchines with goal of minimizing the average completion time. Here
breakthrough takes place. Then it is clear that visit to this page Cm; denotes completion time for jop Minimizing the average

at 10:00 a.m. is certainly more fruitful than any other visit to this completion time leads to minimization of average delay time be-

page. causeTotal Completion Time
3.2 The Resource Allocation Algorithm = Z'E:l(cm)
The formulated resources allocation problems are discrete, sep- = Ya(s+p)

arable and convex.

i=1
R (reli+di + pi)
|—1(

Ji=
Ro(d)+3R (rel)+ SR, (pi

1. Discrete because variablg j can take only discrete values. 2 (@) + 2 (el 2 (P

Our problem is inherently discrete due to discrete nature of AsyR ,(rel;) ands R (pi) are constants, minimizing average com-

monitoring. Either a monitoring task is allocated to a page or pletion time is same as minimizing delay time. Note tGa is

it won't be. There can’t be anything between these. the same as; + p; because ohon-preemptivescheduling. Un-

o ) fortunately even the simpler probleRy1|relj > 0|szm,- do not

2. _Separable because optimizing function could be expressed paye any polynomial time algorithm and has been proved tofbe

in terms ofy; j only. Completd10]. So we have to look foapproximation algorithms
For completion time problem there is an 1.58-approximation algo-
rithm [10] which we used in our experiments.
Discrete, Separable and Convex problems have been well-studied

[9]. Formally it can be stated as minimizi@Gle.(xi) with re- 5. EXPERIMENTAL EVALUATION

source constraints|_, x; = Z, wherexs are discrete ané/s are In this section, after explaining the setup for the experiments, we
convex. Agreedyalgorithm exists for the discrete case [6]. There is describe the reshlts P 9 P P '

a faster algorithm also for our problem, due to Galil and Megiddo,
which has complexityD(G(logZ)2). The fastest algorithm is due 5.1 Experimental setup and performance
to Frederickson and Johnson [7] and it has complexity metric

O(maxG,Glog(Z/G)}). In our case, the output of these algo-
rithms is a set ofy; j's. This set in turn gives us the number of
monitoring tasksllocated to a pageq(:zf'zo(yij )) as well as the
ideal time instances, (namely, this for whichy; j is 1), at which
these allocatedhonitoring taskshould be executed.

Given the design of the above resource allocation algorithm, the
¥i,jS that result are optimal, i.e., maximize the value of the returned
information, when the updates are quazi deterministic, i.e., occur
at specific time instances and the actual occurrence of a change i
associated with a probability.

3. Convex due to convex nature of optimizing function.

Comparison with Alternative Algorithms: In previous sections,
we presented the optimedsources allocation policincorporated

in CAM for monitoring changes in pages relevantdontinuous
queries. Here we evaluate our policy by comparing it with some
classical policies using a synthetic data set. These policies [3] are:
Uniform in which resources i.e(monitoring tasksare allocated
uniformly across all pages, and

Proportional in which resources are allocated proportional to change-
%requencies of pages respectively.

As suggested in [15], it would be fair to compare with the weighted
version of these policies than the unweighted ones: IMteighted

4. SCHEDULING OF MONITORING TASKS Uniform scheme, the number afonitoring tasks(} allocated to a

As mentioned earlier, our goal is to schedule the allocated- page depends on theeights(W) associated with the page but is in-
itoring tasksamongM parallel monitoring processes with the aim  dependent of its change frequey: x; OW. In theProportional
of minimizing the total delay between the ideal time instances and schemey; O (A\W).
the actual scheduled time instances when a monitoring task mustParameters of the Experiment: As mentioned earlier, each page
be executed. has an estimated change frequengyéssociated with it which de-

Let pageP, be allocated; number ofmonitoring tasksn an op- notes the expected number of changes that occur in a page in
timal resource allocation. Also the time instances at which tkese  time duration. Also there is a sequence of update instamges(
monitoring taskshould be employed atg, ty, t3... 1y, as identified for each pagef;) which enumerates the time instances at which
in the resource allocation phase. lfetch be the average fetching ~ changes can occur in a page. With each update instangethere
time for theith page. The scheduling problem can be easily mapped is an associated probabilify(j) which denotes the probability with
to parallel shop scheduling problem. which a change can occur at this instance. In our experiments, to

