
Executing Incoherency Bounded Continuous Queries
at Web Data Aggregators

Rajeev Gupta1

IBM India Research Laboratory
IIT Delhi, New Delhi, India

grajeev@in.ibm.com

ABSTRACT
Continuous queries are used to monitor changes to time varying
data and to provide results useful for online decision making.
Typically a user desires to obtain the value of some function over
distributed data items, for example, to determine when and
whether (a) the traffic entering a highway from multiple feed
roads will result in congestion in a thoroughfare or (b) the value
of a stock portfolio exceeds a threshold. Using the standard Web
infrastructure for these applications will increase the reach of the
underlying information. But, since these queries involve data from
multiple sources, with sources supporting standard HTTP (pull-
based) interfaces, special query processing techniques are needed.
Also, these applications often have the flexibility to tolerate some
incoherency, i.e., some differences between the results reported to
the user and that produced from the virtual database made up of
the distributed data sources.
In this paper, we develop and evaluate client-pull-based
techniques for refreshing data so that the results of the queries
over distributed data can be correctly reported, conforming to the
limited incoherency acceptable to the users.
We model as well as estimate the dynamics of the data items using
a probabilistic approach based on Markov Chains. Depending on
the dynamics of data we adapt the data refresh times to deliver
query results with the desired coherency. The commonality of data
needs of multiple queries is exploited to further reduce refresh
overheads. Effectiveness of our approach is demonstrated using
live sources of dynamic data: the number of refreshes it requires is
(a) an order of magnitude less than what we would need if every
potential update is pulled from the sources, and (b) comparable to
the number of messages needed by an ideal algorithm, one that
knows how to optimally refresh the data from distributed data
sources. Our evaluations also bring out a very practical and
attractive tradeoff property of pull based approaches, e.g., a small
increase in tolerable incoherency leads to a large decrease in
message overheads.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web Based Services

1 Work was done when author was at IIT Bombay.

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

Ashish Puri, Krithi Ramamritham
Indian Institute of Technology, Bombay

Mumbai, India

{ashpuri,krithi}@cse.iitb.ac.in

General Terms
Algorithms, Management, Measurement, Performance

Keywords
Online decision making, continuous queries, coherency, fidelity,
Markov model.

1. INTRODUCTION
The web is becoming a universal medium for information
publication and usage. Such information is becoming more and
more dynamic and usage is varying from simple tracking to on
line decision making in real time. Applications include auctions,
personal portfolio valuations for financial decisions, route
planning based on traffic information, etc. For such applications,
data from one or more independent web sources may be
aggregated to trigger some action. Given the increasing number
of such applications of highly dynamic data, there is significant
interest in systems that can efficiently monitor the required data to
get the relevant updates automatically. For example, the following
network monitoring query:

SELECT source-department, num_packets_in_preceding_hour
FROM campus_network_traffic_info

can be used to collect statistics relating to bandwidth usage by
various departments in a campus. It requires continuous collection
of information about data packets and their IP addresses from
various routers in the campus network. A traffic policing server
aggregates such information to continuously track bandwidth
usage per department which can be used to generate a trigger
whenever a department crosses its allocated bandwidth. Such a
data aggregating server can be seen as executing a continuous
query over the aggregate of data items by refreshing data from
specific sources.

As another example, consider a user who wants to track a
portfolio of stocks, in different (brokerage) accounts. He or she
might be using a third party data aggregator, such as [1], which
provides a unified view of financial information of interest by
periodically polling information from multiple independent
sources.

These queries are exemplars of a class of queries having some
common characteristics:

- all these queries are long running queries as data is continuously
changing and user is interested in notifications when certain
conditions hold. Thus, responses to these queries are refreshed
continuously.

- to generate the response, aggregation of data from multiple
sources is required. As a result, executing such queries at data
sources may not be feasible.

- users are likely to tolerate some incoherency in the results. That
is, the exact data values at the corresponding data sources need
not be reported as long as the query results satisfy user specified
coherency requirements. For instance, for the network monitoring
query, users may be satisfied with an accuracy of 100 for the
num_packets_in_preceding_hour. Portfolio trackers may be
happy with an accuracy of $10.

Henceforth we refer to such queries as Continuous Multi-data
Incoherency bounded Queries (COMIQs). Specifically, we
consider queries which correspond to weighted aggregation of a
number of data items, e.g., in the case of portfolio queries, the
number of shares held in each stock forms the weights of the
corresponding stock values.

In this paper we consider the efficient execution of COMIQs at
data aggregators that are positioned within the Web infrastructure.
Our aim is to execute such queries using the existing web
infrastructure, achieving client specified requirements and
minimizing load on the network and the data sources. Figure 1
shows the typical scenario where clients want to execute
continuous queries at web data aggregators. Since there queries
need data from multiple sources, clients pose these queries to data
aggregators (DAs) who get the desired data items from data
sources and execute the queries.

1.1 Executing COMIQs at Data Aggregators
Users can specify the acceptable incoherency as one or more of
temporal, value based or updates based incoherency [16]. In this
paper we consider value based incoherency, that is incoherency in
the value or results of a query, as we feel that the user’s
requirement is more likely to be specified in value form, and
further, other forms of incoherencies can be handled through
much simpler approaches [25]. In such cases, a DA needs to
ensure that the incoherency in the query results -- when compared
to the result obtained using the precise data item values -- is
maintained at or below the level desired by the client. Besides the
bounded incoherency, another parameter of importance for the
client is the fidelity delivered. 100% fidelity implies that client’s
incoherency bound is never violated. Thus, with every
aggregation query the client also specifies its corresponding
incoherency bound and fidelity desired. Section 1.2 makes these
notions more precise.

The required data updates for query evaluation at a DA can be
obtained either by sources pushing them continuously or the DA
pulling them whenever required. In both these cases, it is desired
that client’s coherency and fidelity requirements are met with the
minimum number of data value refresh messages. Thus efficiency
of query evaluation at the DA is quantified in terms of the number
of refreshes done for various data items involved in the queries
executing at the DA. Reducing the number of refreshes reduces
computational overheads at the DA, load on the data servers and
network bandwidth. Since data sources have exact data values, we
can expect that a push based approach can deliver the required
bounded incoherency with the given fidelity using a smaller
number of refresh messages. Push capable sources can efficiently
filter data based on client requirements. But push based

approaches have a few disadvantages: (1) every update to data
values needs to be checked for push by the data sources, (2) any
push based scheme requires continuously open network
connection to clients, thereby affecting the scalability of a push
based solution, (3) they need sophisticated handling when
multiple sources are involved [6], and finally, (4) recent practical
attempts at adding push capabilities into the web infrastructure
have not been very successful for a variety of reasons [2].

