
Improving Branch-And-Price Algorithms
For Solving One Dimensional Cutting Stock

Problem

M. Tech. Dissertation

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Soumitra Pal

Roll No: 05305015

under the guidance of

Prof. A. G. Ranade

Computer Science and Engineering

IIT Bombay

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Mumbai





Acknowledgements

I would like thank my guide Prof. Abhiram Ranade for his guidance throughout this

work. Without his support this work would not have been done.

I would also like to thank my parents, brother and sisters for their support all the time.

I would also like to acknowledge the generous support provided by my department and

my institute.

Soumitra Pal

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

iii





Abstract

Branch-and-price is a well established technique for solving large scale integer program-

ming problems. This method combines the standard branch-and-bound framework of

solving integer programming problems with Column Generation. In each node of the

branch-and-bound tree, the bound is calculated by solving the LP relaxation. The LP

relaxation is solved using Column Generation.

In this report, we discuss our project on improving the performance of branch-and-price

based algorithms for solving the industrial one-dimensional cutting stock problem. In

the early part our project, we studied several branch-and-price based algorithms that

are available in the literature for solving the cutting stock problem. We write down our

findings from the study in this report. In the later part of the project, we worked on a

few ideas to improve the performance of the algorithms. We publish the results in the

report. We conclude the report by giving some directions for future works.

v





Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 One Dimensional Cutting Stock Problem . . . . . . . . . . . . . . . . . . . 2

1.2 Gilmore-Gomory Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Column Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Branch-and-Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 A Generic Branch-and-Price Algorithm . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.2 LP Solution Using Column Generation . . . . . . . . . . . . . . . . 8

1.5.3 Rounding Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.4 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.5 Node Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Branch-Cut-Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Conjectured Property of Gilmore-Gomory Formulation . . . . . . . . . . . 11

1.8 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Survey 13

2.1 Branching Constraints and Modified Subproblem . . . . . . . . . . . . . . 14

vii



2.1.1 Conventional Branching on a Single Column . . . . . . . . . . . . . 14

2.1.2 Branching on a Set of Binary Columns . . . . . . . . . . . . . . . . 15

2.1.3 Branching on a Set of Columns With Item Bounds . . . . . . . . . 18

2.1.4 Branching on a Set of Columns with Item Lower Bounds . . . . . . 24

2.2 Solution to Modified Subproblem . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Node Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Heuristic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Common Rounding Heuristics . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 A Sequential Heuristic Approach . . . . . . . . . . . . . . . . . . . 31

2.5 Lower Bounds for Early Termination of Column Generation . . . . . . . . 32

2.6 Cutting Plane Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Gomory Fractional and Mixed-Integer Cuts . . . . . . . . . . . . . 34

2.6.2 Cutting Planes without Branching . . . . . . . . . . . . . . . . . . 35

2.6.3 Cutting Planes with Branching . . . . . . . . . . . . . . . . . . . . 35

2.6.4 Modification to Subproblem . . . . . . . . . . . . . . . . . . . . . . 36

2.6.5 Solution to Subproblem . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.6 Concluding Notes on the Cutting Plane Algorithm . . . . . . . . . 41

2.7 Conclusions of Literature Survey . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Our Contribution 45

3.1 COIN-OR Based Implementation . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Dynamic Programming Solution to Subproblem . . . . . . . . . . . . . . . 45

3.3 Accelerating Column Generation . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 A Quick Heuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Experimental Results 53

4.1 GoodPrice Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii



4.1.1 Results on ‘Duplet’ Set . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Results on ‘Hard28’ Set . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Quick Heuristic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusions and Future Works 61

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Short Term Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Medium Term Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.3 Long Term Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix





List of Tables

1.1 An instance of the 1D cutting stock problem . . . . . . . . . . . . . . . . . 2

1.2 All possible valid cutting patterns for the example 1D CSP problem . . . . 3

4.1 Experimental result for GoodPrice in solving the root node of ‘duplet’ . . . 55

4.2 Experimental result for GoodPrice in complete solution of ‘duplet’ . . . . . 56

4.3 Experimental result for GoodPrice in solving root node of ‘hard28’ . . . . . 57

4.4 Experimental result for quick heuristic . . . . . . . . . . . . . . . . . . . . 59

xi





Chapter 1

Introduction

Branch-and-price is a well established technique for solving large scale integer program-

ming problems. This method, combines the standard branch-and-bound framework of

solving integer programming problems with ‘Column Generation’. In each node of the

branch-and-bound tree, the bound is calculated by solving the LP relaxation. The LP

relaxation is solved using Column Generation. In this report, we discuss our work on

improving the performance of the branch-and-price based algorithms for solving the in-

dustrial one-dimensional cutting stock problem.

In this chapter, we introduce the cutting stock problem and give an overview of how

the problem is solved using branch-and-price. In section 1.1, we describe the problem.

We give an integer programming formulation for solving the problem in section 1.2. As

it is generally done, the first attempt should be to solve the problem by solving its LP

relaxation. The main issue in solving the LP relaxation is the huge number of columns

in the formulation. In section 1.3, we discuss how this issue is taken care of using Col-

umn Generation. Converting the LP solution to an integer solution is another difficult

challenge. This is solved by using branch-and-price method described in section 1.4. We

give the outline of a generic branch-and-price algorithm and its subtasks in section 1.5.

Branch-and-price can be combined with the cutting plane approach of solving integer pro-

gramming problems. This is described briefly in section 1.6. By the end of that section,

the reader may have a fair introduction to the problem. Before concluding the chapter

we state a conjectured property of the Gilmore-Gomory formulation in section 1.7.

We conclude the chapter by providing an outline of the rest of the chapters in section 1.8.

In subsection 1.8.1, we give an overview of the literature survey that we conducted in the

initial phases of the project. We give a brief discussion of our contribution in subsection

1.8.2.

1



1. Introduction 2

1.1 One Dimensional Cutting Stock Problem

The cutting stock problem arises from many physical applications in industry. For ex-

ample, in a paper mill, there are a number of rolls of paper of fixed width (these rolls

are called stocks), yet different manufacturers want different numbers of rolls of various

smaller widths (these rolls are called items). How should the rolls be cut so that the least

amount of left-overs are wasted? Or rather, least number of rolls are cut? This turns

out to be an optimization problem, or more specifically, an integer linear programming

problem. The problem can be formally stated as:

• Input:

– Stock width, W

– Set of item widths, {w1, w2, . . . , wm}

– Set of demands, {b1, b2, . . . , bm}

• Output:

– Minimum number of stocks, z, required to satisfy the demands

– The cutting patterns, {A1, A2, . . . , Az}, such that each patternAj = (a1j, a2j, . . . , amj)

fits in a stock, i.e.
∑m

i=1 aijwi ≤ W for all j = 1, . . . , z. aij denotes the number

of instances of item i that are obtained if the stock is cut in pattern j.