In this problem, eacfob has to be processed on exactly one of make it simple, we make this sequence of update instddgeké
M identicalmachines Eachmonitoring taskcould be regarded as  same for each page. On the first sight, it seems to be in contrast
ajob whereas the monitoring processes are equivalemeichines with the model we described in Section 2. There we said that each
Suppose there are a total msuch jobs. In scheduling problems, page will have its own sequence df and it will vary from page
the time at which a job becomes available for processing is called to page. But note that fixing of update sequéhicedoesn’t cre-
therelease time(rg) and the time for which it needs a machine is  ate any difference if we choose it to be theion of U; of each

called theprocessing time So in our case, ideahonitoringtime page. This is because of the following two reasons: Firstly uni-
instanced;, to, t3....... ty, would be therelease timesind fetching versal sequendd() does contain all possible update instance of all
times of pages correspond poocessing times (jp for jobs. Our the pages, so no update instance of any page is lost. Secondly if a
goal is to minimize the delagi between ideamonitoringtime in- page doesn’t have some update instance ldjitghich is inU, then

stance(rel;) and actual time instancg of scheduling. we can always correct it by making the probability associated with



this update instance id for this page zero. So model for change thisupdate probability distributiofirom 0 to 2 in our experi-

behaviour of each and every page remains unaffected. Other pa- ments and so we get a correspondipglate probability dis-

rameters are decided as below : tribution for a page inT varying from a uniform to a highly
skewed distribution. This makes our experiments free from
a priori assumptions about page change behaviour and helps

1. Ny : number of queries submitted in the system. It is set to in evaluating our policies for real scenarios.
500.
6. Weight of queries All queries are assigned the sarime-

2. N : number of pages found relevant the for the queries sub- portance measu(ey). It means that there is no distinction
mitted. It is also set to 500. This implies that set of relevant made among queries and they are defined to have equal im-
pages for queries have common elements in them. portance.

3. C: number ofmonltorlng tgsksavallable. Itis vaned_from 7. Page Weight Distribution Recent studies [14] show that
1000 to 50000 in our experiments. Tifis set to be 15 minutes popularity of pages vary izipf fashion as shown in Fig 3.
(for example, the Google-News site is said to use crawlers Drawing an analogy, we choosg;, the relevance of page
which visit relevant sites every 15 minutes), then 506@M- '
itoring taskswould require a downloading speed of 56 docu- 2500 —
ments/sec approximately. ]

4. Change frequency distributiarThe change frequenciess) 2000 ]
are chosen according #ipf distribution with parameterl ? ]
and®. 6 varies from 0 to 2. Such distributions run the spec- = i
trum from highly skewed (whef is 2) to uniform (wherf Q. 1500
is 0). Unless otherwise specifiedlis set to 2 in experiments. ;63 1

£ 1000
350 S ]
=z 4
300 500
$ 250 i
2 [ S e e L N A U
E‘ZOO 0 2 4 6 8 10 12 14 16 18
o Freauencv of Access
B 150
g Figure 3: Observed popularity distribution
Z 100
50 j for a queryi, from azipf distribution. Also the more dy-
|'| 0 namic a page, the more more popular it is too, as shown in
O —frpimighptypyplhph e [16]. So we make the the more dynamic more have higher
012345678 9101112131415 relevance in our experiments to a page ihiasedrandom
Chanae Freaguency manner. The summation of relevance measures of a page for
all the queries gives us the weight] for this page as dis-

varies is referred to gzage weight distribution

8. Monitoring-change ratio denotes the ratio of the total num-
ber ofmonitoring taskso, (T iep Ai), i.€., the number of actual

