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ABSTRACT 
Continuous queries are used to monitor changes to time varying 
data and to provide results useful for online decision making.  
Typically a user desires to obtain the value of some function over 
distributed data items, for example, to determine when and 
whether (a) the traffic entering a highway from multiple feed 
roads will result in congestion in a thoroughfare or (b) the value 
of a stock portfolio exceeds a threshold. Using the standard Web 
infrastructure for these applications will increase the reach of the 
underlying information. But, since these queries involve data from 
multiple sources, with sources supporting standard HTTP (pull-
based) interfaces, special query processing techniques are needed. 
Also, these applications often have the flexibility to tolerate some 
incoherency, i.e., some differences between the results reported to 
the user and that produced from the virtual database made up of 
the distributed data sources.  
In this paper, we develop and evaluate client-pull-based 
techniques for refreshing data so that the results of the queries 
over distributed data can be correctly reported, conforming to the 
limited incoherency acceptable to the users.  
We model as well as estimate the dynamics of the data items using 
a probabilistic approach based on Markov Chains. Depending on 
the dynamics of data we adapt the data refresh times to deliver 
query results with the desired coherency. The commonality of data 
needs of multiple queries is exploited to further reduce refresh 
overheads. Effectiveness of our approach is demonstrated using 
live sources of dynamic data: the number of refreshes it requires is 
(a) an order of magnitude less than what we would need if every 
potential update is pulled from the sources, and (b) comparable to 
the number of messages needed by an ideal algorithm, one that 
knows how to optimally refresh the data from distributed data 
sources. Our evaluations also bring out a very practical and 
attractive tradeoff property of pull based approaches, e.g., a small 
increase in tolerable incoherency leads to a large decrease in 
message overheads. 

Categories and Subject Descriptors 
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1. INTRODUCTION 
The web is becoming a universal medium for information 
publication and usage. Such information is becoming more and 
more dynamic and usage is varying from simple tracking to on 
line decision making in real time. Applications include auctions, 
personal portfolio valuations for financial decisions, route 
planning based on traffic information, etc. For such applications, 
data from one or more independent web sources may be 
aggregated to trigger some action.  Given the increasing number 
of such applications of highly dynamic data, there is significant 
interest in systems that can efficiently monitor the required data to 
get the relevant updates automatically. For example, the following 
network monitoring query: 

SELECT source-department, num_packets_in_preceding_hour 
FROM campus_network_traffic_info 

can be used to collect statistics relating to bandwidth usage by 
various departments in a campus. It requires continuous collection 
of information about data packets and their IP addresses from 
various routers in the campus network. A traffic policing server 
aggregates such information to continuously track bandwidth 
usage per department which can be used to generate a trigger 
whenever a department crosses its allocated bandwidth. Such a 
data aggregating server can be seen as executing a continuous 
query over the aggregate of data items by refreshing data from 
specific sources. 

As another example, consider a user who wants to track a 
portfolio of stocks, in different (brokerage) accounts. He or she 
might be using a third party data aggregator, such as [1], which 
provides a unified view of financial information of interest by 
periodically polling information from multiple independent 
sources.    

These queries are exemplars of a class of queries having some 
common characteristics: 

- all these queries are long running queries as data is continuously 
changing and user is interested in notifications when certain 
conditions hold. Thus, responses to these queries are refreshed 
continuously.  



- to generate the response, aggregation of data from multiple 
sources is required. As a result, executing such queries at data 
sources may not be feasible. 

- users are likely to tolerate some incoherency in the results. That 
is, the exact data values at the corresponding data sources need 
not be reported as long as the query results satisfy user specified 
coherency requirements.  For instance, for the network monitoring 
query, users may be satisfied with an accuracy of 100 for the 
num_packets_in_preceding_hour. Portfolio trackers may be 
happy with an accuracy of $10.  

Henceforth we refer to such queries as Continuous Multi-data 
Incoherency bounded Queries (COMIQs). Specifically, we 
consider queries which correspond to weighted aggregation of a 
number of data items, e.g., in the case of portfolio queries, the 
number of shares held in each stock forms the weights of the 
corresponding stock values. 

In this paper we consider the efficient execution of COMIQs at 
data aggregators that are positioned within the Web infrastructure. 
Our aim is to execute such queries using the existing web 
infrastructure, achieving client specified requirements and 
minimizing load on the network and the data sources. Figure 1 
shows the typical scenario where clients want to execute 
continuous queries at web data aggregators. Since there queries 
need data from multiple sources, clients pose these queries to data 
aggregators (DAs) who get the desired data items from data 
sources and execute the queries. 

1.1 Executing COMIQs at Data Aggregators 
Users can specify the acceptable incoherency as one or more of 
temporal, value based or updates based incoherency [16]. In this 
paper we consider value based incoherency, that is incoherency in 
the value or results of a query, as we feel that the user’s 
requirement is more likely to be specified in value form, and 
further, other forms of incoherencies can be handled through 
much simpler approaches [25]. In such cases, a DA needs to 
ensure that the incoherency in the query results -- when compared 
to the result obtained using the precise data item values -- is 
maintained at or below the level desired by the client. Besides the 
bounded incoherency, another parameter of importance for the 
client is the fidelity delivered. 100% fidelity implies that client’s 
incoherency bound is never violated. Thus, with every 
aggregation query the client also specifies its corresponding 
incoherency bound and fidelity desired. Section 1.2 makes these 
notions more precise. 

The required data updates for query evaluation at a DA can be 
obtained either by sources pushing them continuously or the DA 
pulling them whenever required.  In both these cases, it is desired 
that client’s coherency and fidelity requirements are met with  the 
minimum number of data value refresh messages. Thus efficiency 
of query evaluation at the DA is quantified in terms of the number 
of refreshes done for various data items involved in the queries 
executing at the DA. Reducing the number of refreshes reduces 
computational overheads at the DA, load on the data servers and 
network bandwidth. Since data sources have exact data values, we 
can expect that a push based approach can deliver the required 
bounded incoherency with the given fidelity using a smaller 
number of refresh messages. Push capable sources can efficiently 
filter data based on client requirements. But push based 

approaches have a few disadvantages: (1) every update to data 
values needs to be checked for push by the data sources, (2) any 
push based scheme requires continuously open network 
connection to clients, thereby affecting the scalability of a push 
based solution, (3) they need sophisticated handling when 
multiple sources are involved [6], and finally, (4) recent practical 
attempts at adding push capabilities into the web infrastructure 
have not been very successful for a variety of reasons [2].  