For web based data sources, the pull based approach is very
attractive since it does not require any modification to existing
web servers and the standard HTTP protocol can be used by DAs
to pull data from the data sources. However, a key challenge in
any pull based scheme is to ensure that the data items are
refreshed carefully by the DA so that user requirements are
satisfied with minimum number of data refreshes. This paper
addresses this challenge by developing and evaluating
mechanisms through which continuous queries can be answered
efficiently using pull based approaches. In the rest of this section
we give a mathematical formation for the problem and then
provide an overview of the solution.

1.2 Mathematical Formulation
A COMIQ q is a function of a set of data items Dq , their
associated weights Wq , tolerable incoherency Bq and fidelity
desired f q for the query results. Every data item i ∈ Dq may have
its value (di) at a DA, different from its value (si) at its source. Let

q
iw be the weight associated with the data item. Formally, value

of a COMIQ is a function of Dq and Wq where the function could
be SUM, MIN, MAX, AVG, etc. In this paper, we focus on SUM
queries as these are likely to be more common in practice, as
exemplified by portfolio and traffic aggregation queries. In a
SUM query, value of COMIQ q involving nq data items, at time t,
is given by

�
=

=
×=

qni

i

q
ii

qs wtstV
1

)()((1)

This is the value of COMIQ in the idealized case if all the data
values can be made available immediately at the DA. In practice,
the value of data item known at a DA may be different from that
at the source. The last known value of the ith data item at a DA, is
di. Thus the value of COMIQ q at the DA is

Clients

Data
refresh

Aggregation
Queries

Figure 1: Query execution at data aggregators

Source 1 Source 2 Source n

Data Aggregator

�
=

=
×=

qni

i

q
ii

qd wtdtV
1

)()((2)

The key problem is to make the di’s track the si’s close enough at
time t so that COMIQ’s incoherency is within the user specified
incoherency bound:

 qqdqsq B(t)| V(t) | V(t)E ≤−= (3)

i.e., the value of the COMIQ at a DA (Equation (2)) should not
diverge from that at data sources (Equation (1)) by more than the
client specified incoherency bound Bq. To this end, DA must pull
data items intelligently from data sources. Upon receiving a data
request for ith data from DA, the data source responds with the
latest value si of the data. With the latest data value (di = si), DA
re-computes the query and sends the query result to the client if
warranted, i.e., if the difference between the query result last
reported to the client and the latest result exceeds Bq.

Fidelity fq is the measure indicating the degree to which the DA
should satisfy Equation (3). We can define fidelity as follows. At
time t, let qq BtE

I
≤)(

be 1 if the coherency requirement is met

for a query q having incoherency bound Bq, that is, qq BtE ≤)(,
and 0 otherwise. Then

� ≤=
t

ByEB dyyI
t

tf qq

0
})({)(

1
)((4)

gives the fraction of time when the query coherency requirement
is met by a DA. We define fidelity achieved)(lim tff qBt ∞→= to

be the limiting average. In practice, fidelity is averaged over a
long time window of several hours. Thus the problem is to deliver
the query results with bounded incoherency and user specified
fidelity requirements, i.e., f ≥ fq.

1.3 Summary of Contributions
In practice, for keeping track of dynamic data, web based
applications pull the data periodically. For example, various
sports sites use applets to refresh scores periodically [3]. This
approach does not take into account the specific needs of clients
or the dynamics of data, leading to (a) high communication
overheads and large load on servers in case the period is small or
(b) low fidelity in case the period is large. A better approach will
not only take the relative importance of the data into account but
also adapt itself to the data dynamics. We now state three key
observations and show how they lead to such an approach.

1.3.1 Key Observations
Observation 1: Typical dynamic data display trends in quantum,
speed and direction of change; which can be learned and used for
adaptive decision making. By refreshing fast changing data at
higher rates and slow changing data at lower rates, we can
maintain coherency of the query results while reducing server and
network overheads.

Observation 2: User needs are query specific, not data specific. A
user is interested in a COMIQ’s results being within bounded
incoherency and not in the exact values of data items. Hence, as
long as the DA satisfies coherency requirements, even if a data

item is changing rapidly, there may be no need to follow that
change. In other words, DA needs to be aware of only those
updates to the data items which may lead to COMIQ’s
incoherency crossing the user specified bound.

Observation 3: Data refreshes can be optimized across multiple
COMIQs. Among various queries executing at a DA, a data item
may be involved in more than one COMIQ. Thus when a data
item is refreshed for one COMIQ, it can be used for other queries
that involve the refreshed data item. This can be used to postpone
the pulls of other data needed by these queries. Intuitively, if a
data item affects more COMIQs, it should be given priority when
decisions are made as to which data items to pull.

1.3.2 Overview of Solution
First we list the sub-problems that need to be solved.

(a) For answering COMIQs at a DA, data items involved in
queries are required to be pulled. When should we pull a data
item so that user specified coherency and fidelity requirements are
satisfied with minimum number of pulls? Data items are pulled
when it is estimated that one or more queries have violated their
incoherency bounds. To estimate the results of a query, we need
to estimate the current values for the data items involved in the
query. We give a procedure to track the dynamics of data so that
we can predict the data values.

(b) User requirements are query specific so we need not pull all
the data items involved in a query. How can we identify the subset
of data items to be pulled? In our scheme only those data items
are pulled whose up-to-date values are deemed to be needed to
handle the incoherency bound violation of the queries.

 (c) Since the previous two decisions are based on estimates, how
can a user specified fidelity be delivered? Given the dynamic
nature of data, and the fact that we are using a pull based
mechanism based on data prediction, it is necessary to be adaptive
in the decision making. We use a feedback based mechanism for
achieving client specified fidelity.

Based on the observations and issues outlined above, we solve the
problem of answering COMIQs efficiently at a DA using an
approach whose ingredients are:

• The dynamics of the data is modeled using a Markov
chain based method. As per observation 1, data values
display trends which can be used to estimate changes in
the data item values in a given time interval. We predict
drift in data values using Markov chains. For estimating
the effects of external factors, which are not captured by
the Markov chain, we add a diffusion component to the
drift component.

These estimated data values are used for estimating the
query results. The query result estimates are used for
deciding when to pull specific data items so that user
specified incoherency and fidelity requirements are met.
Details are provided in Section 2.

• Decision about which data items to refresh are taken
after considering the impact of estimated data values on
query coherency. We selectively refresh data items so
that the number of refreshes can be minimized. We
show that an optimal selection of data items to refresh is

NP-hard and hence develop heuristics which are shown
through experiments to be very effective. We compare
the performance of our heuristics among themselves and
with a baseline. Details are in Section 3.

• Given the user specified incoherency bound and fidelity
requirements, we propose a feedback based mechanism
to adaptively set the actual incoherency bound to be
used in Equation (3). We set the incoherency bound
based on the fidelity desired by the client and the
fidelity delivered so far by the DA. Details are discussed
in Section 4.