There are different well-known variants of the cutting stock problem, with different width

stocks, stocks cut in two dimension etc. However, we consider only the stated form of the

problem.

Example Let us consider an instance of the problem. The stocks have width W = 10

inches. There are orders for m = 4 different items as given in Table 1.1.

Table 1.1: An instance of the 1D cutting stock problem

i Width of items wi (inches) Quantity ordered bi

1 3 9

2 5 79

3 6 90

4 9 27



3 1.2 Gilmore-Gomory Formulation

1.2 Gilmore-Gomory Formulation

The cutting stock problem is commonly solved using the following formulation introduced

by Gilmore and Gomory [1961, 1963]. The possible valid cutting patterns are enumer-

ated beforehand. The patterns are described by the vector (a1j, · · · , aij, · · · , amj) where

element aij represents the number of instances of item i obtained in cutting pattern j.

Let xj be a decision variable that designates the number of rolls to be cut according to

cutting pattern j.

min z =
∑
j∈J

xj (1.1)

s.t.
∑
j∈J

aijxj ≥ bi, i = 1, 2, · · ·m (1.2)

xj integer and ≥ 0, ∀j ∈ J (1.3)

where J is the set of valid cutting patterns. For the given example, the valid cutting

patterns are shown in Table 1.2

Table 1.2: All possible valid cutting patterns for the example 1D CSP problem

j Validity a1j a2j a3j a4j

1 10 ≥ 9 1 0 0 0

2 10 ≥ 6 0 1 0 0

3 10 ≥ 6 + 3 0 1 0 1

4 10 ≥ 5 0 0 1 0

5 10 ≥ 5 + 5 0 0 2 0

6 10 ≥ 5 + 3 0 0 1 1

7 10 ≥ 3 0 0 0 1

8 10 ≥ 3 + 3 0 0 0 2

9 10 ≥ 3 + 3 + 3 0 0 0 3

As an initial attempt, the formulation is solved using the LP relaxation. For the given

example, optimal LP solution, z = 156.7, corresponds to x∗1 = 27, x∗3 = 90, x∗5 = 39.5.

This result is not useful because cutting a pattern fractionally does not make sense.

However, solving the LP relaxation is important. Later, in section 1.5, we will see that

we need to solve the LP relaxation in each node of the branch-and-bound tree to obtain

the integer solution.



1. Introduction 4

1.3 Column Generation

Solving the LP relaxation is also not easy. The difficulty originates due to the huge

number of valid patterns (and hence huge number of variables) involved in the instances

commonly encountered in the industry. For example, if the stock rolls are 200 in. wide

and if the items are ordered in 40 different lengths ranging from 20 in. to 80 in., then the

number of different patterns may easily exceed 10 or even 100 million. In that case, the

solution may not be tractable.

An ingenious way of getting around this difficulty was suggested by Gilmore and Gomory

[1961, 1963]. The trick is to work with only a few patterns at a time and to generate new

patterns only when they are really needed. The rationale is that, in the final solution, most

of the variables would be zero anyway. This process is called delayed column generation.

Here, we give a brief description of the process.

We first see how the pricing step in the revised simplex method works. In this step,

one non-basic variable replaces one basic variable so that the value of the cost function

improves. Let us consider the following LP,

ZLP = min cTx s.t. Ax = b, x ∈ Rn
+.

and its dual

WLP = max bTπ s.t. ATπ ≥ c, π ∈ Rm.

We assume that rank(A) = m ≤ n, so that all the redundant equations have been removed

from the LP. Let A = (a∗1, a∗2, · · · , a∗n) where a∗j is the jth column of A. Since rank(A)

= m, there exists an m ×m nonsingular submatrix AB = (aB1 , aB2 , · · · , aBm). Let J =

{1, 2, · · · , n}, B = {B1, B2, · · · , Bm}, and N = J \B. Now permute the columns of A so

that A = (AB, AN). We can write Ax = b as ABxB + ANxN = b, where x = (xB, xN).

Then a solution to Ax = b is given by xB = A−1
B b and xN = 0. If we move from one

solution x to another x′, reduction in cost is

cTx′ − cTx = cTBx
′
B + cTNx

′
N − cTBxB − cTNxN

= cTBx
′
B + cTNx

′
N − cTBA−1

B b replacing values of xB and xN

= cTB(A−1
B b− A−1

B ANx
′
N) + cTNx

′
N − cTBA−1

B b x′ is also a solution of Ax = b

= (cTN − cTBA−1
B AN)x′N

We can see that, as xN increases, the cost function goes up or down depending on the

sign of the reduced cost vector c̄ = (cTN − cTBA−1
B AN)T in parentheses. In each iteration of

the simplex method, we look for a non-basic variable corresponding to which the reduced

cost component is negative and bring it into the basis. That is, given the dual vector

π = (cTBA
−1
B )T (because it feasible to the dual), we need to find the cost-improving non-



5 1.3 Column Generation

basic variable. One way to find this out is to calculate the minimum of all components of

the reduced cost vector and take it if it is negative. Thus we need to find

arg min{c̄j = cj − πTa∗j | j ∈ N} (1.4)

If the columns in AB are also considered in calculating reduced cost vector, corresponding

components in the reduced cost becomes 0. Thus, inclusion of the basic columns does not

change the decision. The equation (1.4) can be re-written as

arg min{c̄j = cj − πTa∗j | j ∈ J} (1.5)

An explicit search of j from J may be computationally impossible when |J | is huge.

Gilmore and Gomory showed that the searching j from J explicitly is not necessary. If we

look carefully, it is not j that we are interested. Rather, we are interested in the column

a∗j that can replace one column of the basic matrix AB. In practical applications, these

columns often represent combinatorial objects such as paths, patterns, sets, permutations.