For web based data sources, the pull based approach is very 
attractive since it does not require any modification to existing 
web servers and the standard HTTP protocol can be used by DAs 
to pull data from the data sources. However, a key challenge in 
any pull based scheme is to ensure that the data items are 
refreshed carefully by the DA so that user requirements are 
satisfied with minimum number of data refreshes. This paper 
addresses this challenge by developing and evaluating 
mechanisms through which continuous queries can be answered 
efficiently using pull based approaches. In the rest of this section 
we give a mathematical formation for the problem and then 
provide an overview of the solution. 

 

1.2 Mathematical Formulation 
A COMIQ q is a function of a set of data items Dq , their 
associated weights Wq , tolerable incoherency Bq  and fidelity 
desired f q for the query results. Every data item i ∈ Dq  may have 
its value (di) at a DA, different from its value (si) at its source. Let 

q
iw  be the weight associated with the data item. Formally, value 

of a COMIQ is a function of Dq and Wq where the function could 
be SUM, MIN, MAX, AVG, etc. In this paper, we focus on SUM 
queries as these are likely to be more common in practice, as 
exemplified by portfolio and traffic aggregation queries. In a 
SUM query, value of COMIQ q involving nq data items, at time t, 
is given by 
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This is the value of COMIQ in the idealized case if all the data 
values can be made available immediately at the DA.  In practice, 
the value of data item known at a DA may be different from that 
at the source.  The last known value of the ith data item at a DA, is 
di. Thus the value of COMIQ q at the DA is  
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Figure 1: Query execution at data aggregators 
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The key problem is to make the di’s track the si’s close enough at 
time t so that COMIQ’s incoherency is within the user specified 
incoherency bound: 

              qqdqsq  B(t)| V(t) | V(t)E ≤−=                             (3) 

i.e., the value of the COMIQ at a DA (Equation (2)) should not 
diverge from that at data sources (Equation (1)) by more than the 
client specified incoherency bound Bq. To this end, DA must pull 
data items intelligently from data sources. Upon receiving a data 
request for ith data from DA, the data source responds with the 
latest value si of the data. With the latest data value (di = si), DA 
re-computes the query and sends the query result to the client if 
warranted, i.e., if the difference between the query result last 
reported to the client and the latest result exceeds Bq. 

Fidelity fq is the measure indicating the degree to which the DA 
should satisfy Equation (3). We can define fidelity as follows. At 
time t, let qq BtE

I
≤)(

be 1 if the coherency requirement is met 

for a query q having incoherency bound Bq, that is, qq BtE ≤)( , 
and 0 otherwise. Then  
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gives the fraction of time when the query coherency requirement 
is met by a DA. We define fidelity achieved )(lim tff qBt ∞→=  to 

be the limiting average. In practice, fidelity is averaged over a 
long time window of several hours. Thus the problem is to deliver 
the query results with bounded incoherency and user specified 
fidelity requirements, i.e., f ≥ fq. 

1.3 Summary of Contributions 
In practice, for keeping track of dynamic data, web based 
applications pull the data periodically. For example, various 
sports sites use applets to refresh scores periodically [3]. This 
approach does not take into account the specific needs of clients 
or the dynamics of data, leading to (a) high communication 
overheads and large load on servers in case the period is small or 
(b) low fidelity in case the period is large.  A better approach will 
not only take the relative importance of the data into account but 
also adapt itself to the data dynamics. We now state three key 
observations and show how they lead to such an approach.  

1.3.1 Key Observations 
Observation 1: Typical dynamic data display trends in quantum, 
speed and direction of change; which can be learned and used for 
adaptive decision making. By refreshing fast changing data at 
higher rates and slow changing data at lower rates, we can 
maintain coherency of the query results while reducing server and 
network overheads.  

Observation 2: User needs are query specific, not data specific. A 
user is interested in a COMIQ’s results being within bounded 
incoherency and not in the exact values of data items.  Hence, as 
long as the DA satisfies coherency requirements, even if a data 

item is changing rapidly, there may be no need to follow that 
change. In other words, DA needs to be aware of only those 
updates to the data items which may lead to COMIQ’s 
incoherency crossing the user specified bound.  

Observation 3: Data refreshes can be optimized across multiple 
COMIQs. Among various queries executing at a DA, a data item 
may be involved in more than one COMIQ. Thus when a data 
item is refreshed for one COMIQ, it can be used for other queries 
that involve the refreshed data item. This can be used to postpone 
the pulls of other data needed by these  queries. Intuitively, if a 
data item affects more COMIQs, it should be given priority when 
decisions are made as to which data items to pull.  

1.3.2 Overview of Solution 
First we list the sub-problems that need to be solved.  

(a) For answering COMIQs at a DA, data items involved in 
queries are required to be pulled.  When should we pull a data 
item so that user specified coherency and fidelity requirements are 
satisfied with minimum number of pulls? Data items are pulled 
when it is estimated that one or more queries have violated their 
incoherency bounds.  To estimate the results of a query, we need 
to estimate the current values for the data items involved in the 
query. We give a procedure to track the dynamics of data so that 
we can predict the data values. 

(b) User requirements are query specific so we need not pull all 
the data items involved in a query. How can we identify the subset 
of data items to be pulled? In our scheme only those data items 
are pulled whose up-to-date values are deemed to be needed to 
handle the incoherency bound violation of the queries. 

 (c) Since the previous two decisions are based on estimates, how 
can a user specified fidelity be delivered? Given the dynamic 
nature of data, and the fact that we are using a pull based 
mechanism based on data prediction, it is necessary to be adaptive 
in the decision making.  We use a feedback based mechanism for 
achieving client specified fidelity.  

Based on the observations and issues outlined above, we solve the 
problem of answering COMIQs efficiently at a DA using an 
approach whose ingredients are: 

• The dynamics of the data is modeled using a Markov 
chain based method. As per observation 1, data values 
display trends which can be used to estimate changes in 
the data item values in a given time interval.  We predict 
drift in data values using Markov chains. For estimating 
the effects of external factors, which are not captured by 
the Markov chain, we add a diffusion component to the 
drift component. 

These estimated data values are used for estimating the 
query results. The query result estimates are used for 
deciding when to pull specific data items so that user 
specified incoherency and fidelity requirements are met. 
Details are provided in Section 2. 