5. Update probability distribution Update instances &f are ok
changes expected in tinfe

assumed to be uniformly distributed throughout the duration
T. In our experiments, we have dividddin 480 update
instances. Probabilitiesp(j) associated with these update Performance Metric: Returned Informatio_n ratio : Proportion _
instancesj j) are varied between 0 and 0.3 and follo&ipf of the changednformationreturned by a given number of moni-
distribution. Henceforth we will refer to this distribution as ~ toring tasks is called aReturned Information Ratid=rom section
update probability distributionZipfis chosen because of the 3,

fact that most of the web pages have time durations when TiepW. 3 jeu (Pij-Yi.j)

they are updated with greater probabilities in comparison to

the rest of the time durations. News sites can have multi- Yiep(W-Ni)

ple hot time durations and that can be modeled by generating Note that the maximum possible valuerefurned information ra-
many “humps” in theirupdate probability distributiorwith tio is 1 and it is attained when all thoggjs are made 1 for which
probability varying in the vicinity of every hump ifipffash- corresponding; js are non-zero. This is the performance metric
ion. Note that the probabilitieg(j) for all update instances  on the basis of which we compare various allocation policies in our
of a page should sum up to expected change-frequif)cy( experiments.

of that page. Also note that we vary tagf parameter of




5.2 Comparison of Resource Allocation
Policies

In this experiment, we evaluate the aforementioned resource al-
location polices and also observe the effectsipdate probability
distributionandpage weight distributioln their performance.

5.2.1 Uniform page weights and update probabilities

We make both these distributions uniform and setZig pa-
rameter ofchange frequency distributiaio 2 as shown in Fig. 2.
Uniform page weight distributiomeans that all pages have equal
importance while unifornupdate probability distributioneads to
equal probability of change to a page at any update instan€e in
Fig. 4 shows the performance of different resource allocation poli-
cies. There are two important observations.

o
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Figure 4: Performance under uniform page weight and update
probability distribution

1. Proportional policy performs better than itdniform coun-

we delve into the nature of the crawling vs. the monitor-
ing problem. In our case, we answeontinuousqueries

bility distribution) are uniform, one would certainly expect
more benefits bynonitoring those pages which have high
change frequency\() because these pages have considerable
chances of changing. This is whatoportional policy does

and so it performs better thamiform policy. Earlier studies
solved the problem for answering discrete queries and aimed
to maximizefreshnes®f page which is found to be of@n-
vexnature. So the performance ohiform becomes better
thanProportionalin their case. We offer a formal proof of
why Uniform does not work as well @roportionalfor con-
tinuousqueries in an Appendix.

2. Optimal policy also allocates momeonitoring task$o more
dynamic pages but it does it even more aggressively than
Proportional Fig. 5 shows that our CAM approach allo-
cates all itsnonitoring taskgo only a few pages (for clarity,

fraction of total information
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Figure 5: Characteristics of Resource Allocation Policies

a more biased way and so it gets even better performance. It
is evident from the graph that optimal policy performs 300%
better tharProportionalpolicy and around 600% better than
Uniform policy!

If we decrease the skewness, i.e., tiff parameter of thehange
frequency distributiorthe policies start coming closer and in the
extreme case, they all become the same when frequencies are made
to be distributed in a uniform manneipf parameter set to 0).

5.2.2 Skewed page update probabilities

We skew theupdate probability distributiorwith zipf parame-
ter set to 1. So pages are still of equal importance but for each
page, the update instances are no more equi-probable, in changing.

terpart. This is very surprising as earlier studies showed the Fig. 6 shows the performance. Again, CAM performs best leav-

reverse to be true [3] [15]. The reason becomes clear when ing other allocation policies far behind. It is 12 times better than
Uniform policy. But in this case, the pages which anmenitored

by CAM turn out to be quite diversified as pages with even lesser
and our aim is to detect as many changes as possible. Sochange frequency have some update instances with a good chance
when all other parameters (page-weight and update proba-Of actually changing as shown in Fig. 7.

Returned Information Ratio
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for the sake of this graph, 50 pages of consecutive page in- Figure 6: Under skewed update probability and uniform page
dices have been grouped into a bin) and delivers most of the Weight distribution

informationto queries from these pages. Again the pages
monitoredare those which have high probability of actually
changing.Proportionaltoo does this but it allocatesonitor-

ing taskgn a proportional manner only while CAM doesiitin

5.2.3 When page weights are skewed
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Figure 7: Characteristics of resource allocation policies

If we makepage-weighdistribution skewed while keepingp-
date probability distributionuniform, we find that optimal again
performs far better than others as shown in Fig. 8. Also, now it
allocatesmonitoring taskgo those pages which have high impor-
tance and a higher probability of getting changed.
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Figure 8: Performance under skewed page weight and uniform
update probability distribution

In summary, CAM’s resource allocation approach performs bet-
ter than the previously proposekhiformandProportionalapproaches
across a wide spectrum of distributions. In particular, the more
skewed the distributions, the more pronounced the performance im-
provement.