They follow some embedded constrains i.e. a∗j ∈ A, where A represents the constrained

set. For example, in the cutting stock problem with Gilmore-Gomory formulation, each

column represents a cutting pattern, which must satisfy the knapsack constraint - sum

of widths of items in a particular cutting pattern must not exceed the width of the stock

rolls.

Thus, in practice, one works with a reasonably small subset J
′ ⊂ J of columns. The

problem with this smaller set of columns is called restricted master problem (RMP).

Assuming that we have a feasible solution, let x̄ and π̄ be primal and dual optimal

solutions of the RMP, respectively. When columns a∗j, j ∈ J , are given as elements

of a set A and the cost coefficient cj can be computed from a∗j, cj = c(a∗j), then the

subproblem or oracle

c̄∗ = min{c(a)− π̄Ta | a ∈ A} (1.6)

gives answer to the pricing problem. For the cutting stock problem, cj = 1,∀j ∈ J and

the set A is given by the constraint

m∑
i=1

aijwi ≤ W, ∀j ∈ J (1.7)

Thus, for the cutting stock problem, the subproblem is

max
m∑

i=1

π̄iai s.t.
m∑

i=1

aiwi ≤ W, ai integer and ≥ 0 (1.8)

The new column is added to the RMP and the process is continued. The process stops



1. Introduction 6

when no more new column with negative reduced cost can be found. That implies, the

optimum is reached.

This technique of starting with a basic set of columns and generating more columns as and

when necessary is known as Delayed Column Generation or simply Column Generation.

1.4 Branch-and-Price

The values of xjs (we say x∗j) may not be all integer in the optimal solution of the LP

relaxation. In that case, we can round each x∗j down to the nearest integer and obtain a

solution close to actual integer solution. The residual demands of items which are not met

due to rounding down can be found by brute-force. In our example CSP (see Table 1.1),

rounding each x∗j down to nearest integer gives value of z = 157 which fortunately matches

with the optimal integer solution. There is no guarantee that this process will always give

an optimal integer solution. If the items are ordered in small enough quantities, then the

patterns used in the optimal integer valued solution may be quite different from those

used originally in the optimal fractional valued solutions.

However, this difficulty is solved by using a method commonly known as branch-and-

price. Here, the trick is to combine the delayed column generation with the standard

branch-and-bound algorithm for solving integer programs.

The idea of a branch-and-bound algorithm is as follows. If the LP solution of the problem

is not integral, then split the solution space into multiple subspaces so that the frac-

tional solution is eliminated from all the subspaces, recursively solve the problem on the

subspaces and take the best out of them. Moreover, if there is an ‘indication’ that the

problem on a subspace can never be better than the best solution found so far, then skip

recursing on that subspace. The recursion takes the form of a tree. This tree is known as

branch-and-bound tree.

In case of a minimization problem, the ‘indication’ can be obtained from the LP relaxation

of the problem. The LP solution acts as a global lower bound on the integer solution on

the current subspace in consideration. Thus, if the global lower bound is greater than the

best integer solution found so far, we can safely discard current subspace.

1.5 A Generic Branch-and-Price Algorithm

Here, we give the outline of a generic branch-and-price algorithm for the cutting stock

problem. Actual implementations differ in the details of the individual steps of this generic

algorithm.

1. Solve the problem with a heuristic solution. The incumbent is set with this solution.



7 1.5 A Generic Branch-and-Price Algorithm

The incumbent represents the best solution found so far. Let this solution be the

set of columns in the RMP.

2. Form a branch and bound tree with a single node in it representing the entire solution

space. Mark this node undiscovered and unexamined. A node is ‘discovered’ means

its lower bound is already calculated. The node is ‘examined’ only if it is processed

completely.

3. Choose an unexamined node in the branch and bound tree. If no examined node

exists go to 6. If the node is discovered, go to 5, else go to 4.

4. (Node is undiscovered)

(a) Get a lower bound LB on the solution space represented by the node. It is

done by solving the LP relaxation using column generation.

(b) Find a feasible integer solution X for the current node. If X is less than

incumbent, let incumbent = X. It can be noted that if X = LB, it is the

optimal integer solution for the subtree under the current node. However,

this may not be the final integer solution because there can be better integer

solutions on other branches not under the current subtree. Hence, mark the

node only as discovered. Go to step 3.

5. (Node is discovered)

(a) Mark this node examined.

(b) If the lower bound value LB at this node is ≥ incumbent, there is no need to

explore this subtree and hence go to step 3.

(c) Otherwise, divide the solution space at the node into two sets such that the

current fractional solution is eliminated from both, create two nodes for the

two solution subspaces, add them to the branch and bound tree, and mark

both undiscovered and unexamined. This step is known as branching. Go to

step 3.

6. Stop, incumbent gives the optimal solution value.

This is a very rough outline of a branch-and-price algorithm. We discuss the subtasks in

the following subsections. However, the algorithms available in literature differ in detailed

implementation of the subtasks. We discuss about them in chapter 2.

1.5.1 Initialization

The steps 1 and 2 are the initialization steps. At each branch-and-bound node, an initial

feasible LP solution is required to start up the column generation procedure. The step 1

sets up the feasible solution for the root node.



1. Introduction 8

One simple solution is to start the column generation procedure using an “unit matrix”,

i.e., a matrix made of one column for each item with a single non-zero entry, ai = dW/wie.
This initial solution, however is generally not good in terms of number of master iterations

and columns generated. So, one uses better heuristic solutions such as well know Fast Fit

Decreasing (FFD), Best Fit Decreasing (BFD) etc for the Bin Packing problem. It can

be noted that a bin packing problem is an instance of the cutting stock problem where

the items are ordered in small quantities.

1.5.2 LP Solution Using Column Generation

In step 4a, the LP is solved using column generation. The standard column generation

procedure described in section 1.3 is followed here.

However, one of the main problems of solving integer programming problems using branch-

and-price is the tailing-off effect or slow convergence of the column generation process at

each node. It takes many iterations without much improvement in cost, particularly, at

the end to get the optimal LP solution. This is a waste if the solution thus obtained is

not included in the final solution. Moreover, the main objective of solving the LP is to

obtain a lower bound on the optimal integer solution on the subspace corresponding to

the current node. It will be enough if this objective is met.

Fortunately, it is generally not necessary to solve the LP to optimality to get the lower

bound. The idea is as follows. Let us first describe the problem of slow convergence

formally. Let zu
IP be the integer solution to the problem on the space corresponding to

node u. Let zu
LP be the corresponding LP solution. Then zu

LP is a lower bound on zu
IP .