•  Decision about which data items to refresh are taken 
after considering the impact of estimated data values on 
query coherency. We selectively refresh data items so 
that the number of refreshes can be minimized. We 
show that an optimal selection of data items to refresh is 



NP-hard and hence develop heuristics which are shown 
through experiments to be very effective. We compare 
the performance of our heuristics among themselves and 
with a baseline. Details are in Section 3. 

• Given the user specified incoherency bound and fidelity 
requirements, we propose a feedback based mechanism 
to adaptively set the actual incoherency bound to be 
used in Equation (3).  We set the incoherency bound 
based on the fidelity desired by the client and the 
fidelity delivered so far by the DA. Details are discussed 
in Section 4. 

• For the Markov model and the feedback based 
mechanism we use the refreshed data values to estimate 
the missing updates (i.e., updates that occur between 
two pull instances). So, we compare the performance 
with the case where the data source sends all the missed 
updates of the data items whenever DA pulls a data item 
from the source. Our performance evaluation indicates a 
surprising result: there is very little to be gained by 
using (exact) missed values. Details follow in Section 5. 

Thus, this paper addresses an important issue in executing 
aggregate queries over multiple web based data items without a 
need for any additional infrastructure beyond the standard pull 
based client infrastructure. The performance of our solution is 
shown by using real world dynamic data traces to be very 
effective in handling COMIQs. Related work is discussed in 
Section 6. The paper concludes in Section 7. 

2. MODELING THE DYNAMICS OF DATA  
Probabilistic models are used for modeling random stochastic 
processes. A Markov chain models a random process in which a 
certain future state is dependent only on the current state or the 
last few states immediately preceding the current state. We can 
model dynamic data using a Markov model by learning its 
generating process. This is devised in Section 2.1. As dynamic 
data show trends, we can follow these trends to predict future 
values; e.g., if there is upward trend in temperature values then 
the probability of going further up is higher than that of going 
down. This feature can be captured by modeling data as if they are 
being generated using Markov chains. We use Discrete Time 
Markov Chains (DTMC) to model the data dynamics and use the 
modeled dynamics as shown in Section 2.2 to predict the most 
probable value of data after a given time interval. To take into 
account external factors which are not captured by the Markov 
chain we add a diffusion term, explained in Section 2.3, to the 
prediction made by the DTMC to get the predicted data value. 

2.1 Modeling Data Dynamics Using Markov 
Model 
A Markov model is characterized by a set of states and their 
transition probabilities. We associate change in data value 
between consecutive ticks as the distinguishing factor for the 
Markov states. For a Markov chain with a certain number of 
states, the data change associated with a state is uniformly chosen 
to predict changes of different magnitudes and direction (positive 
or negative). The number of Markov states for a data item 
depends on how closely the DA needs to monitor a data item. 
Figure 2 shows a typical Markov model used for modeling data 

change behavior with five states corresponding to five different 
data value changes per tick (to avoid clutter we have not shown 
self transitions). Formally, let t1, t2, t3… denote consecutive 
periodic ticks. If the predicted value of data item at t1 is d and the 
Markov model is in a state corresponding to nδ, then predicted 
value at t2 will be d + nδ and subsequently if the chain transits to 
state corresponding to − δ, then predicted value at t3 will be d+ 
nδ− δ.  

 
We create a DTMC for each of the data items involved in the 
continuous queries at a DA. Transition probabilities between 
various states of the model are determined using past observations 
of changes to data values. As more and more data is pulled, these 
transition probabilities are readjusted based on previous transition 
probabilities and current observations. We keep transition 
counters C(i,j) from each state i to every other state j in the 
DTMC. After each pull we add transition counts for two entries. If 
a data item is pulled after m time ticks, we assume that the data 
value has changed uniformly between the last pulled value and the 
current value. We calculate change per unit time and transition 
counters are updated assuming that there was one transition from 
the previous state to new state and (m-1) self transitions for the 
new state. Thus, if the previous state was x and state 
corresponding to average data change per interval since last pull is 
y,  we increase the count C(x,y) by 1 and C(y,y) by (m-1). Since 
we are not pulling after every possible update at the data source, 
does the missing information have a negative impact on the 
effectiveness of the algorithm? Our performance results in Section 
5 indicate that this is not the case. 

The transition probabilities are calculated from transition-counters 
using, 
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We use these transition probabilities when we need to predict the 
data value at future time instances. 

2.2 Estimating Future Changes in Data 
Values and Query Results 
We need to refresh data items involved in a query whenever the 
condition specified by Equation (3) is violated. But, for checking 
that condition we need the values of data items at the source, 
which we have only when we pull from the sources. Thus, instead 
of value of the data items at the source we use the predicated 

Figure 2: A typical Markov model 
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values of the data items. For the sack of simplicity, we assume 
that values of two different data items are not correlated. We need 
to predict data values at the sources between consecutive pulls to 
make the pulling decision. To predict the quantum of change in a 
data item value, at every tick, the DTMC for that item is 
“executed”, i.e., a state transition is taken based on probabilities 
given by Equation (5). Suppose we last pulled the data at time ti 
and value of data at that time was s(ti). We set d(ti) as the pulled 
value s(ti). Now if any time tk the model reaches the state z via 
states x, y…z, at times ti, ti+1, ti+2…tk respectively.  Then the 
estimated value of the data item at tk ,is d(ti)+v(x)+v(y)+….+v(z), 
where function v maps a state to the corresponding change in the 
data values (in Figure 2, v(0)= −2δ, v(1)= − δ,v(2)=0, etc.).  We 
denote the data incoherency predicted for ith data item at time tk by 
PCik. Thus PCik = v(x)+ v(y)+….+v(z). At each time unit, 
incoherency in the data items is predicted and successive changes 
since the last pull of a data item are accumulated to estimate the 
change from the last pulled value. Incoherency of a COMIQ is the 
weighted sum of incoherency of the data items involved in that 
COMIQ. Thus, at each time tick tk for every query q, the 
incoherency predicted by the model can be calculated using: 
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Here PCik is the change predicted by the data model for the  ith 

data item at the kth time instance and q
iw is the weight of ith data 

item for the query q, which refers to nq data items. Thus query 
incoherency can be written as the weighted sum of data 
incoherencies. At any time tk if the query incoherency for a query 

exceeds the user incoherency bound qB , the constituent data 
items are candidates for pulling. In Section 3, we explain how we 
can reduce the system overhead by judiciously pulling only a 
subset of the candidate data items. However, in order to limit the 
staleness of data items at DA, each data item is pulled at least 
once every TTRMAX (maximum time to refresh).   