• For the Markov model and the feedback based
mechanism we use the refreshed data values to estimate
the missing updates (i.e., updates that occur between
two pull instances). So, we compare the performance
with the case where the data source sends all the missed
updates of the data items whenever DA pulls a data item
from the source. Our performance evaluation indicates a
surprising result: there is very little to be gained by
using (exact) missed values. Details follow in Section 5.

Thus, this paper addresses an important issue in executing
aggregate queries over multiple web based data items without a
need for any additional infrastructure beyond the standard pull
based client infrastructure. The performance of our solution is
shown by using real world dynamic data traces to be very
effective in handling COMIQs. Related work is discussed in
Section 6. The paper concludes in Section 7.

2. MODELING THE DYNAMICS OF DATA
Probabilistic models are used for modeling random stochastic
processes. A Markov chain models a random process in which a
certain future state is dependent only on the current state or the
last few states immediately preceding the current state. We can
model dynamic data using a Markov model by learning its
generating process. This is devised in Section 2.1. As dynamic
data show trends, we can follow these trends to predict future
values; e.g., if there is upward trend in temperature values then
the probability of going further up is higher than that of going
down. This feature can be captured by modeling data as if they are
being generated using Markov chains. We use Discrete Time
Markov Chains (DTMC) to model the data dynamics and use the
modeled dynamics as shown in Section 2.2 to predict the most
probable value of data after a given time interval. To take into
account external factors which are not captured by the Markov
chain we add a diffusion term, explained in Section 2.3, to the
prediction made by the DTMC to get the predicted data value.

2.1 Modeling Data Dynamics Using Markov
Model
A Markov model is characterized by a set of states and their
transition probabilities. We associate change in data value
between consecutive ticks as the distinguishing factor for the
Markov states. For a Markov chain with a certain number of
states, the data change associated with a state is uniformly chosen
to predict changes of different magnitudes and direction (positive
or negative). The number of Markov states for a data item
depends on how closely the DA needs to monitor a data item.
Figure 2 shows a typical Markov model used for modeling data

change behavior with five states corresponding to five different
data value changes per tick (to avoid clutter we have not shown
self transitions). Formally, let t1, t2, t3… denote consecutive
periodic ticks. If the predicted value of data item at t1 is d and the
Markov model is in a state corresponding to nδ, then predicted
value at t2 will be d + nδ and subsequently if the chain transits to
state corresponding to − δ, then predicted value at t3 will be d+
nδ− δ.

We create a DTMC for each of the data items involved in the
continuous queries at a DA. Transition probabilities between
various states of the model are determined using past observations
of changes to data values. As more and more data is pulled, these
transition probabilities are readjusted based on previous transition
probabilities and current observations. We keep transition
counters C(i,j) from each state i to every other state j in the
DTMC. After each pull we add transition counts for two entries. If
a data item is pulled after m time ticks, we assume that the data
value has changed uniformly between the last pulled value and the
current value. We calculate change per unit time and transition
counters are updated assuming that there was one transition from
the previous state to new state and (m-1) self transitions for the
new state. Thus, if the previous state was x and state
corresponding to average data change per interval since last pull is
y, we increase the count C(x,y) by 1 and C(y,y) by (m-1). Since
we are not pulling after every possible update at the data source,
does the missing information have a negative impact on the
effectiveness of the algorithm? Our performance results in Section
5 indicate that this is not the case.

The transition probabilities are calculated from transition-counters
using,

�
∀

=

y

yxC

yxC
yxp

),(

),(
),((5)

We use these transition probabilities when we need to predict the
data value at future time instances.

2.2 Estimating Future Changes in Data
Values and Query Results
We need to refresh data items involved in a query whenever the
condition specified by Equation (3) is violated. But, for checking
that condition we need the values of data items at the source,
which we have only when we pull from the sources. Thus, instead
of value of the data items at the source we use the predicated

Figure 2: A typical Markov model

p42

p34

p02

p23

p43 p32
p21

p12

p10

p01

-2δ -δ 0 +δ +2δ

values of the data items. For the sack of simplicity, we assume
that values of two different data items are not correlated. We need
to predict data values at the sources between consecutive pulls to
make the pulling decision. To predict the quantum of change in a
data item value, at every tick, the DTMC for that item is
“executed”, i.e., a state transition is taken based on probabilities
given by Equation (5). Suppose we last pulled the data at time ti
and value of data at that time was s(ti). We set d(ti) as the pulled
value s(ti). Now if any time tk the model reaches the state z via
states x, y…z, at times ti, ti+1, ti+2…tk respectively. Then the
estimated value of the data item at tk ,is d(ti)+v(x)+v(y)+….+v(z),
where function v maps a state to the corresponding change in the
data values (in Figure 2, v(0)= −2δ, v(1)= − δ,v(2)=0, etc.). We
denote the data incoherency predicted for ith data item at time tk by
PCik. Thus PCik = v(x)+ v(y)+….+v(z). At each time unit,
incoherency in the data items is predicted and successive changes
since the last pull of a data item are accumulated to estimate the
change from the last pulled value. Incoherency of a COMIQ is the
weighted sum of incoherency of the data items involved in that
COMIQ. Thus, at each time tick tk for every query q, the
incoherency predicted by the model can be calculated using:

)()(
1

q
i

n

i
ik

q wPCkyIncoherenc
q

×= �
=

 (6)

Here PCik is the change predicted by the data model for the ith

data item at the kth time instance and q
iw is the weight of ith data

item for the query q, which refers to nq data items. Thus query
incoherency can be written as the weighted sum of data
incoherencies. At any time tk if the query incoherency for a query

exceeds the user incoherency bound qB , the constituent data
items are candidates for pulling. In Section 3, we explain how we
can reduce the system overhead by judiciously pulling only a
subset of the candidate data items. However, in order to limit the
staleness of data items at DA, each data item is pulled at least
once every TTRMAX (maximum time to refresh).

2.3 Accounting for the Effects of External
Factors
We employ a technique called self correction to learn from the
effect of past estimations. In the last section we showed how to
predict data item values using Markov chain transitions. To take
into account external factors which are not captured by the
Markov chain we calculate a diffusion component of the data
value change [4]. A diffusion component dXij is added to the drift
component estimated using Markov model to get the estimated
data value for the ith data item between jth and (j+1)th pull. In
general, diffusion component is modeled as a running average of
data change due to external factors. Assuming jth pull of ith data
item occurred at time tk and (j+1)th pull at time tl. Suppose at tl ,
predicted change was PCil, and the actual change was ACil (based
on the current and last pulled values). We calculate the self
correction term as,

ij
kl

ilil
ji dXL

tt
PCACL

dX ×−+
−

−×=+)1(
)(

1, (7)

In this equation, the first term is the contribution of the average
unexpected change over the last pull interval. The second term is
to take an exponentially smoothed value of data change due to

external factors, using smoothing constant)10(≤≤ LL . This
diffusion component is added to the drift component estimated
using the Markov model till the next pull instance, i.e., for each
tick h between jth and (j+1)th pull,

ijihih dXPCPC += (8)

This modified value of PCih is used for predicting query
incoherency (Equation (6)) and refresh times as explained in the
previous section.