5.3 Effect of varying the skewness of the up-
date probability distribution

Fig. 9 compares performance of different resource allocation
policies whermonitoring-change ratiés kept at 9 anghage weight
distributionis uniform. It is clear from the curves that for this data
set, CAM’s resource allocation policy always performs better than
the other resource allocation policies. To emphasize the difference,
we varied theupdate probability distributiotkeeping other param-
eters same as before. As is evident from Fig. 9, CAM'’s resource al-
location policy starts performing even much better than other poli-
cies asupdate distributioris made more and more skewed. It ex-
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Figure 9: Performance under varying skewness of update prob-
ability distribution

hibits a 5-fold improvement ovedniform resource allocation pol-
icy at zerozipf parameter but whenipf parameter is set to 1.5, its
performance sees a 10-fold improvement.

This is because of the fact that in CAM’s resource allocation
policy, monitoringis done at those update instances which have a
high probability of returning relevant information and soupslate
probability distributionis made more and more skewed, it responds
to the skewness of data by selecting the most beneficial instances
for monitoringand performs even better than before. But this is
not the case wittuniform andProportional policies as they do not
take into account the granularity of update instances and decide to
monitor based on weight and change frequency. (Note that when
zipfparameter is set to zero, it does not mean that update probabil-
ities become uniformly distributed, instead of this it means that all
update probability values occur equal number of times.)

5.4 Identifying the Parameters to get even Bet-
ter Results for Continuous Queries
In the previous experiment, we observed that even when we have
9 times moremonitoring tasksavailable than expected number of
changes irl, the loss of information remains significant. This is
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Figure 10: Performance with varying skewness of update prob-
ability distribution



because of the distributed and uncertain nature of page change beleast 432 monitoring instances while CAM needs onlyn&ghitor-

haviour which make the number afonitoring tasksequired for
good performance very large (Section 5.2.1). In the ideal case,
we will require continuous monitoring of web pages and so even
a large number afonitoring taskguntil they become comparable
the to number of update instances) will not be of much help.

Fig. 10 shows how performance varies with thdate proba-
bility distribution of page change behaviour. It is also evident that
pages with almost uniformapdate probability distributiomwill re-
quire more monitoring than the skewed case. We find plaae
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Figure 11: Performance with different skewness of page weight
distribution

weight distribution also affects the performance in a significant
way. This is intuitive: if we can somehow figure out durinacking
phasethat a particular set of pages is serving a major part of report-
ings to users for answering query, then we can improve our perfor-
mance by assigning them a major sharenmhitoring tasks Fig.

11 shows the effect gdage-weightistribution on the performance

of allocation techniques. In gener&pntinuous queries can be
responded to even more efficiently by extracting meta-information
about the change behaviour of web pages.

5.5 Effect of Monitor-change Ratio on Con-
tinuous Queries
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Figure 12: Performance of optimal policy

ing tasks(5% of the maximum needed monitoring tasks).

5.6 Reallocating Resources
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Figure 13: Effect of Resource Reallocation after every epoch

As we said while describing our CAM technique that after every
epoch of lengthrl', we update page change behaviour and accord-
ingly modify resource allocations for next epoch. But this may
become very expensive especially whEns small. So, we next
study the effect of the theesource allocation delayo determine
how often it might be beneficial to reallocate the resources.