2.3 Accounting for the Effects of External 
Factors 
We employ a technique called self correction to learn from the 
effect of past estimations. In the last section we showed how to 
predict data item values using Markov chain transitions. To take 
into account external factors which are not captured by the 
Markov chain we calculate a diffusion component of the data 
value change [4]. A diffusion component dXij  is added to the drift 
component estimated using Markov model to get the estimated 
data value for the ith data item between jth and (j+1)th pull. In 
general, diffusion component is modeled as a running average of 
data change due to external factors. Assuming jth pull of ith data 
item occurred at time tk and (j+1)th pull at time tl.  Suppose at tl , 
predicted change was PCil,  and the actual change was ACil  (based 
on the current and last pulled values). We calculate the self 
correction term as, 
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In this equation, the first term is the contribution of the average 
unexpected change over the last pull interval. The second term is 
to take an exponentially smoothed value of data change due to 

external factors, using smoothing constant )10( ≤≤ LL . This 
diffusion component is added to the drift component estimated 
using the Markov model till the next pull instance, i.e., for each 
tick h between jth and (j+1)th pull,  

ijihih dXPCPC +=                                (8)        

This modified value of PCih is used for predicting query 
incoherency (Equation (6)) and refresh times as explained in the 
previous section.  

As we shall show, the Markov model along with self correction 
serves as a good starting point to model  dynamics of data and is 
able to deliver at least 90% fidelity. The additional algorithm 
components, discussed in subsequent sections help deliver user 
specified fidelity at reduced refresh costs. 

3. CHOOSING DATA ITEMS TO BE 
REFRESHED 
As discussed so far, individual data items are modeled using a 
probabilistic model with self correction and the data items are 
pulled whenever the estimated query incoherency given by 
Equation (6) exceeds the query incoherency bound Bq. When a 
query incoherency crosses its bound, a simple approach could be 
to pull all the data items needed to compute a COMIQ’s result. 
But as noted in Observation 2 (Section 1.3), users are not 
interested in coherent data values rather they are concerned with 
coherent query results. Pulling all the data items can lead to 
wastage of network and server resources. There might be some 
data items which are changing very fast or have more weight (thus 
have a large contribution to query’s incoherency) compared to 
other data items which are changing slowly or have very low 
weight (thus have insignificant impact on the overall query 
results). Obviously, fast changing data items and ones having 
large weight should be pulled more often to keep the query result 
within the user specified incoherency bound.  

We can formulate the problem, of selecting data items for 
refreshing, as an optimization problem. In this paper we assume 
that all data items incur the same network and server overheads 
for refresh. Thus, we need to minimize the number of data items 
to pull for minimizing the network overheads. Extending the 
problem for varying overheads is the subject of our future 
research.  

3.1 Optimizing Pulls is NP-hard 
The problem of selecting data items to pull can be explained using 
Equation (6): if a query has incoherency which is more than the 
user specified bound, we need to pull enough data items so that 
query incoherency is below the user specified bound. Thus, we 
need to satisfy a set of equations of the form 
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for all queries being executed at a DA. Here nq is the number of 
data items appearing in a query q ∈ Q being executed at the DA. 
Such a set of equations is there for each time tick tk. Of the queries 
in the set Q, for selective refresh, we need to consider only those 
queries whose incoherency bounds are violated i.e, for these 

queries Equation (9) does not hold.  Let such set be QQ ⊆' . All 
data items involved in these queries are candidates for pulling. Let 



the queries in set 'Q  have in total m data items. We need to pull 
some of these m data items. We represent the decision to pull the 
ith data item by xi such that xi  is 0 if the data item needs to be 
pulled and 1 otherwise. The problem of deciding which data items 
to be pulled can be represented as finding values 
of mixi ≤≤∈ 1},1,0{ , 
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The optimizing condition represents the fact that we want to pull 
as few data items as possible and the constraints that the query 
incoherency should be less than the user specified incoherency 
bound. Thus, we need to satisfy a set of equations given by 
Equation (9) while making as few xi as 0 as possible. If a data 
item does not appear in a query we set that weight as 0. It should 
be noted that if all xi’s are 1, then Equation (9) is violated for all q 

∈ 'Q . We pull the data items whose xi is 0, and, by pulling we 
remove their contribution to the query incoherency. Any {0,1} 
integer programming problem can be mapped to the problem 
depicted by Equation (10), where minimizing number of pulls 
leads to  optimization in the integer programming problem. Thus, 
the problem depicted by Equation (10) is NP-hard [25]. In 
general, there is no known approximate algorithm for such a 
problem.  Using an algorithm like branch and bound is too 
inefficient for these real time decisions. Thus we have devised 
heuristic algorithms to solve the problem.  

In the rest of this section, we examine the algorithms  for selecting 
data items to refresh. We first consider the case of a single query, 
being executed independently at a DA. Next we consider multi-
COMIQ case in which a DA needs to execute COMIQs with 
overlapping data items. 

3.2 Base Case: Single COMIQ 
For optimizing the number of pulls, we need to pull data items 
such that query incoherency is within the user specified bound. 
From Equation (10), it is clear that for reducing the number of 

pulls, we should be pulling data items having higher weight ( q
iw ) 

or higher predicted incoherency (PCik) or both. We examine 
several approaches to solve the problem of selective refresh.  

First we treat each data item separately by dividing query 
incoherency bound (Bq) among data items involved in that query. 
If we divide the query incoherency bound such that any violation 
of individual data incoherency bounds may lead to violation of the 
query incoherency bound, we need to pull data items whenever 
their estimated data incoherency crosses their individual 
incoherency bounds. Such approaches have been used in literature 
[6]. We devise one such approach, called data incoherency 
algorithm, to compare with our query incoherency algorithms. In 
this algorithm query incoherency bound is mapped to data 
incoherency bounds based on the weights of various data items. 
For the query given by Equation (2), incoherency bound of ith data 
item is calculated as follows: 
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where nq is the number of data items in the query and q
iB  is the 

incoherency bound of the ith data item involved in query q. In this 
approach a data item having more weight is assigned low 
incoherency bound, thus, the data item is likely to be pulled more 
often. 

In the rest of this section, we use the query incoherency bound 
directly to find data refresh intervals (without mapping query 
incoherency bound to data incoherency bounds). We devise two 
heuristic algorithms to solve the problem: positive-negative 
algorithm and max algorithm, which we describe in following 
subsections. Through performance results we show that this 
approach, of not dividing query incoherency among individual 
data item incoherencies, is more efficient compared to data 
incoherency based approaches. 