As we shall show, the Markov model along with self correction
serves as a good starting point to model dynamics of data and is
able to deliver at least 90% fidelity. The additional algorithm
components, discussed in subsequent sections help deliver user
specified fidelity at reduced refresh costs.

3. CHOOSING DATA ITEMS TO BE
REFRESHED
As discussed so far, individual data items are modeled using a
probabilistic model with self correction and the data items are
pulled whenever the estimated query incoherency given by
Equation (6) exceeds the query incoherency bound Bq. When a
query incoherency crosses its bound, a simple approach could be
to pull all the data items needed to compute a COMIQ’s result.
But as noted in Observation 2 (Section 1.3), users are not
interested in coherent data values rather they are concerned with
coherent query results. Pulling all the data items can lead to
wastage of network and server resources. There might be some
data items which are changing very fast or have more weight (thus
have a large contribution to query’s incoherency) compared to
other data items which are changing slowly or have very low
weight (thus have insignificant impact on the overall query
results). Obviously, fast changing data items and ones having
large weight should be pulled more often to keep the query result
within the user specified incoherency bound.

We can formulate the problem, of selecting data items for
refreshing, as an optimization problem. In this paper we assume
that all data items incur the same network and server overheads
for refresh. Thus, we need to minimize the number of data items
to pull for minimizing the network overheads. Extending the
problem for varying overheads is the subject of our future
research.

3.1 Optimizing Pulls is NP-hard
The problem of selecting data items to pull can be explained using
Equation (6): if a query has incoherency which is more than the
user specified bound, we need to pull enough data items so that
query incoherency is below the user specified bound. Thus, we
need to satisfy a set of equations of the form

QqBwPC q
n

i

q
iik

q

∈∀≤×�
=

,
1

 (9)

for all queries being executed at a DA. Here nq is the number of
data items appearing in a query q ∈ Q being executed at the DA.
Such a set of equations is there for each time tick tk. Of the queries
in the set Q, for selective refresh, we need to consider only those
queries whose incoherency bounds are violated i.e, for these

queries Equation (9) does not hold. Let such set be QQ ⊆' . All
data items involved in these queries are candidates for pulling. Let

the queries in set 'Q have in total m data items. We need to pull
some of these m data items. We represent the decision to pull the
ith data item by xi such that xi is 0 if the data item needs to be
pulled and 1 otherwise. The problem of deciding which data items
to be pulled can be represented as finding values
of mixi ≤≤∈ 1},1,0{ ,

miQqBxwPC

tsx

q
i

n

i

q
iik

mi
i

q

≤≤∈∀≤××�

�

=

≤≤

1,,

..max

'

1

1
 (10)

The optimizing condition represents the fact that we want to pull
as few data items as possible and the constraints that the query
incoherency should be less than the user specified incoherency
bound. Thus, we need to satisfy a set of equations given by
Equation (9) while making as few xi as 0 as possible. If a data
item does not appear in a query we set that weight as 0. It should
be noted that if all xi’s are 1, then Equation (9) is violated for all q

∈ 'Q . We pull the data items whose xi is 0, and, by pulling we
remove their contribution to the query incoherency. Any {0,1}
integer programming problem can be mapped to the problem
depicted by Equation (10), where minimizing number of pulls
leads to optimization in the integer programming problem. Thus,
the problem depicted by Equation (10) is NP-hard [25]. In
general, there is no known approximate algorithm for such a
problem. Using an algorithm like branch and bound is too
inefficient for these real time decisions. Thus we have devised
heuristic algorithms to solve the problem.

In the rest of this section, we examine the algorithms for selecting
data items to refresh. We first consider the case of a single query,
being executed independently at a DA. Next we consider multi-
COMIQ case in which a DA needs to execute COMIQs with
overlapping data items.

3.2 Base Case: Single COMIQ
For optimizing the number of pulls, we need to pull data items
such that query incoherency is within the user specified bound.
From Equation (10), it is clear that for reducing the number of

pulls, we should be pulling data items having higher weight (q
iw)

or higher predicted incoherency (PCik) or both. We examine
several approaches to solve the problem of selective refresh.

First we treat each data item separately by dividing query
incoherency bound (Bq) among data items involved in that query.
If we divide the query incoherency bound such that any violation
of individual data incoherency bounds may lead to violation of the
query incoherency bound, we need to pull data items whenever
their estimated data incoherency crosses their individual
incoherency bounds. Such approaches have been used in literature
[6]. We devise one such approach, called data incoherency
algorithm, to compare with our query incoherency algorithms. In
this algorithm query incoherency bound is mapped to data
incoherency bounds based on the weights of various data items.
For the query given by Equation (2), incoherency bound of ith data
item is calculated as follows:

)1(

1

1

−×
×

−
=

�

�

=

=

q
q
i

q

n

j

q
j

n

j

q
i

q
j

q
i

nw

B

w

ww

B (11)

where nq is the number of data items in the query and q
iB is the

incoherency bound of the ith data item involved in query q. In this
approach a data item having more weight is assigned low
incoherency bound, thus, the data item is likely to be pulled more
often.

In the rest of this section, we use the query incoherency bound
directly to find data refresh intervals (without mapping query
incoherency bound to data incoherency bounds). We devise two
heuristic algorithms to solve the problem: positive-negative
algorithm and max algorithm, which we describe in following
subsections. Through performance results we show that this
approach, of not dividing query incoherency among individual
data item incoherencies, is more efficient compared to data
incoherency based approaches.

Although in this subsection we focus on a single COMIQ case,
our approach also applies to the multiple COMIQ cases where the
sets of data items involved in various queries are disjoint. Thus, in
such cases, we can treat each query independent of the others. The
case where data items of multiple queries intersect is discussed in
Section 3.3.

3.2.1 Positive−Negative Algorithm
The query incoherency, given by Equation (6), can be represented
as the absolute difference between weighted incoherency of the
data items having positive incoherency (PCik > 0) and that having
negative incoherency (PCik < 0).

Intuitively, it appears that if we pull data items from both sets they
may nullify the effects of each other with no improvement in
coherency. This observation underlies the design of the positive-
negative algorithm: To reduce query incoherency, it just pulls
either data items with positive incoherency or data items with
negative incoherency, the former in case the query incoherency is
positive, the latter otherwise.

Figure 3 gives the pseudo code for the algorithm. In this figure,
“incoherency” refers to query incoherency while PCik refers to the
predicted incoherency of the individual data items. In this
algorithm, we segregate the data items among ones estimated to
have a positive incoherency (PCik > 0) and another having
negative incoherency (PCik < 0). We pull a data item from the set
having higher total weighed incoherency. Further, from the
selected set we pull a data item having maximum absolute
weighted incoherency which is less than the estimated
incoherency of the query. If there is no such data item, we pull all
the data items of that set.