We start withpage update probability distributiészipf param-
eter being set to 1. Then we generate an actual event based on this
update probability distributiofvy tossing a biased coin at every up-
date instance and declaring a change at an instance if it falls head.
Before the next epoch, we modify thpdate probability distribu-
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Figure 14: Effect of Varying the Resource Reallocation Delay

tion based on the recent epoch by modifying update probabiliigs(

of those update instances which getnitoredin the epoch. We

do this modification simply by estimating the average rate of oc-
currence of updates: if a page was updated five times in the last
10 monitoring instances, 0.5 is assigned as the probability of ex-
pecting a change at the next update instance. Then we reallocate
resources accommodating this nepdate probability distribution

Here we evaluate the practical application of our proposed schemés Fig. 13 shows that performance of such a reallocation policy

As evident from Fig. 12, 90% of the Information is returned in our
technique whemonitor-change ratias 20. Without using CAM,
retrieving 90% of the information would requireonitoring of at

does increase in the initial epochs and then becomes steady. This
is what one would expect because after a large number of epochs,
the update probability distributioritself becomes steady. Also we



plotted 2 more graphs as shown in Fig. 14 to study the effect of

delayed resource allocation: Here the statistics are updated after a

set of epochs. We find that resource allocation is not required to be
done after every epoch and can be delayed without incurring any
significant loss provided thteacking phasavas used to capture the
initial page change behaviour. This study shows that itis possible to
adapt to the change behaviour using the CAM approach and derive
additional benefits in terms of the quality of information returned.

5.7 Performance of the Scheduling algorithm
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Figure 15: Size of web documents

In this experiment, we test our scheduling algorithm and show
its performance.Change frequency distributitmzipf parameter
is set to 2 andipdate probability distributiols zipf parameter to 1.
Sizes of the documents are generated as shown in Fig. 15 as per [8]
Also, the more popular pages’ sizes are set to be smaller [5]. We
define averageonitoring capacityas available bandwidth divided
by average size of documents. As shown in Fig. 16,sminedul-
ing algorithm performs very well and is almdstsslesswvhen the
number ofmonitoring taskss less than the averageonitoring ca-
pacity. Even when the number ofionitoring tasksequired to be
scheduled exceeds the averagenitoring capacitythe loss of in-
formation incurred in theschedulingphase remains quite negligi-
ble in comparison ofesource allocatiorphase. The two kinds of
losses incurred are:

1. As the number ofmonitoring task$o be scheduled becomes
more than the averageonitoring capacitysomemonitoring
tasksremain undone and so some loss of information occurs.

2. As number of monitoring tasks increases, the chances of ex-
ceeding themonitoring capacityat an instance also becomes
high. So thesenonitoring taskget delayed, leading to loss
of information.

The experimental results lead to the following observations:

e CAM produces query results with higher coherency than ei-
ther Proportional or Uniform can. Often the amount of re-
turned information with CAM’s approach is 5-10 times that
returned by Uniform or Proportional. The more skewed the
page update and page weight distribution, the better the im-
provement. Increased availability of monitoring resources
(as indicated by the monitoring-change ration) also leads to
a larger performance improvement with CAM than with the
others.

e By deploying a relatively very small number of monitoring
tasks, e.g., 5% of the total number of update instances, CAM’s
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Figure 16: Allocation vs. Scheduling Decisions

resource allocation and scheduling algorithms are able to re-
turn a very large proportion, in the above case, 90%, of the
changed information.

e |tis possible to improve performance further by updating the
page change statistics using of the changes monitored during
each epoch. We showed that in fact, it is possible to achieve
considerable performance improvement even if such adap-
tation is not done after every epoch, but once after several
epochs suffices.

6. CONCLUSIONS AND RELATED WORK

In this paper, we examined the problem of keeping responses
to continuous queries current by focusing on the problem of dy-
namically monitoring the sources of information relevant to the
queries. From the change characteristics of these pages—observed
in a tracking phase, a probabilistic model of their change behaviour
is formulated and weights are assigned to pages to denote their
importance for the current queries. During the Resource Allo-
cation phase, based on these statistics, resources, needed to con-
tinuously monitor these pages for changes, are allocated. Given
these resource allocations, the scheduling phase produces an opti-
mal achievable schedule for monitoring. We also presented experi-
mental evidence for the effectiveness of our approach which offers
several-fold improvement in the returned information, compared
to the classicalUniform and Proportional techniques. In general,
CAM performance improves even more under skewed page update
and page weight distributions. We also showed that these tech-
niques do not work well for answering continuous queries because
of the specific nature of continuous queries. We formally proved
that Proportional allocation works better thabniform policy for
the continuous query case. CAM'’s resource allocation algorithm
is deisgned to be optimal: It maximizes the value of the returned
information, when the updates are quazi deterministic, i.e., when
updates occur at specific time instances and the actual occurrence
of a change is associated with a probability. Similar resource allo-
cation techniques can be developed to be optimal for other types of
update behaviours.