Although in this subsection we focus on a single COMIQ case, 
our approach also applies to the multiple COMIQ cases where the 
sets of data items involved in various queries are disjoint. Thus, in 
such cases, we can treat each query independent of the others. The 
case where data items of  multiple queries intersect is discussed in 
Section 3.3. 

3.2.1 Positive−Negative Algorithm 
The query incoherency, given by Equation (6), can be represented 
as the absolute difference between weighted incoherency of the 
data items having positive incoherency (PCik > 0) and that having 
negative incoherency (PCik < 0).  

Intuitively, it appears that if we pull data items from both sets they 
may nullify the effects of each other with no improvement in 
coherency. This observation underlies the design of the positive-
negative algorithm: To reduce query incoherency, it just pulls 
either data items with positive incoherency or data items with 
negative incoherency, the former in case the query incoherency is 
positive, the latter otherwise. 

Figure 3 gives the pseudo code for the algorithm. In this figure, 
“incoherency” refers to query incoherency while PCik refers to the 
predicted incoherency of the individual data items. In this 
algorithm, we segregate the data items among ones estimated to 
have a positive incoherency (PCik > 0) and another having 
negative incoherency (PCik  < 0). We pull a data item from the set 
having higher total weighed incoherency. Further, from the 
selected set we pull a data item having maximum absolute 
weighted incoherency which is less than the estimated 
incoherency of the query.  If there is no such data item, we pull all 
the data items of that set. 

For example, consider a query with four data items (Di, i=1,2,3,4) 
with an incoherency bound of 200. Let the estimated weighted 

coherencies  ik
q
i PCw ×  of data items at some time tk be 500, 75, 

−200, and −150, respectively. The query incoherency is  225 
which is greater than the incoherency bound, thus we need to pull 
one or more data items. Since query incoherency is positive, we 
should be pulling data items having positive weighted 
incoherency. Thus, we need to pull data item D1 or D2 or both. As 



per the algorithm, we will pull the data item D2. It can be seen that 
if we pull D1, query incoherency will be minus 275, whose 
absolute value is more that the incoherency bound and hence will 
not help in handling the violation of the bound. So, we should 
pull the data item whose incoherency is less than the query 
incoherency. 

 

3.2.2 Max Algorithm 
In the max-algorithm we use a greedy approach of pulling the 
data items which have the high absolute weighted incoherency. 

Specifically, we calculate ik
q
i PCw × for all the data items 

involved in the query. We get the data item with the maximum 
absolute weighted incoherency. Then we pull all the data items 
whose pulling will reduce incoherency by PULLRATIO multiplied 
by max weighted incoherency, i.e., all the data items with absolute 
weighted incoherency > |PULLRATIO ×  max weighted 
incoherency| are pulled. This ensures that data items which are 
changing the query result in a significant way are pulled. In the 
example enumerated in Section 3.2.1, D1 has the maximum 
absolute value of weighted incoherency of 500. For 
PULLRATIO=0.8, we will be all the data items having absolute 
weighted incoherency of 400 or more. Thus, we will be pulling 
only D1. 

It should be noted that while in positive-negative algorithm we 
pull enough data items at each tick to maintain query incoherency 
within the user specified incoherency bound; in max-algorithm we 
just pull the data items with high incoherencies. We now compare 
the performance of these approaches before moving to the multi-
COMIQ case. 

3.2.3 Performance Comparison of Algorithms  
For performance measurements, we use portfolio queries using 20 
different stock items. A sequence of data values, corresponding to 
each stock price was constructed through repeated polling of 

http://finance.yahoo.com. Trace for each stock 
consisted of 3000 values, so if a DA desired to track changes on 
each tick it has to perform 3000 refreshes per data item. Table 1 
shows the stocks used and their typical values in USD. 

We constructed COMIQs with each query having between 2 to 8 
stocks uniformly distributed. Weights, representing the number of 
stocks held in a particular portfolio query, were assigned to stocks 
uniformly distributing them between 4000 and 5000. As weights 
of various data items in a query are not very dissimilar so deciding 
on which data item to pull is non-trivial. Stocks involved in a 
portfolio query were selected using Zipf distribution. We rank the 
data items with index i=1,2,3,…,N. Number of queries in which ith 

data item appears is  made proportional to αi

1 . We choose 

number of data items N as 20 and α as 0.9. For example, a 
portfolio query with four stocks can be written as: 

CBUKOracleMSFTIBM SSSS 4500400447804234 +++  

Experiments were performed with various values of incoherency 
bounds ranging from $1800 to $5400; for incoherency bound 
$2400, the portfolio query was evaluated at DA such that the 
difference between value of the query at DA and the actual value 
of the query (assuming all the data items are available without any 
delay) was atmost, $2400. These values of incoherency bounds 
correspond to 0.1% to 0.3% of the average portfolio values. In all 
these runs required fidelity was 98%. As mentioned in Section 
1.3, we are using a feedback based mechanism to ensure that 
delivered fidelity is more than the required fidelity. In Section 4, 
we describe the mechanism in detail. We use number of pulls to 
meet coherency and fidelity requirements as the cost criterion. 

       Table 1. Some of the stock traces used for experiments  

 

Figure 4 shows the number of refresh messages for three 
algorithms described in this section with query incoherency 
bounds varying between $2400 and $5400. For the max-algorithm 
we set the PULLRATIO to 0.8. Max-algorithm works best among 
these three algorithms from network and server overhead point of 
view. In general, the case where query incoherency is divided 
among data inconsistencies, we require more number of refreshes. 
This can be explained by the observation that by treating various 
data items separately we are ignoring interplay to data item values 
in maintaining query coherency. Specifically, in the data 
incoherency algorithm a data item is pulled assuming that all 
other data items have also violated their incoherency bounds. 
These lead to more than the required number of pulls.  The max 
algorithm performs better than positive-negative algorithm as it 

Stock Date Max 
Value 

Min 
Value 

Avg 
Value 

ABC Jun 2 135.75 134.5 135.14 
Cisco Jun 6 65.00 63.06 63.97 
CBUK Jun 2 8.625 8.25 8.50 
Dell Jun 1 43.75 42.87 43.43 
Intel Jun 2 134.50 132.50 133.46 
Microsoft Jun 8 69.62 68.07 69.04 
Oracle Jun 7 79.37 76.62 78.57 
UTSI Jun 1 22.25 21.00 21.73 
Veritas Jun 8 137.0 133.50 134.85 