For example, consider a query with four data items (Di, i=1,2,3,4)
with an incoherency bound of 200. Let the estimated weighted

coherencies ik
q
i PCw × of data items at some time tk be 500, 75,

−200, and −150, respectively. The query incoherency is 225
which is greater than the incoherency bound, thus we need to pull
one or more data items. Since query incoherency is positive, we
should be pulling data items having positive weighted
incoherency. Thus, we need to pull data item D1 or D2 or both. As

per the algorithm, we will pull the data item D2. It can be seen that
if we pull D1, query incoherency will be minus 275, whose
absolute value is more that the incoherency bound and hence will
not help in handling the violation of the bound. So, we should
pull the data item whose incoherency is less than the query
incoherency.

3.2.2 Max Algorithm
In the max-algorithm we use a greedy approach of pulling the
data items which have the high absolute weighted incoherency.

Specifically, we calculate ik
q
i PCw × for all the data items

involved in the query. We get the data item with the maximum
absolute weighted incoherency. Then we pull all the data items
whose pulling will reduce incoherency by PULLRATIO multiplied
by max weighted incoherency, i.e., all the data items with absolute
weighted incoherency > |PULLRATIO × max weighted
incoherency| are pulled. This ensures that data items which are
changing the query result in a significant way are pulled. In the
example enumerated in Section 3.2.1, D1 has the maximum
absolute value of weighted incoherency of 500. For
PULLRATIO=0.8, we will be all the data items having absolute
weighted incoherency of 400 or more. Thus, we will be pulling
only D1.

It should be noted that while in positive-negative algorithm we
pull enough data items at each tick to maintain query incoherency
within the user specified incoherency bound; in max-algorithm we
just pull the data items with high incoherencies. We now compare
the performance of these approaches before moving to the multi-
COMIQ case.

3.2.3 Performance Comparison of Algorithms
For performance measurements, we use portfolio queries using 20
different stock items. A sequence of data values, corresponding to
each stock price was constructed through repeated polling of

http://finance.yahoo.com. Trace for each stock
consisted of 3000 values, so if a DA desired to track changes on
each tick it has to perform 3000 refreshes per data item. Table 1
shows the stocks used and their typical values in USD.

We constructed COMIQs with each query having between 2 to 8
stocks uniformly distributed. Weights, representing the number of
stocks held in a particular portfolio query, were assigned to stocks
uniformly distributing them between 4000 and 5000. As weights
of various data items in a query are not very dissimilar so deciding
on which data item to pull is non-trivial. Stocks involved in a
portfolio query were selected using Zipf distribution. We rank the
data items with index i=1,2,3,…,N. Number of queries in which ith

data item appears is made proportional to αi

1 . We choose

number of data items N as 20 and α as 0.9. For example, a
portfolio query with four stocks can be written as:

CBUKOracleMSFTIBM SSSS 4500400447804234 +++

Experiments were performed with various values of incoherency
bounds ranging from $1800 to $5400; for incoherency bound
$2400, the portfolio query was evaluated at DA such that the
difference between value of the query at DA and the actual value
of the query (assuming all the data items are available without any
delay) was atmost, $2400. These values of incoherency bounds
correspond to 0.1% to 0.3% of the average portfolio values. In all
these runs required fidelity was 98%. As mentioned in Section
1.3, we are using a feedback based mechanism to ensure that
delivered fidelity is more than the required fidelity. In Section 4,
we describe the mechanism in detail. We use number of pulls to
meet coherency and fidelity requirements as the cost criterion.

 Table 1. Some of the stock traces used for experiments

Figure 4 shows the number of refresh messages for three
algorithms described in this section with query incoherency
bounds varying between $2400 and $5400. For the max-algorithm
we set the PULLRATIO to 0.8. Max-algorithm works best among
these three algorithms from network and server overhead point of
view. In general, the case where query incoherency is divided
among data inconsistencies, we require more number of refreshes.
This can be explained by the observation that by treating various
data items separately we are ignoring interplay to data item values
in maintaining query coherency. Specifically, in the data
incoherency algorithm a data item is pulled assuming that all
other data items have also violated their incoherency bounds.
These lead to more than the required number of pulls. The max
algorithm performs better than positive-negative algorithm as it

Stock Date Max
Value

Min
Value

Avg
Value

ABC Jun 2 135.75 134.5 135.14
Cisco Jun 6 65.00 63.06 63.97
CBUK Jun 2 8.625 8.25 8.50
Dell Jun 1 43.75 42.87 43.43
Intel Jun 2 134.50 132.50 133.46
Microsoft Jun 8 69.62 68.07 69.04
Oracle Jun 7 79.37 76.62 78.57
UTSI Jun 1 22.25 21.00 21.73
Veritas Jun 8 137.0 133.50 134.85

Figure 3: Positive-negative algorithm for single
COMIQ case

pset = set of positive PCik for certain tk
nset = set of negative PCik for certain tk
psum = sum of all wi*PCik in pset
nsum = sum of all wi*|PCik| in nset
while(incoherency > Bq)

if(psum > nsum)
 if((p∈ pset)&(wp*PCpk < incoherency) &
 (p: wp*PCpk = max(wi*PCik , ∀i))
 pull data item p;

 incoherency −= wp*PCpk
 if there is no such data item,
 pull all data items from pset

else
 if((n∈nset)&(wn*PCnk< incoherency) &
 (n: wn*PCnk = min(wi*PCik , ∀i))
 pull data item n;

 incoherency += wn*PCnk
 if there is no such data item,
 pull all data items from nset

does not try to maintain query coherency at every time instance.
Although the positive-negative algorithm tries to maintain query
incoherency within bounds, it also tries to keep query incoherency
in the same direction, i.e., if query incoherency is positive then the
algorithm tries to keep it positive. Thus if query value is following
some trend (due to trend in data values), it is again likely to cross
the incoherency bound soon leading to further pulls.

Given the superior performance of the max algorithm we show
how to extend it to the multiple COMIQ case in the next section.