However, at an intermediate step of column generation, we have only the LP solution

for the restricted master problem, z̄u
LP . Unfortunately, z̄u

LP is not a lower bound on zu
LP ,

rather it is an upper bound on zu
LP . Thus we can not use it as a lower bound on zu

IP until

we have reached the end of column generation when z̄u
LP = zu

LP .

Let us know describe how this problem is solved. The solution is based on the theorem

in Farley [1990], which states that if c̄ is the objective of the subproblem solved last, then

z̄u
LP/c̄ ≤ zu

LP . Thus the value z̄u
LP/c̄ can be taken as a lower bound on zu

IP . The column

generation is terminated when the value exceeds the current incumbent. However, the

algorithms in the literature uses lower bounds even tighter than this.

1.5.3 Rounding Heuristic

In step 4b of the generic algorithm, a heuristic solution is obtained from the LP solution.

A rounding heuristic is a procedure that attempts to find a “good” integer solution by

“rounding” the current integer solution. The difference between this heuristic and the

heuristic used at the initialization step is that this time we are more equipped to get the



9 1.5 A Generic Branch-and-Price Algorithm

solution as we have already solved the LP relaxation. The performance of the branch-

and-price depends on the goodness of the rounding heuristic. If this heuristic solution is

good, we can quickly fathom the nodes whose LP relaxations themselves are higher than

this heuristic solution.

Here, the standard procedure consists of the following steps. First, round down the

fractional solution. Then, reduce demands by subtracting the columns that are fixed in

the rounding down procedure. Finally, solve the problem with residual demands using

some heuristic or exact procedure. The residual demands are generally small and can be

solved comparatively faster.

1.5.4 Branching

In step 5c of the generic algorithm, the branching is performed. The challenge in formu-

lating a branching rule is to find a scheme of separation of the feasible solution space.

The scheme is applied successively at each node of the branch and bound tree eliminating

fractional solutions. The scheme should have the following properties:

• It should exclude the current fractional solution and validly partition the solution

space of the problem. In addition, an effective branching scheme should partition

the solution space equally.

• There should be a guarantee that a feasible integer solution will be found (or infea-

sibility proved) after a finite number of branches.

• The branching makes the subproblem complex. This is because the subproblem

must ensure that the column invalidated by the branching rule is not regenerated.

This, in turn, makes sure that column generation can still be used to solve the more

restricted LP relaxation at the descendant nodes. A good branching scheme should

keep the master and subproblem tractable.

1.5.5 Node Selection

In step 3, a node from the set of active nodes are selected. The performance of a branch-

and-price algorithm also depends on the node selection strategy. The common practice

are the following

• Best first search (bfs): A node is chosen with the weakest lower bound (promising

best solution). The goal is to improve the global lower bound which is the minimum

of local bounds of all unprocessed leaves. However, the problem is that if the bound

improves slowly, the search tree grows considerably.



1. Introduction 10

• Depth first search (dfs): This rule chooses one of the deepest nodes in the tree. The

advantages of dfs are the small size of the search tree and fast re-optimization of the

subproblem. Also feasible solutions are found very quickly. The main disadvantage

is that the global lower bound stays untouched for a long time resulting in bad

solution guarantees, which leads to long optimality proof. Another drawback is if a

wrong branch is chosen around the top, considerable time is spent in exploring the

subtree which goes waste. For IRUP 1D-CSP instances, the correct LP bound is

known from the beginning so pure dfs are quite efficient.

• Diving from a bfs node: This is a hybrid approach. At the beginning some number

of nodes are chosen according bfs and after that their children are processed in the

dfs fashion.

1.5.6 Summary

An implementation of the generic branch-and-price algorithm should implement all the

tasks described above. However, if we have to explore different implementation of the

same algorithm, we should look for the following

1. How does the algorithm implements branching? How are the branching constraints

derived? How is the corresponding subproblem modified? How is the subproblem

solved?

2. On what criteria, the algorithm should pick one unexamined node when there are

several candidates?

3. How are the heuristic solutions obtained from the current LP solution? This also

includes the heuristic used to obtain the initial solution.

4. How does it solve the slow convergence of the column generation?

In chapter 2, when we study the algorithms available in literature, we see how these issues

are taken care of by them.

1.6 Branch-Cut-Price

One of the alternative approaches of getting integer solution from the LP solution is to add

constraints (called cuts) one by one to the LP relaxation to eliminate fractional solutions

until an integer solution is found. This type of algorithms are known as cutting plane

algorithms. It is also possible to combine branch-and-price with cutting plane methods.

The combined approach is known as branch-cut-price. In this method, in addition to the



11 1.7 Conjectured Property of Gilmore-Gomory Formulation

standard branch-and-price procedures, the LP relaxation in each node are made tighter

by adding cuts.

By this time, the reader may have a reasonably fair introduction of the problem we are

going to solve, the standard branch-and-price algorithm for solving it and some higher

level details of its subtasks. However, before concluding this introduction, we state a

property of the Gilmore-Gomory formulation which will be used in the report.

1.7 Conjectured Property of Gilmore-Gomory For-

mulation

An instance of an integer (minimization) programming problem IP satisfies Integer Round-

Up Property (IRUP) if the relation ZIP = dZLP e holds where ZIP and ZLP are the integer

and LP optimal solutions respectively. Corresponding, the instance is also called an IRUP

instance. If an instance does not satisfy IRUP, it called a Non-IRUP instance.

An instance of an integer (minimization) programming problem IP satisfies Modified

Integer Round-Up Property (MIRUP) if the relation ZIP < dZLP e + 1 holds. In other

words, for an instance satisfying MIRUP, the integrality gap is strictly less than 2.

It is conjectured that the following proposition holds.

Conjecture 1.7.1 All instances of the cutting stock problem with Gilmore-Gomory for-

mulation satisfy MIRUP.

With this background created, we give an overview of the rest of report.

1.8 Organization of the Report

1.8.1 Literature Survey

In chapter 2, we report our findings from the survey of a few branch-and-price algorithms

and a branch-cut-price algorithm. Though the algorithms in literature implement the

generic branch-and-price algorithm described in section 1.5, they differ in the detailed

implementation of the subtasks. We study them and provide a summary.