Figure 3: Positive-negative algorithm for single 
COMIQ case 

 

pset = set of positive PCik for certain tk 
nset = set of negative PCik for certain tk 
psum = sum of all  wi*PCik in pset 
nsum = sum of all wi*|PCik| in nset 
while(incoherency > Bq) 

if( psum > nsum) 
        if((p∈ pset)&( wp*PCpk < incoherency) & 
           (p:  wp*PCpk  = max(wi*PCik , ∀i  )) 
  pull data item p; 

                incoherency −= wp*PCpk 
        if there is no such data item, 
                                  pull all data items from pset  

else 
       if((n∈nset)&(wn*PCnk< incoherency) & 
           (n:  wn*PCnk  = min(wi*PCik , ∀i  )) 
  pull data item n; 

                incoherency += wn*PCnk 
        if there is no such data item,  
                                   pull all data items from nset
  



does not try to maintain query coherency at every time instance. 
Although the positive-negative algorithm tries to maintain query 
incoherency within bounds, it also tries to keep query incoherency 
in the same direction, i.e., if query incoherency is positive then the 
algorithm tries to keep it positive. Thus if query value is following 
some trend (due to trend in data values), it is again likely to cross 
the incoherency bound soon leading to further pulls.  

Given the superior performance of the max algorithm we show 
how to extend it to the multiple COMIQ case in the next section. 

 
Figure 4: Comparison of algorithms for single COMIQ case 

3.3 General Case: Multiple COMIQs 
In the multiple COMIQs case we are considering the situation 
where a data item is involved in multiple queries. We need to 
make pulling decision considering all the data items involved in 
all the queries being executed at a DA. We pull a data item more 
often if it affects the coherency of a large number of queries: its 
weight in various queries is high or its estimated incoherency is 
high. We extended the heuristic of max-algorithm for this case by 
aggregating the contribution of a data item to all the queries in 
which that data item appears.  Formally, overall weighted 
incoherency of a data item di, across all queries, can be estimated 

by the quantity ik
Qq

q
i PCw

i

×�
∈

)( , where queries in Qi refer to the 

data item di. We find the data item having maximum of 
aggregated absolute weighted incoherency. At every time tick, if 
there is any inconsistent query, we pull the data items whose 
weighted incoherency is greater than the PULLRATIO multiplied 
by the maximum aggregated weighted incoherency, i.e., 
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3.3.1 Performance of Multi-COMIQ Algorithm 
We use 500 portfolio queries for measuring the performance of 
the max-algorithm in the multi-COMIQ case. The queries were 
generated as described in the Section 3.2.3. Figure 5 shows the 
number of refresh messages required by the max-algorithm in the 
multi-COMIQ case for varying client coherency and fidelity 
requirements. The total number of pulls for all the data items is 
shown in the figure. The required fidelity is varied between 90% 

and 98%. The query incoherency bound is varied between $1800 
and $5400.  It shows that one has to pay more than proportional 
cost for tighter incoherency bound and fidelity requirements. 
Achieving higher fidelity, with the tighter coherency, results in 
exponential increase in network overhead. For higher value of 
incoherency bound number of pulls increase very slowly with the 
fidelity desired, but for tighter incoherency bound number of pulls 
is a strong function of the fidelity desired. 

 
Figure 5: Tradeoff of incoherency bound, fidelity and number 

of pulls 

3.3.2 Comparison with an Ideal Push Algorithm 
We compare our algorithm for multi-COMIQ case with an ideal 
push case. In the ideal (hypothetical) push algorithm, a single 
source is assumed to have all the data item values without any 
extra cost. The source having all the data items checks whether all 
the queries satisfy user coherency requirements. For any query q, 
if incoherency bound is violated, the source pushes data items 
referred to by the query in question, any changed data pushed for 
one query is used for the other queries at a DA.  This gives the 
minimum number of messages required to maintain all the query 
results within the user specified incoherency bounds. Figure 6 
plots the ratio of the number of messages needed by our algorithm 
and that by the push algorithm. We consider various incoherency 
bounds between $1800 and $5400. Desired fidelity of 99% is 
considered for our pull based algorithm as it is almost same as 
100% fidelity ensured by the push based algorithm. The figure 
shows that for very stringent incoherency requirement of $1800, 
which is less than 0.1% of the average total query result, the 
number of pulls required by our algorithm is around five times  
the minimum number of messages required by the idealized push 
algorithm. As incoherency bound increases to $5400, the ratio 
drops to 2.5. Another point to note by comparing Figures 5 and 6 
is that while the number of pull messages increases fast with 
tighter coherency bounds, ratio of pull messages to push messages 
increases more gradually: As we decrease the incoherency bound 
from $5400 to $2400, the number of pull messages increases by a 
factor of 5.3 but ratio of pull messages to push messages increases 
by only 1.88. It happens because tighter incoherency bound leads 
to more than proportional increase not only in the pull based 
algorithm but also in the idealized push algorithm.  

 



 

All these performance results showed various features of our 
algorithm. It showed that even if the desired fidelity is close to 
100%, DA need not pull all the data values. For 98% fidelity and 
reasonably stringent coherency requirement (0.13% of average 
query value corresponding to incoherency bound of $3000 in 
Figure 5), DA pulled around 400 values per data item which is an 
order of magnitude smaller than 3000 potential update instances. 
Another important feature is that there is an exponential drop in 
the number of refreshes with decrease in either fidelity desired or 
the incoherency bound.  

4. ACHIEVING FIDELITY THROUGH 
FEEDBACK 
Now we present our feedback mechanism to ensure that client is 
delivered a particular fidelity. We monitor the fidelity delivered 
thus far and adjust the model to deliver the desired fidelity. If the 

user specified incoherency bound is qB , then the algorithms 
described in the previous sections are fed with the incoherency 

bound of sfBq × , where sf (safety factor) is the parameter to 
control the delivered fidelity. During the query execution, value of 
sf is a function of fidelity required to be delivered to the client and 
fidelity delivered thus far. A value of sf less than 1 indicates that 
the incoherency bound that the pull algorithm should ensure is 
smaller than that specified by the user. The idea is that even if 
some of the future predictions lead to larger incoherency (due to 
the probabilistic nature of model or external factors), because a 
tighter incoherency bound is demanded, the system is more likely 

to deliver qB with the required fidelity. Clearly, different sf values 
will result in different fidelity values for a client query. In Section 
4.1 we consider the effects of a particular value of sf on the 
delivered fidelity whereas in Section 4.2 we present an adaptive 
approach which continuously adapts sf to deliver the required 
fidelity fq.  