Figure 4: Comparison of algorithms for single COMIQ case

3.3 General Case: Multiple COMIQs
In the multiple COMIQs case we are considering the situation
where a data item is involved in multiple queries. We need to
make pulling decision considering all the data items involved in
all the queries being executed at a DA. We pull a data item more
often if it affects the coherency of a large number of queries: its
weight in various queries is high or its estimated incoherency is
high. We extended the heuristic of max-algorithm for this case by
aggregating the contribution of a data item to all the queries in
which that data item appears. Formally, overall weighted
incoherency of a data item di, across all queries, can be estimated

by the quantity ik
Qq

q
i PCw

i

×�
∈

)(, where queries in Qi refer to the

data item di. We find the data item having maximum of
aggregated absolute weighted incoherency. At every time tick, if
there is any inconsistent query, we pull the data items whose
weighted incoherency is greater than the PULLRATIO multiplied
by the maximum aggregated weighted incoherency, i.e.,

)|)(|(max|)(| ik
Qq

q
i

i
ik

Qq

q
i PCwPULLRATIOPCw

ii

×>× ��
∈∈

×

(12)

3.3.1 Performance of Multi-COMIQ Algorithm
We use 500 portfolio queries for measuring the performance of
the max-algorithm in the multi-COMIQ case. The queries were
generated as described in the Section 3.2.3. Figure 5 shows the
number of refresh messages required by the max-algorithm in the
multi-COMIQ case for varying client coherency and fidelity
requirements. The total number of pulls for all the data items is
shown in the figure. The required fidelity is varied between 90%

and 98%. The query incoherency bound is varied between $1800
and $5400. It shows that one has to pay more than proportional
cost for tighter incoherency bound and fidelity requirements.
Achieving higher fidelity, with the tighter coherency, results in
exponential increase in network overhead. For higher value of
incoherency bound number of pulls increase very slowly with the
fidelity desired, but for tighter incoherency bound number of pulls
is a strong function of the fidelity desired.

Figure 5: Tradeoff of incoherency bound, fidelity and number

of pulls

3.3.2 Comparison with an Ideal Push Algorithm
We compare our algorithm for multi-COMIQ case with an ideal
push case. In the ideal (hypothetical) push algorithm, a single
source is assumed to have all the data item values without any
extra cost. The source having all the data items checks whether all
the queries satisfy user coherency requirements. For any query q,
if incoherency bound is violated, the source pushes data items
referred to by the query in question, any changed data pushed for
one query is used for the other queries at a DA. This gives the
minimum number of messages required to maintain all the query
results within the user specified incoherency bounds. Figure 6
plots the ratio of the number of messages needed by our algorithm
and that by the push algorithm. We consider various incoherency
bounds between $1800 and $5400. Desired fidelity of 99% is
considered for our pull based algorithm as it is almost same as
100% fidelity ensured by the push based algorithm. The figure
shows that for very stringent incoherency requirement of $1800,
which is less than 0.1% of the average total query result, the
number of pulls required by our algorithm is around five times
the minimum number of messages required by the idealized push
algorithm. As incoherency bound increases to $5400, the ratio
drops to 2.5. Another point to note by comparing Figures 5 and 6
is that while the number of pull messages increases fast with
tighter coherency bounds, ratio of pull messages to push messages
increases more gradually: As we decrease the incoherency bound
from $5400 to $2400, the number of pull messages increases by a
factor of 5.3 but ratio of pull messages to push messages increases
by only 1.88. It happens because tighter incoherency bound leads
to more than proportional increase not only in the pull based
algorithm but also in the idealized push algorithm.

All these performance results showed various features of our
algorithm. It showed that even if the desired fidelity is close to
100%, DA need not pull all the data values. For 98% fidelity and
reasonably stringent coherency requirement (0.13% of average
query value corresponding to incoherency bound of $3000 in
Figure 5), DA pulled around 400 values per data item which is an
order of magnitude smaller than 3000 potential update instances.
Another important feature is that there is an exponential drop in
the number of refreshes with decrease in either fidelity desired or
the incoherency bound.

4. ACHIEVING FIDELITY THROUGH
FEEDBACK
Now we present our feedback mechanism to ensure that client is
delivered a particular fidelity. We monitor the fidelity delivered
thus far and adjust the model to deliver the desired fidelity. If the

user specified incoherency bound is qB , then the algorithms
described in the previous sections are fed with the incoherency

bound of sfBq × , where sf (safety factor) is the parameter to
control the delivered fidelity. During the query execution, value of
sf is a function of fidelity required to be delivered to the client and
fidelity delivered thus far. A value of sf less than 1 indicates that
the incoherency bound that the pull algorithm should ensure is
smaller than that specified by the user. The idea is that even if
some of the future predictions lead to larger incoherency (due to
the probabilistic nature of model or external factors), because a
tighter incoherency bound is demanded, the system is more likely

to deliver qB with the required fidelity. Clearly, different sf values
will result in different fidelity values for a client query. In Section
4.1 we consider the effects of a particular value of sf on the
delivered fidelity whereas in Section 4.2 we present an adaptive
approach which continuously adapts sf to deliver the required
fidelity fq.

4.1 Effects of Fixed Safety Factor Values
We measure the effect of the safety factor on delivered fidelity
using simulation experiments. For these experiments, we use the
portfolio queries as described in Section 3.2.3. Figure 7 shows

the fidelity achieved as a function of sf for different incoherency
bounds. Low values of sf give high fidelity. For example, at
sf=1.25, for incoherency bound of 3000, we achieve 93% fidelity
but for sf=1 fidelity increases to 96%. Fidelity decreases slowly

with safety factor for large incoherency bounds as qBsf × gets
rarely violated and time to pull is largely governed by TTRMAX.
As we pull at least once every TTRMAX, the fidelity will not
decrease after a certain value. But in Figure 7, we are more
interested in the top-left part of curve as client’s desired fidelity is
more likely to be above 95%. We will use that part of the curve to
adjust sf based on client’s desired fidelity.

Note that sf = 1 corresponds to the case of not employing any
safety factor, that is, just using the Markovian Data model based
tracking. Figure 7 shows that although we can achieve a fidelity
more than 92% just by the data model, for achieving the client
specified fidelity we need to adapt sf, that is, adjust the
incoherency bound that the system should attempt to maintain.

Figure 7: Fidelity with different safety factors

4.2 Adaptive Safety Factor
From the previous section it is clear that relationship between the
safety factor and the delivered fidelity depends on various other
factors like incoherency bound and data dynamics. Thus it is very
difficult to predict a fixed sf value to deliver a given fidelity. In
practical settings, in order to deliver a particular fidelity, sf needs
to be dynamically modified depending on the fidelity delivered
thus far and the dynamics of the data. We increase sf when the
delivered fidelity is greater than the desired fidelity and decrease
it when the reverse is the case. Let us denote the difference
between actual delivered fidelity and desired fidelity by FD
(fidelity difference). From Figure 7, it can be seen that in the areas
of interest (high fidelity regions on the top left), to attain a given
fidelity, the safety factor needs to be an exponential function of
FD. Thus:

FDesfsf
FD

××=
=

γ
fidelity Desired -fidelity Delivered

 (13)

Thus we decrease sf if FD is negative (i.e., fidelity delivered so far
is less than the desired fidelity), which leads to the tighter
incoherency bound which, in turn, brings delivered fidelity closer

Figure 6: Comparison of multi-COMIQ pull
algorithm with idealized push algorithm

to the desired fidelity. The sf adjustment is done at regular
intervals of 200 ticks. For fidelity calculation (Equations (3) and
(4)) we need the actual values of data items at all the ticks. Since
we have the actual data values only at the data pull instances, we
do linear interpolation of data values for fidelity calculations. In
particular, after every pull we assume the intermediate data values
as linear interpolation of two values. We use those values along
with the known value of data items (last pulled value) at DA to
calculate fidelity using Equations (3) and (4). In Section 5, we
show that estimated fidelity, and sf, is almost the same as what it
would have been if we had taken the updates that occur at the
source between two pulls for its calculation.