There have been several studies of web crawling in an attempt
of capturing web dynamics. The earliest study to our knowledge is
by Brewington and Cybenko. In [1], they not only studied the dy-
namics of web but also raise some very interesting issues for devel-
oping better crawling techniques. They showed that page change
behaviour varies significantly from page to page and so crawling
them equal number of times is a fallacious technique. [3] and



[2] address a number of issues relating to the design of effective [12] M.R.Garey, D.S.Johnson, and R.Sethi. The complexity of
crawlers. In [4][15], authors approached the problem formally and flowshop and jobshop schedulindathematics Operation
devised an optimal crawling technique. (Some aspects of our for- Research1:117-129, 1976.

mal are adopted from [15] and modified to suit our problem defi- [13] C. Olston, B. T. Loo, and J. Widom. Adaptive precision
nition.) A common assumption made in most of these studies is setting for cached approximate valuesSIGMOD

that page changes ardPaissonor memorylesprocess. In fact it Conference2001.

has shown to hold true for a large set of pages but itis also found in [14] J. Pitkow and P. Pirolli. Life, death, and lawfulness on the
[1] that most of web pages are modified during US working hours, electronic frontier. IrProceedings of the Conference on
i.e.,5a.m. to 5 p.m. In our case, we go beyond these assumptions Human Factors in Computing Systems CH|"2B97.

and present an optimal monitoring technique for answering contin- 1151 3. \wolf, M. Squillante, P.S.Yu, J.Sethuraman, and L. Ozsen.
uous queries independent of any assumption about page change be- ~ optimal crawling strategies for web search engies.
haviour. Instead, we collect and build page change statistics during WWW 2002.

atracking period and only on the basis of this collected informa-

tion, we doresource allocation Then we keep on updating this
information after everyl time units based on the result of the mon-

itoring done. This makes our solution robust and adaptable in any

web scenario.

[16] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R.
Karlin, and H. M. Levy. On the scale and performance of
cooperative web proxy caching. 8ymposium on Operating
Systems Principlepages 16-31, 1999.

Appendix A: Proof that Proportional Policy is better than Uni-

It is important to mention the push-based alternative to answer- form for Continuous Queries

ing continuous queriesinformation ispushedfrom web sources

instead of userpulling it as is assumed in our scheme [13]. Here

Assumption : Update distributios uniform.
We compare weightetdniform and weightedProportional poli-

users register their queries with the sources and when the sourcegoo
update the relevant pages they themselves propagate their changes
to the users. This, of course, is applicable only to push-based WebNumber of crawls allocated i page in proportional policy is

sites, and even in that case, the onus of consolidating and aggre-
gating the information returned from the sources is left to the end

application.
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CWLA;
>i (WA
whereW and); are weight and change frequencyifpage
respectively.
So Information gained for this page is equal to

C.Wz.)\ipi

Si (WA
wherep; is the update probability fdf" page at any update instance.
Information gained in case afniform Allocation for the same page
is equal to
CW2.p;

W

So ratio ofzperformance of Proportion tmiform policy over all
pages becomes

Yihi-3iW

Si (WA
As we knowy;a.¥ibi > 5 (a.by) for non-negatives;’s andby’s,
above ratio is always greater than 1.
This proves thaProportional policy always performs better than
Uniform policy no matter how page weights and change frequen-
cies are distributed.

Appendix B: Determining Relevant PagesGiven an-word doc-
umenta = {wjy,Ws,...Wn} and a set oh recognized words, one
can represeng anda each as a vector of word frequencigand

d. A common measure of similarity between two word frequency
vectorsd and g weighted by inverse document frequenayf( is

the cosine distance between them:

2weq,a)‘3v' fq(W) : fa(W)
V/Zwea(ufa(w)?- Swea(Awfa(w)?

where fg(w) is the number of times word appears in the docu-
mentd andAy, is the inverse document frequency of the werd
defined as:

scoreq,a) =

B )
AW*"’G’(Hd cD faw) >0}|)

whereD is the document set in consideration.