4.1 Effects of Fixed Safety Factor Values 
We measure the effect of the safety factor on delivered fidelity 
using simulation experiments. For these experiments, we use the 
portfolio queries as described in Section 3.2.3.  Figure 7 shows 

the fidelity achieved as a function of sf for different incoherency 
bounds. Low values of sf give high fidelity. For example, at 
sf=1.25, for incoherency bound of 3000, we achieve 93% fidelity 
but for sf=1 fidelity increases to 96%. Fidelity decreases slowly 

with safety factor for large incoherency bounds as qBsf ×  gets 
rarely violated and time to pull is largely governed by TTRMAX. 
As we pull at least once every TTRMAX, the fidelity will not 
decrease after a certain value. But in Figure 7, we are more 
interested in the top-left part of curve as client’s desired fidelity is 
more likely to be above 95%. We will use that part of the curve to 
adjust sf based on client’s desired fidelity.  

Note that sf = 1 corresponds to the case of not employing any 
safety factor, that is, just using the Markovian Data model based 
tracking. Figure 7 shows that although we can achieve a fidelity 
more than 92% just by the data model, for achieving the client 
specified fidelity we need to adapt sf, that is, adjust the 
incoherency bound that the system should attempt to maintain. 

 

 
Figure 7: Fidelity with different safety factors 

4.2 Adaptive Safety Factor  
From the previous section it is clear that relationship between the 
safety factor and the delivered fidelity depends on various other 
factors like incoherency bound and data dynamics. Thus it is very 
difficult to predict a fixed sf value to deliver a given fidelity. In 
practical settings, in order to deliver a particular fidelity, sf needs 
to be dynamically modified depending on the fidelity delivered 
thus far and the dynamics of the data. We increase sf when the 
delivered fidelity is greater than the desired fidelity and decrease 
it when the reverse is the case. Let us denote the difference 
between actual delivered fidelity and desired fidelity by FD 
(fidelity difference). From Figure 7, it can be seen that in the areas 
of interest (high fidelity regions on the top left), to attain a given 
fidelity, the safety factor needs to be an exponential function of 
FD. Thus: 

FDesfsf
FD

××=
=

γ
fidelity Desired -fidelity  Delivered 

              (13) 

Thus we decrease sf if FD is negative (i.e., fidelity delivered so far 
is less than the desired fidelity), which leads to the tighter 
incoherency bound which, in turn, brings delivered fidelity closer 

Figure 6: Comparison of multi-COMIQ pull 
algorithm with idealized push algorithm 



to the desired fidelity. The sf adjustment is done at regular 
intervals of 200 ticks. For fidelity calculation (Equations (3) and 
(4)) we need the actual values of data items at all the ticks. Since 
we have the actual data values only at the data pull instances, we 
do linear interpolation of data values for fidelity calculations. In 
particular, after every pull we assume the intermediate data values 
as linear interpolation of two values. We use those values along 
with the known value of data items (last pulled value) at DA to 
calculate fidelity using Equations (3) and (4). In Section 5, we 
show that estimated fidelity, and sf, is almost the same as what it 
would have been if we had taken the updates that occur at the 
source between two pulls for its calculation.  

Gamma (γ) is the adjustment factor which decides the 
effectiveness of the sf adjustments in delivering the desired 
fidelity.  After initialization of γ (<1), its value is learned over 
time as follows. If sf adjustment is not effective even after 
adjustment in some consecutive windows, i.e. actual fidelity is not 
reaching the desired fidelity, the value of γ is changed. In 
particular, if FD is positive (or negative) for consecutive time 
windows we increase the value of γ, otherwise we decrease it. 
This increase/decrease is done in a multiplicative manner using 
learning_rate (<1), i.e., 
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This adjustment is done to ensure that the FD approaches zero 
within a few adjustments.  For all the performance results, 
TTRMAX is 60, smoothing constant (L) is 0.8, initial value of γ is 
set to 0.1 and learning_rate is 0.98. 

 
Figure 8: Fidelity using adaptive scheme  

(Incoherency bound = 2400, desired fidelity = 98%) 
To see the effects of safety factor adjustments on delivered 
fidelity, we plot loss in fidelity with time in Figure 8. The figure 
shows two curves, one for the loss in fidelity (till that time) and 
another for the loss in the fidelity in the recent time window of 
200 ticks. The user desired fidelity for these experiments is 98% 
and query incoherency bound is $2400.  As can be seen from the 
curve, the adaptive scheme can maintain the delivered fidelity 
very close to the desired one. For example, the maximum 
deviation from the desired fidelity is less than 1%. Furthermore, 
when fidelity drops, the algorithm takes corrective measures and 
recovers very fast by pulling data more often to deliver the 
required fidelity.  

5. EFFECTS OF MISSING UPDATES 
In this section we measure the effects of missing intermediate 
updates. In all the results presented before this section, we used 
the last pulled data values. As explained in Section 2, we train 
DTMC using pulled values and duration between consecutive 
pulls. Similarly, we estimate fidelity using linearly interpolated 
values for the time ticks between the pulls.  Since a data item may 
have been updated a number of times between consecutive pulls, 
we want to see the effect on data model and fidelity if we had all 
the data updates. Intuitively, it is expected that data model will be 
more accurate if we have all the updates. Similarly, we can get the 
delivered fidelity accurately if we have all the intermediate 
updates. For the purpose of getting updates between consecutive 
pulls, we assume that data source capability can be enhanced so 
that it provides all the missing data updates whenever a DA pulls 
a data item. These intermediate data values can be used to train 
the Markov model described in Section 2 as well as to calculate 
actual fidelity and safety factor as described in Section 4.  Figure 
9 shows that, with time, fidelity with intermediate values is almost 
same as that without those values for two incoherency bounds of 
$2400 and $5400. For the incoherency bound of $2400 the two 
curves follow each other very closely except in the beginning 
when the fidelity is overestimated. For the incoherency bound of 
$5400 the estimated fidelity is slightly more than the fidelity if we 
had all the missed updates. For large incoherency bounds, data 
items are pulled infrequently which may lead to incorrect 
estimation. But we pull a data item at least once every TTRMAX 
which causes the estimated values to follow the actual values. In 
both the cases we are close to the fidelity requirement of 98% and 
fidelity difference between the two curves is at most 0.5%.  Thus, 
our safety factor values based on estimated fidelity values remain 
almost same even if we consider intermediate values. In Figure 10 
we show the effect of intermediate values on the number of pulls 
required to maintain fidelity of 98% for the various incoherency 
bounds.  There is not much difference between numbers of pulls 
between these two cases. In fact, the number of pulls required, 
when we consider all values, is higher than the one when we do 
not consider them. This can be explained as the algorithm which 
does not consider intermediate values does not react to every 
change; it uses overall data trends to predict the data values.  