Gamma (γ) is the adjustment factor which decides the
effectiveness of the sf adjustments in delivering the desired
fidelity. After initialization of γ (<1), its value is learned over
time as follows. If sf adjustment is not effective even after
adjustment in some consecutive windows, i.e. actual fidelity is not
reaching the desired fidelity, the value of γ is changed. In
particular, if FD is positive (or negative) for consecutive time
windows we increase the value of γ, otherwise we decrease it.
This increase/decrease is done in a multiplicative manner using
learning_rate (<1), i.e.,

�
�
�

��
�

� +×
=

Otherwise
_

 windowseconsecutiv two
in ve-or ve is _

ratelearning

FDratelearning

γ
γ

γ (14)

This adjustment is done to ensure that the FD approaches zero
within a few adjustments. For all the performance results,
TTRMAX is 60, smoothing constant (L) is 0.8, initial value of γ is
set to 0.1 and learning_rate is 0.98.

Figure 8: Fidelity using adaptive scheme

(Incoherency bound = 2400, desired fidelity = 98%)
To see the effects of safety factor adjustments on delivered
fidelity, we plot loss in fidelity with time in Figure 8. The figure
shows two curves, one for the loss in fidelity (till that time) and
another for the loss in the fidelity in the recent time window of
200 ticks. The user desired fidelity for these experiments is 98%
and query incoherency bound is $2400. As can be seen from the
curve, the adaptive scheme can maintain the delivered fidelity
very close to the desired one. For example, the maximum
deviation from the desired fidelity is less than 1%. Furthermore,
when fidelity drops, the algorithm takes corrective measures and
recovers very fast by pulling data more often to deliver the
required fidelity.

5. EFFECTS OF MISSING UPDATES
In this section we measure the effects of missing intermediate
updates. In all the results presented before this section, we used
the last pulled data values. As explained in Section 2, we train
DTMC using pulled values and duration between consecutive
pulls. Similarly, we estimate fidelity using linearly interpolated
values for the time ticks between the pulls. Since a data item may
have been updated a number of times between consecutive pulls,
we want to see the effect on data model and fidelity if we had all
the data updates. Intuitively, it is expected that data model will be
more accurate if we have all the updates. Similarly, we can get the
delivered fidelity accurately if we have all the intermediate
updates. For the purpose of getting updates between consecutive
pulls, we assume that data source capability can be enhanced so
that it provides all the missing data updates whenever a DA pulls
a data item. These intermediate data values can be used to train
the Markov model described in Section 2 as well as to calculate
actual fidelity and safety factor as described in Section 4. Figure
9 shows that, with time, fidelity with intermediate values is almost
same as that without those values for two incoherency bounds of
$2400 and $5400. For the incoherency bound of $2400 the two
curves follow each other very closely except in the beginning
when the fidelity is overestimated. For the incoherency bound of
$5400 the estimated fidelity is slightly more than the fidelity if we
had all the missed updates. For large incoherency bounds, data
items are pulled infrequently which may lead to incorrect
estimation. But we pull a data item at least once every TTRMAX
which causes the estimated values to follow the actual values. In
both the cases we are close to the fidelity requirement of 98% and
fidelity difference between the two curves is at most 0.5%. Thus,
our safety factor values based on estimated fidelity values remain
almost same even if we consider intermediate values. In Figure 10
we show the effect of intermediate values on the number of pulls
required to maintain fidelity of 98% for the various incoherency
bounds. There is not much difference between numbers of pulls
between these two cases. In fact, the number of pulls required,
when we consider all values, is higher than the one when we do
not consider them. This can be explained as the algorithm which
does not consider intermediate values does not react to every
change; it uses overall data trends to predict the data values.

Figure 9 : Effect of missed updates on Fidelity

calculations

Figure 10: Effect of missed updates on number
of messages

6. RELATED WORK
Consistency and coherency maintenance for distributed data is a
well studied subject. The problem of coherency maintenance
between a data source and cached copies of the data was first
studied in [7]. In [11], strong coherency is maintained between
data server and its replica using a data item lease and a volume
lease. Large duration data leases ensured that replicas need not
renew the leases very often for various data items and small
duration volume leases ensured that server need not wait for long
for updates in case of unreachable replicas. Such studies aimed
for transactional coherency between data at the server and that at
replica. We assume that in various web based applications
transactional coherency is not required and thus what we aimed
for was bounded incoherency.

Various mechanisms for maintaining coherency of fast changing
documents are proposed in the literature. These include data
broadcast, speculative data dissemination, efficient multicast,
push caching, etc [8, 9]. [10] compared hierarchical caching with
multicasting to conclude that unless documents are changing very
fast, caching gives lower latency, uses less bandwidth and reduces
load on the origin server. However none of these efforts were
explicitly targeted at refreshing continuously changing data under
bounded incoherency requirements.

More recently, web caching has led to various studies towards
maintaining the cache up-to-date in the loose coherency sense.
These studies can be categorized as client based [12], server based
[13] and mixed [14]. These efforts typically assume that
cacheable data is modified at a very large time scale, and thus, are
less effective at maintaining coherency of rapidly changing data.
In [15], the dynamic content is explicitly invalidated by the
content server using data dependency graph and push based
invalidations. [16] considers various applications to show how
availability and performance of applications can be increased by
adjusting coherency properties of data items. [17] shows how data
replica and data server can co-operate to deliver desired temporal
incoherency efficiently. In [5, 21], authors discuss Trapp system
to answer database queries approximately to have a tradeoff
between fast imprecise data from local replica and slow precise

data from remote server. They use value-initiated push as well as
query-initiated pull to maintain data coherency. We only used
pulls to refresh data items whenever expected incoherency of
queries exceeded user specified bounds.

The Tapestry system [18] system considered content-based
filtering over an append only database of email and bulletin board
messages. [19] discusses a scalable system for continuous queries
over web databases. The paper considers a large number of XML-
QL queries and evaluating them efficiently. [20] presents an
architecture for internet scale event driven information system
involving continuous queries. In that architecture, information is
delivered using push based mechanism.