1.8.2 Our Contribution

Though a considerable amount of time was spent in the literature survey, we were able

come up with an implementation of the generic branch-and-bound algorithm and exper-



1. Introduction 12

imented with a few alternative approaches to solve some of the subtasks of the generic

branch-and-price algorithm. We tried the following ideas:

• accelerating the column generation procedure by modifying the master problem

formulation

• solving the subproblems using a dynamic programming algorithm.

• obtaining a heuristic integer solution quickly from the LP solution of the master

problem

We provide details of the implementation of these ideas in chapter 3 and present the

experimental results in chapter 4.

We conclude the report in chapter 5. There, we also mention how our work can be

extended in future.



Chapter 2

Literature Survey

In chapter 1, we described the generic branch-and-bound algorithm to solve the 1D cutting

stock problem. We provided a brief description of the different subtasks of this generic

algorithm. We also mentioned that the algorithms existing in the literature differ in the

details of the implementation of the subtasks. In this chapter, we give the details of

the algorithms we studied. The literature we covered are mainly Degraeve and Schrage

[1999], Degraeve and Peeters [2003], Vance et al. [1994], Vance [1998], Vanderbeck [1999].

Instead of describing these publications one after another, we discuss them according to

the subtasks of the generic algorithm. In each of the sections 2.1 through 2.5, we discuss

one of the subtasks.

In section 2.1, we discuss the branching rules and the corresponding modification to the

subproblems. We start with a simple scheme of branching on a single variable in subsection

2.1.1. A special branching scheme for the binary cutting stock problem is discussed in

subsection 2.1.2. Two different implementations of the branching in general CSP are

provided in subsections 2.1.4 and 2.1.3. Both of them use a set of variables for branching

but differ in the choice of the variables.

In section 2.2, we discuss the solutions to the modified subproblems. Node selection is dis-

cussed in section 2.3. In section 2.4, we describe rounding heuristics. The commonly used

rounding heuristics are mentioned in subsection 2.4.1. In subsection 2.4.2, we describe

another rounding procedure named as Sequential Value Correction method. Section 2.5

describes the intermediate lower bounds used for early termination of column generation.

In section 2.6, we discuss a branch-cut-price algorithm provided in Belov and Scheithauer

[2006]. We provide our conclusion from the survey in section 2.7. There, we mention the

tasks that we identified to improve the performance of branch-and-price algorithms.

13



2. Literature Survey 14

2.1 Branching Constraints and Modified Subproblem

We start with the two most important subtasks of the generic branch-and-price algorithm

– (i) Devising branching constraints and (ii) Solving the modified subproblem. Since the

form of the subproblem is determined by the branching rules, in this section, we mention

the different branching decisions that are followed in literature and the corresponding

subproblem formulations. The solutions to the subproblems are described in the section

2.2.

2.1.1 Conventional Branching on a Single Column

The obvious choice for branching is to branch on a single fractional variable. Degraeve

and Schrage [1999], Degraeve and Peeters [2003], and Vance [1998] used this scheme.

Branching Scheme

Branching is done on a single fractional variable, say xj = α, α is fractional, by adding a

simple upper bound xj ≤ bαc at the left branch and a simple lower bound xj ≥ dαe at

the right branch.

Modified Subproblem

We need to take care of the effect of this branching in the corresponding subproblem.

We discuss the effect on the two branches separately. The effect on the right branch is

easier to handle. Since, in this case, xj for the column j is ≥ dαe, adding the constraint is

equivalent to reducing the demand vector by the column j multiplied by dαe and solving

the residual problem. The residual problem can be solved as if it is a new problem. We do

not need to modify the subproblem at all. If the same column j appears in the solution

of the residual problem with a value β, we make xj = dαe+ β in the final solution.

The problem comes in the left branch where an upper bound on the decision variable

is added. Since the variable is forcefully upper bounded, it is quite possible that the

column corresponding to the variable will once again be generated by the subproblem.

This is because, according to the new dual prices of the new restricted master, it may

still be an optimal column. The subproblem should make sure that it does not regenerate

this ‘forbidden’ column. As new nodes are created, more forbidden columns are added

to master LP. We formalize the subproblem in a general node, as a Bounded Knapsack

Problem with Forbidden Solutions (BKPFS). The details are given below.



15 2.1 Branching Constraints and Modified Subproblem

Bounded Knapsack Problem with Forbidden Solutions (BKPFS)

Let us consider the problem where a knapsack of capacityW should be filled usingm given

item types, where type i has a profit πi, weight wi, and a bound bi on the availability. A

configuration is a set of items whose weight-sum does not exceed capacity. A configuration

can be represented by a = (a1, a2, . . . , am), ai ∈ {0, 1, . . . , bi},
∑m

i=1wiai ≤ W . We are

also provided with a forbidden of set configurations S = {A1, A2, . . . , An}. The problem is

to find out a configuration such that the profit-sum of the included items is maximized and

it is not in the forbidden set. The Bounded Knapsack Problem with Forbidden Solutions

(BKPFS) may thus be defined as the following Integer Programming problem:

max
m∑

i=1

πiai (2.1)

s.t.
m∑

i=1

wiai ≤ W (2.2)

ai ∈ {0, 1, . . . , bi} ∀i ∈ {1, 2, . . . ,m} (2.3)

(a1, a2, . . . ,am) /∈ S (2.4)

2.1.2 Branching on a Set of Binary Columns

Vance et al. [1994] pointed out the following problem of conventional branching using a

single variable. The branching rule does not divide the set of feasible solutions into two

subsets of approximately equal size. The reason is as follows. The division of feasible

solutions may be thought of equivalent to the division of the set of new columns that may

get generated by the subproblem. On the right branch, the variable is lower bounded

and the corresponding residual problem is generally smaller. Since the demand vector

is reduced considerably, number of possible new columns that may be generated by the

subproblem is small. However, on the left branch, since the variable is upper-bounded,

we can not think of such a residual problem. Only one pattern is excluded, leading to a

problem that is restricted not more than the one at the parent node.

Vance et al. [1994] introduced a new scheme of branching for the binary cutting stock

problem (BCS). Here, the demand for each item is 1 i.e. bi = 1∀i. Also, they modified the

Gilmore-Gomory formulation by making all inequality constraints as equality constraints.