 
Figure 9 : Effect of missed updates on  Fidelity 

calculations 



Figure 10: Effect of missed updates on number 
of messages 

 

6. RELATED WORK 
Consistency and coherency maintenance for distributed data is a 
well studied subject. The problem of coherency maintenance 
between a data source and cached copies of the data was first 
studied in [7].  In [11], strong coherency is maintained between 
data server and its replica using a data item lease and a volume 
lease. Large duration data leases ensured that replicas need not 
renew the leases very often for various data items and small 
duration volume leases ensured that server need not wait for long 
for updates in case of unreachable replicas.  Such studies aimed 
for transactional coherency between data at the server and that at 
replica. We assume that in various web based applications 
transactional coherency is not required and thus what we aimed 
for was bounded incoherency. 

Various mechanisms for maintaining coherency of fast changing 
documents are proposed in the literature. These include data 
broadcast, speculative data dissemination, efficient multicast, 
push caching, etc [8, 9]. [10] compared hierarchical caching with 
multicasting to conclude that unless documents are changing very 
fast, caching gives lower latency, uses less bandwidth and reduces 
load on the origin server. However none of these efforts were 
explicitly targeted at refreshing continuously changing data under 
bounded incoherency requirements.   

More recently, web caching has led to various studies towards 
maintaining the cache up-to-date in the loose coherency sense.  
These studies can be categorized as client based [12], server based 
[13] and mixed [14].   These efforts typically assume that 
cacheable data is modified at a very large time scale, and thus, are 
less effective at maintaining coherency of rapidly changing data.  
In [15], the dynamic content is explicitly invalidated by the 
content server using data dependency graph and push based 
invalidations.  [16] considers various applications to show how 
availability and performance of applications can be increased by 
adjusting coherency properties of data items. [17] shows how data 
replica and data server can co-operate to deliver desired temporal 
incoherency efficiently. In [5, 21], authors discuss Trapp system 
to answer database queries approximately to have a tradeoff 
between fast imprecise data from local replica and slow precise 

data from remote server. They use value-initiated push as well as 
query-initiated pull to maintain data coherency. We only used 
pulls to refresh data items whenever expected incoherency of 
queries exceeded user specified bounds. 

The Tapestry system [18] system considered content-based 
filtering over an append only database of email and bulletin board 
messages. [19] discusses a scalable system for continuous queries 
over web databases. The paper considers a large number of XML-
QL queries and evaluating them efficiently. [20] presents an 
architecture for internet scale event driven information system 
involving continuous queries. In that architecture, information is 
delivered using push based mechanism.   

 [6] considers answering aggregation queries over dynamic data. 
In their approach servers push the data items to DAs (called 
stream processors). For reducing the communication cost, the 
authors establish filters at data sources. The width of data filters 
for a particular data item is a function of coherency requirement of 
various queries involving that data item, number of filtered 
updates and weights of data items. In their approach, data items 
are pushed assuming the worst case (even if one data item crosses 
its incoherency bound, the query needs to be reevaluated), thus for 
reducing number of pushes they increase the incoherency bound 
of the data item which is pushed a large number of times (i.e., 
changing very fast). In contrast to their approach, in our scheme 
the existing data servers and the (pull-based) HTTP protocol is 
utilized by the DA, leading to greater scalability and immediate 
applicability. We pull a data item if it has a large estimated 
incoherency. This can be due to large weights for the data item in 
one or more queries, large amount of changes in the data item, or 
incorrect prediction. We feel that in all these three cases we 
should pull the data item. In the first two cases, changes to the 
data item directly affect the coherency of queries so query 
incoherency bound will be violated sooner or later. When the 
third case occurs, it indicates that our model is not predicting data 
values correctly thus we need to pull more often to make the 
model more accurate. Overall, in our work, data values are 
estimated based on past behavior and data items are pulled based 
on average case. Thus, in contrast to [6], we pull a data item more 
often if it is changing faster.  Finally, by focusing on query 
incoherency, rather than individual data incoherency, our 
algorithm only pulls updates required to keep query incoherency 
within bound. 

7. CONCLUSIONS 
In this paper we considered the problem of answering queries for 
online decision making at web data aggregators. We showed that 
such queries can be represented as continuous queries with 
bounded incoherency and fidelity requirements. Through a 
probabilistic data model and feedback based mechanism we 
showed that our approach can be efficiently used to deliver query 
results with client’s coherency and fidelity requirements. An 
important aspect of our approach is the use of existing web 
infrastructure for answering these queries which leads to minimal 
architectural requirements and more scalability. Another feature is 
the presence of tunable parameters to tradeoff desired fidelity and 
refresh overheads. We presented algorithms to selectively refresh 
data items so that message overheads can be minimized. Our 
results demonstrated that it is not necessary to obtain all the 
updates at a DA even if desired fidelity is 98% for a tight 



incoherency bound. Through this solution, web data aggregators 
can reduce their resource requirements and pass on the benefit to 
the clients. Our solution is specifically suitable for the queries 
involving aggregation of a number of dynamic data items where 
result inaccuracy is tolerable and data values follow a pattern. If 
the client needs to perform some action based on very small 
change in a data value then push based mechanisms [21] are more 
suitable.  

Although we presented our results for a weighted SUM based 
aggregation queries, it is important to note that the technique 
could be used for many general polynomial queries. In stock 
portfolio tracking, user may be holding stocks listed in various 
stock exchanges in different currencies and user may want the 
portfolio value in a particular currency. In this case, as the stock 
prices as well as the currency exchange rates are changing with 
time, a linear weighted aggregation is not sufficient.  But we can 
still apply the principles enumerated in this paper. We need to 
track the dynamics of not only the stock prices but also of 
currency conversion rates. Algorithm to selectively refresh these 
data items is part of our future work. 
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