 [6] considers answering aggregation queries over dynamic data.
In their approach servers push the data items to DAs (called
stream processors). For reducing the communication cost, the
authors establish filters at data sources. The width of data filters
for a particular data item is a function of coherency requirement of
various queries involving that data item, number of filtered
updates and weights of data items. In their approach, data items
are pushed assuming the worst case (even if one data item crosses
its incoherency bound, the query needs to be reevaluated), thus for
reducing number of pushes they increase the incoherency bound
of the data item which is pushed a large number of times (i.e.,
changing very fast). In contrast to their approach, in our scheme
the existing data servers and the (pull-based) HTTP protocol is
utilized by the DA, leading to greater scalability and immediate
applicability. We pull a data item if it has a large estimated
incoherency. This can be due to large weights for the data item in
one or more queries, large amount of changes in the data item, or
incorrect prediction. We feel that in all these three cases we
should pull the data item. In the first two cases, changes to the
data item directly affect the coherency of queries so query
incoherency bound will be violated sooner or later. When the
third case occurs, it indicates that our model is not predicting data
values correctly thus we need to pull more often to make the
model more accurate. Overall, in our work, data values are
estimated based on past behavior and data items are pulled based
on average case. Thus, in contrast to [6], we pull a data item more
often if it is changing faster. Finally, by focusing on query
incoherency, rather than individual data incoherency, our
algorithm only pulls updates required to keep query incoherency
within bound.

7. CONCLUSIONS
In this paper we considered the problem of answering queries for
online decision making at web data aggregators. We showed that
such queries can be represented as continuous queries with
bounded incoherency and fidelity requirements. Through a
probabilistic data model and feedback based mechanism we
showed that our approach can be efficiently used to deliver query
results with client’s coherency and fidelity requirements. An
important aspect of our approach is the use of existing web
infrastructure for answering these queries which leads to minimal
architectural requirements and more scalability. Another feature is
the presence of tunable parameters to tradeoff desired fidelity and
refresh overheads. We presented algorithms to selectively refresh
data items so that message overheads can be minimized. Our
results demonstrated that it is not necessary to obtain all the
updates at a DA even if desired fidelity is 98% for a tight

incoherency bound. Through this solution, web data aggregators
can reduce their resource requirements and pass on the benefit to
the clients. Our solution is specifically suitable for the queries
involving aggregation of a number of dynamic data items where
result inaccuracy is tolerable and data values follow a pattern. If
the client needs to perform some action based on very small
change in a data value then push based mechanisms [21] are more
suitable.

Although we presented our results for a weighted SUM based
aggregation queries, it is important to note that the technique
could be used for many general polynomial queries. In stock
portfolio tracking, user may be holding stocks listed in various
stock exchanges in different currencies and user may want the
portfolio value in a particular currency. In this case, as the stock
prices as well as the currency exchange rates are changing with
time, a linear weighted aggregation is not sufficient. But we can
still apply the principles enumerated in this paper. We need to
track the dynamics of not only the stock prices but also of
currency conversion rates. Algorithm to selectively refresh these
data items is part of our future work.

8. REFERENCES
[1] Yodlee.com launches a powerful, new consumer service to

help you take control of your life online. http://corporate.
yodlee.com/company/press/1999/09_28_launch.html.

[2] Push publishing technologies.
http://www.storm.com/places/t4a.html, July 2000.

[3] US Open grand slam tennis, www.usopen.org

[4] P. Wilmott, S. Howison and J. Dewyne. The Mathematics of
Financial Derivatives. New York, Cambridge University
Press, 1995.

[5] C. Olston, B.T. Loo, and J. Widom. Adaptive Precision
Setting for Cached Approximate Values. In Proceedings of
ACM International Conference on Management of Data
(SIGMOD), 2001.

[6] C. Olston, J. Jiang, and J. Widom. Adaptive Filter for
Continuous Queries over Distributed Data Streams. In
Proceedings of ACM International Conference on
Management of Data (SIGMOD), 2003.

[7] R. Alonso, D. Barbara and H. Garcia-Molina. Data Caching
Issues in an Information Retrieval System. ACM
Transactions on Database Systems, 1990.

[8] A. Bestavros. Speculative Data Dissemination and Service to
Reduce Server Load, Network Traffic and Service Time in
Distributed Information System. International Conference on
Distributed Computing Systems, 1999.

[9] P. Rodriguez and E. Biersack. Continuous Multicast Push of
Web Documents over the Internet. IEEE Network Magazine,
March-April 1998.

[10] P. Rodriguez, K. Ross and E. Biersack. Improving the
WWW: Caching or Multicast? Computer Networks and
ISDN Systems, 1998.

[11] Jian Yin, Lornzo Alvisi, Michael Dahlin, and Calvin Lin.
Volume Leases for Consistency in Large-Scale Systems.
IEEE Transactions on Knowledge and Data Engineering,
1999.

[12] Adam Dingle and Tomáš Pártl. Web cache coherence.
Proceedings of the Fifth International World Wide Web
Conference on Computer Networks and ISDN Systems. May
1996.

[13] V. Dhuvvuri, P. Shenoy and R. Tewari. Adaptive Leases: A
Strong Consistency Mechanism for the World Wide Web.
Proceedings of Infocom, March 2000.

[14] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham,
and P. Shenoy. Adaptive Push-Pull: Dissemination of
Dynamic Web Data. 10th International World Wide Web
Conference, Hong Kong, May 2001.

[15] A. Iyenger and J. Challenger. Improving Web Server
Performance by Caching Dynamic Data. Proceedings of the
USENIX Symposium on Internet Technologies and Systems
(USEITS), 1997.

[16] H. Yu and A. Vahdat. Design and Evaluation of a
Continuous Consistency Model for Replicated Services.
Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2000.

[17] Hongfei Guo, Per-Ake Larson, Raghu Ramakrishnan and
Jonathan Goldstein. Relaxed Currency and Consistency:
How to Say “Good Enough” in SQL. In Proceedings of
ACM International Conference on Management of Data
(SIGMOD), 2004.

[18] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki,
Continuous Queries over Append-only Databases. In
Proceedings of ACM International Conference on
Management of Data (SIGMOD), 1992.

[19] J. Chen, D. Dewitt, F. Tian and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases. In
Proceedings of ACM International Conference on
Management of Data (SIGMOD), 2000.

[20] L. Liu, C. Pu, and W. Tang. Continual Queries for Internet
Scale Event-Driven Information Delivery. IEEE Transactions
on Knowledge and Data Engineering, 1999.

[21] C. Olston and J. Widom. Offering a Precision Performance
Tradeoff for Aggregation Queries over Replicated Data. In
Proc. of Very Large Databases (VLDB) Conference, 2000.

[22] J. Cho and H. Garcia-Molina. Cost Aware WWW Proxy
Caching Algorithms. Proceedings of the USENIX
Symposium on Internet Technologies and Systems, 1997.

[23] J. Gwertzman and M. Seltzer. The Case for Geographical
Push Caching. Proceedings of 5th Annual Workshop on Hot
Operating Systems, 1995.

[24] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin
Rosenstein, and Rohit Varma. Query processing,
Approximation, and Resource Management in Data Stream
Management System. Proceedings of the Conference on
Innovative Data Systems Research (CIDR), 2003.

[25] R. Srinivasan, C. Liang and K. Ramamritham. Maintaining
Temporal Coherency of Virtual Warehouses. The 19th IEEE
Real Time Systems Symposium (RTSS), Dec.1998.

[26] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, USA.