The formulation is the following:

min z =
∑
j∈J

xj (2.5)

s.t.
∑
j∈J

aijxj = bi, i = 1, 2, · · ·m (2.6)

xj integer and ≥ 0, ∀j ∈ J (2.7)



2. Literature Survey 16

We claim that, this change in formulation does not alter the optimal integer solution. For

that, we prove the following proposition.

Proposition 2.1.1 Let x′ be an optimal integer solution to the Gilmore-Gomory formu-

lation and x′′ be an optimal integer solution to the modified formulation. Then
∑

j∈J x
′
j =∑

j∈J x
′′
j .

Proof Since every feasible solution to the modified formulation is also a solution to the

Gilmore-Gomory formulation,
∑

j∈J x
′
j ≤

∑
j∈J x

′′
j . Again, we can reduce items from

columns selected by solution x′ and get another set of columns x′′′ such that number of

columns does not change though it becomes feasible for the modified formulation. Thus∑
j∈J x

′
j =

∑
j∈J x

′′′
j ≥

∑
j∈J x

′′
j . This completes the proof.

Branching Scheme

The branching rule is based on the following proposition:

Proposition 2.1.2 (Ryan and Foster [1981]) If any basic solution to the master LP

relaxation for BCS is fractional, then there exists rows k and l of the master problem such

that

0 <
∑

j:akj=1,alj=1

xj < 1 (2.8)

Proof Let xj′ be a fractional variable and k be any row with akj′ = 1. Let us consider

the kth constraint of the form (2.6). We have
∑

j∈J akjxj = bk = 1. Now akj′xj′ is one of

the terms in the left hand side with akj′ = 1 and xj fractional. Since all the coefficients

are either 0 or 1, there must be at least one more term akj′′xj′′ such that akj′′ = 1 and xj′′

fractional. Now consider the two columns j′ and j′′. Since they are different and have 1

at row k, there must be one row l where they differ. Without loss of generality, assume

that alj′ = 1 and alj′′ = 0. Thus we have the following derivation.

1 =
∑
j∈J

akjxj

=
∑

j∈J |akj=1

xj because coefficients are either 0 or 1

=
∑

j∈J |akj=1, alj=1

xj +
∑

j∈J |akj=1, alj=0

xj

>
∑

j∈J |akj=1, alj=1

xj



17 2.1 Branching Constraints and Modified Subproblem

because xj′′ is among the omitted terms and we know it to be fractional and hence strictly

greater than 0

> 0

because xj′ is among the retained terms and we know it to be fractional and hence strictly

greater than 0.

Suppose, we find the pair k, l using proposition 2.1.2. Then, it is possible to branch on

the set of variables {xj | akj = 1, alj = 1} by creating two new nodes∑
j|akj=1,alj=1

xj ≤ 0 and
∑

j|akj=1,alj=1

xj ≥ 1 (2.9)

The branching constraints have the following implication. On the left branch, all the

columns having 1 at both the rows k and l must be set to zero. Further more, no column

which satisfies this property should be generated by the subproblem. On the right branch

the branching constraint along with the fact that only one column satisfies the demand

of one item (because of the equality constraints in the formulation) implies that if any

non-zero column has a 1 at one of the rows k and l must have 1 at the other row.

It can be seen that the branching scheme separates the solution space into subsets of

approximately equal size. On the left branch only columns with 1 at only one of row k

and row l or none, are valid. On the left branch only columns with 1 at both row k and

row l or none, are valid. These two sets are approximately of equal size unlike in the case

of branching on a single variable.

Modified Subproblem

We discuss the right branch first. There a, the new column generated, should satisfy

ak = al. This can be done by replacing the two items k and l by an item of width wk +wl

and profit πk + πl.

Solving the subproblem on the left branch, however, is trickier. There, the new column

generated should not have 1 at both the rows k and l. This can be enforced by adding

the constraint ak + al ≤ 1 to the subproblem.

However, at a node, deep in the branch and bound tree, there might be branching con-

straints of both types. So the subproblem formulation should have modified item sets (as

done on the right branch) as well as several constraints of the form ak + al ≤ 1 (as done

on the left branch). Let us assume that branching decision at each step is represented by

the pair (k, l). Each node is associated with a set B of such pairs. Thus, in general, the

subproblem looks like the following.



2. Literature Survey 18

max
m′∑
i=1

π′iai (2.10)

s.t.
m′∑
i=1

w′
iai ≤ W (2.11)

ak + al ≤ 1 ∀ (k, l) ∈ B (2.12)

ai ∈ {0, 1} ∀i = 1, . . . ,m′ (2.13)

where m′ denotes the modified item count, π′ and w′ are the modified profit and weight

vectors. We call this formulation Binary Knapsack Problem with Conflicting Item Pairs

(BKPCIP).

2.1.3 Branching on a Set of Columns With Item Bounds

In the general cutting stock problem, the demand for items can possibly be more than 1.

Hence, the column coefficients and right hand sides are general integers. The branching

scheme used by Vance et al. [1994] based on the proposition 2.1.2 is not applicable when

the master problem contains general integer values. Hence, the same branching rule can

not be applied.

However, it seems that the basic spirit of the proposition 2.1.2 may be continued in the

general CSP too. The key idea is to find a set of columns Ĵ ∈ J with a ‘special property’

such that the sum of the variables corresponding those columns is fractional, say equal to

α. We can, then, have the following branching scheme.∑
j∈Ĵ

xj ≤ bαc and
∑
j∈Ĵ

xj ≥ dαe (2.14)

Simultaneously, the ‘special property’ should also make sure that the modified structure

of subproblem, as per this branching, still remains solvable. The modification is required

because, the columns characterized by the ‘special property’ has fractional sum of values.

However, in both the branches, we have added the constraints that the sum should not

be fractional. We have to make sure that the subproblem does not generate the columns

with this ‘special property’. In this report, we describe two implementations of this idea.

One of them, Vanderbeck [1999] is described in this subsection. The other, Vance [1998]

is described in subsection 2.1.4.

Vanderbeck [1999] implemented branching based on a set of bounds on the number of

instances of a particular item present in a column. We call such a bound as an item

bound constraint (IBC) on a column. Let J be the set of columns present in the current

master and a ∈ J be such a column. An item lower bound constraint is of the form ai ≥ v.



19 2.1 Branching Constraints and Modified Subproblem

The constraint is denoted by a triple β ≡ (i,≥, v), where i ∈ 1, . . . ,m and v ∈ N. Similarly

an item upper bound constraint is of the form ai < v and denoted by β ≡ (i, <, v). Let

J(β) = {a ∈ J | a satisfies β}. The complement of the IBC β, denoted by βc, has the

inequality ≥ replaced by < and vice versa. It is easy to see that J(β) ∩ J(βc) = ∅ and

J(β) ∪ J(βc) = J . Let B be a set of IBCs (possibly having either type). J(B) is defined

to be the set of columns that satisfy all IBCs in B, i.e., J(B) = ∩β∈BJ(β).

Vanderbeck [1999] showed that given any master fractional solution, it is possible to find a

set of IBCs B such that the columns which satisfy all the constraints in B, have fractional

sum. Moreover, the cardinality of B is small. This fact is stated in proposition 2.1.3. We

use the notation f(B) to denote the sum of fractional parts of all columns satisfying all

constraints of B, i.e., f(B) =
∑

j∈J(B) xj − bxjc. f is the sum of fractional parts of all

columns in J . In an other way f = f(∅).

Proposition 2.1.3 Given a fractional solution x to the master LP relaxation, there exists

a set of IBCs B of size at most (blog fc+ 1) such that
∑

j∈J(B) xj is fractional.

Before going to the proof, let us think about the significance of the proposition. One could

argue that without finding any IBCs, we get the set of columns (trivially all columns in

the current master) whose sum is fractional (provided we have not got an solution such

that the sum is integer). But in that case, if we use the set of columns for branching, then

we get the worst branching. This is because all the integer feasible solutions are on one

side of the branch. On the other hand, one could go to the other extreme of using a single

fractional column and finding out set of IBCs, B, such that only that column satisfies B,

and branch accordingly. However, in that case cardinality of B might be huge. Since the

computation for branching, both in the master and the subproblem, depends on |B|, it

is better to have a small B with fractional
∑

j∈J(B) xj. Proposition 2.1.3 addresses that

need.

Let us now have the proof. The proof is by construction. It is based on the following

lemma which helps us find out the set of IBCs with smaller cardinality.

Lemma 2.1.4 Suppose, we are given a set of IBCs B such that f(B) ≥ 1. There exists

a IBC β /∈ B such that 0 < f(B ∪ {β}) ≤ f(B)/2.

Proof of Lemma 2.1.4 Since f(B) ≥ 1, there exist at least two columns a∗j1 , a∗j2 ∈
J(B) such that xj1 − bxj1c > 0 and xj2 − bxj2c > 0. Since the two columns are different,

there must be a row on which they differ. Let r ∈ {1, . . . ,m} be that row. Without loss

of generality let arj1 < arj2 . Let v = d(arj1 + arj2)/2e. Consider the IBC β ≡ (r,<, v)

and its complement βc ≡ (r,≥, v). Then a∗j1 ∈ J(B ∪ {β}) and a∗j2 ∈ J(B ∪ {βc}).
Thus f(B ∪ {β}) ≥ xj1 − bxj1c > 0 and f(B ∪ {βc}) ≥ xj2 − bxj2c > 0. Again, since

f(B) = f(B ∪ {β}) + f(B ∪ {βc}), the smaller of f(B ∪ {β}) and f(B ∪ {βc}) has value

≤ f(B)/2. The corresponding IBC i.e. B ∪ {β} or B ∪ {βc} is the required IBC.



2. Literature Survey 20

Proof of Proposition 2.1.3 Here we mention the idea without giving a formal proof.

We start with empty B. As we keep on using Lemma 2.1.4 to add new IBCs, the f value

reduces by half. Thus after at most (blog fc + 1) steps, f value reduces to less than 1

which is definitely fractional. Since, in each step one IBC is added, |B| is upper bounded

(blog fc+ 1). In general, we may get B with fractional f(B) early. However, we can not

prove it. This is because, in the proof of Lemma 2.1.4, we show f(B∪{β}) or f(B∪{βc})
to be greater than 0 but not necessarily fractional.

Branching Scheme

The proposition 2.1.3 provides the foundation for branching. Suppose, we have got the

set of IBCs B and the columns J(B) that satisfy all constraints in B. Let α =
∑

j∈J(B) xj.

We create two branches by adding branching constraint
∑

j∈J(B) xj ≤ bαc to the master

LP on the left branch and
∑

j∈J(B) xj ≥ bαc + 1 on the right. We call these branching

constraints as of type-G and type-H respectively. It should be noted that these branching

constraints are different from the IBCs. The branching constraints are added to master

LP. However, IBCs are on the column elements and help find out the set of columns

on which the branching happens. The link between them is that each of the branching

constraints is associated with a set of IBCs.

Let us, now, think about the modified master LP relaxation at some node u in the branch-

and-bound tree. Depending upon the path from root node to it, it will have some type-G

and some type-H constraints. Let us partition the branching constraints into sets Gu and

Hu according to their types. Thus the master LP relaxation at u takes the form

min
∑
j∈J

xj (2.15)

s.t.
∑
j∈J

aixj ≥ bi i = 1, . . . , n (2.16)∑
j∈J(BC)

xj ≤ KC ∀C ∈ Gu (2.17)

∑
j∈J(BC)

xj ≥ LC ∀C ∈ Hu (2.18)

xj ≥ 0 j ∈ J (2.19)

where C denotes a branching constraint. If it is of type-G, its right hand side is denoted

by KC ; otherwise, by LC . BC denotes the set of IBCs associated with C.



21 2.1 Branching Constraints and Modified Subproblem

Modified Subproblem

It can be noted that the master LP has more constraints. In fact, it has m+ |Gu|+ |Hu|
number of constraints. If a new column is generated, it should have m + |Gu| + |Hu|
entries. The first m, as in root node LP, are for the number of instances of the items

included in the pattern corresponding to the column. However, the rest are 0/1 values

such that they would have been the coefficients of the branching constraints in the column

if the pattern were already present in the master LP. If we look for a column of negative

reduced cost, the objective of the column generation subproblem takes the following form:

max
m∑

i=1

πiai −
∑

C∈Gu

µCgC +
∑

C∈Hu

νChC (2.20)

where (π, µ, ν) ∈ Rm+|Gu|+|Hu| is an optimal dual solution to the master LP. Negative

coefficients are due to the opposite direction of inequalities in Gu.

Let us now consider the constraints of the subproblem. The constraint on ais is the usual

knapsack capacity constraint. In addition, we have to make sure that if the new pattern

satisfy all the IBCs associated with the branching constraint C, then the corresponding

entry in the new column, (gC or hC which actually represents the coefficient of the branch-

ing constraint C in that column if it were already present in the master LP), must be 1;

0 otherwise.

Thus the constraints in subproblem look lie the following

m∑
i=1

aiwi ≤ W (2.21)

gC =

{
1, if a ∈ J(BC)

0, otherwise
∀C ∈ Gu (2.22)

hC =

{
1, if a ∈ J(BC)

0, otherwise
∀C ∈ Hu (2.23)

However, we need to express the logical constraint a ∈ J(BC) using one or more lin-

ear constraints. For that, we express the logical constraint as logical AND of smaller

constraints as follows

a ∈ J(BC)⇐⇒ ∧β∈BC
(a ∈ J(β))⇐⇒ ∧(i,≥,v)∈BC

(a[i] ≥ v)
∧
∧(i,<,v)∈BC

(a[i] < v)

For each of the smaller logical constraint β ∈ BC we need to use a variable ηβ ∈ {0, 1}.
Then we need to find the linear relationship among gC (hC) and the ηβs. However,

since the signs of objective of gC and hC are different, we derive the corresponding linear

constraints differently.



2. Literature Survey 22

For gC the objective is negative. So if we can provide a lower bound on gC it will be

enough, because the solver will anyway try to make it as low as possible so that the

objective is maximized. We add the lower bound as follows

gC ≥ 1−
∑

β∈BC

(1− ηβ)

The lower bounds on the variables for smaller constraints are added as follows

(amax
i − v + 1)ηβ ≥ (ai − v + 1) ∀β ≡ (i,≥, v) ∈ BC

v ηβ ≥ v − ai ∀β ≡ (i, <, v) ∈ BC

where amax
i = min{bi, bW

wi
c} denotes the maximum possible value of ai.

On the other hand, it is enough to provide an upper bound on hC . We add the upper

bound as follows

hC ≤ ηβ ∀ β ∈ BC

The upper bounds on the variables for smaller constraints are added as follows

v ηβ ≤ ai ∀β ≡ (i,≥, v) ∈ BC

(amax
i − v + 1)ηβ ≤ amax

i − ai ∀β ≡ (i, <, v) ∈ BC

Thus the consolidated form of the subproblem is the following

max
m∑

i=1

πiai −
∑

C∈Gu

µCgC +
∑

C∈Hu

νChC (2.24)

s.t.
m∑

i=1

aiwi ≤ W (2.25)

gC ≥ 1−
∑

β∈BC

(1− ηβ) ∀BC ∈ Gu (2.26)

(amax
i − v + 1)ηβ ≥ (ai − v + 1) ∀β ≡ (i,≥, v) ∈ BC , ∀BC ∈ Gu (2.27)

vηβ ≥ v − ai ∀β ≡ (i, <, v) ∈ BC , ∀BC ∈ Gu (2.28)

hC ≤ ηβ ∀β ∈ BC , ∀BC ∈ Hu (2.29)

vηβ ≤ ai ∀β ≡ (i,≥, v) ∈ BC , ∀BC ∈ Hu (2.30)

(amax
i − v + 1)ηβ ≤ amax

i − ai ∀β ≡ (i, <, v) ∈ BC , ∀BC ∈ Hu (2.31)

ai ∈ {0, 1, . . . , amax
i } i = 1, . . . ,m (2.32)

ηβ ∈ {0, 1} ∀β ∈ BC , ∀BC ∈ Gu ∪Hu (2.33)



23 2.1 Branching Constraints and Modified Subproblem

Simpler Branching Scheme

A simpler branching scheme can be designed if the columns of the master LP are stored

as binary columns. This is because, if the column elements are binary, the IBCs take the

form β ≡ (i,≥, 1) or β ≡ (i, <, 1). This is equivalent to saying that β ≡ (ai = 1) or

β ≡ (ai = 0). This can be denoted in short as β ≡ (i, 1) or β ≡ (i, 0). This also simplifies

the way the subproblem is formulated.

Before going to further details, let us see how binary columns can be obtained. The

binary equivalent a′ ∈ {0, 1}m′
of a general column a ∈ Nm can be obtained by using

the conversion as follows. Let, m′ =
∑m

i=1mi, where mi = dlog(amax
i + 1)e and amax

i

denotes the maximum possible value of ai. The elements of a and a′ have the relation

ai =
∑mi−1

l=0 2l a′pi+1, ∀i = 1, . . . ,m, where pi = 1 +
∑i−1

l=1 ml. The equivalence between a

and a′ is represented by a↔ a′. To avoid confusion, from now on, we will use i to index

a and l to index a′.

We need to extend some of the symbols used earlier to be applied on the converted binary

columns. Let B be a set of IBCs on the binary columns. J(B) is defined to be the set of

columns in the master LP, that satisfy all IBCs in B, i.e., J(B) = {a ∈ J | a↔ a′, a′l =

0 ∀(l, 0) ∈ B, and a′l = 1 ∀(l, 1) ∈ B}.

With this new definition of IBCs, Proposition 2.1.3 still holds. However, the proof in

Lemma 2.1.4 need to be slightly modified for this. Let the binary representation of the

two columns used there be the following. a∗j1 ↔ a′∗j1 , a∗j2 ↔ a′∗j2 . Since the two columns

are different, there must be a row in the binary representation, on which they differ. Let

l ∈ {1, . . . ,m′} be that row. Without loss of generality let a′lj1 = 0 and a′lj2 = 1. Then

β ≡ (l, 0) and βc ≡ (l, 1). The rest of the proof remains same.

Let us now think about the branching. The scheme and master LP formulation at a node

u after branching remain same because the change is encapsulated in the way the IBCs

C ∈ BC , ∀BC ∈ Gu ∪Hu are stored.

Simpler Modified Subproblem

As before, the objective of the column generation subproblem have the form:

max
m∑

i=1

πiai −
∑

C∈Gu

µCgC +
∑

C∈Hu

νChC (2.34)

However, since all the IBCs are on the binary representation of the column, we change the

pattern a to its equivalent binary form a′. The objective and item weights are changed

as follows. π′l = 2kπi, w
′
l = 2kwi, ∀l = pi + k, k = 0, . . . ,mi − 1, and i = 1, . . . ,m. Thus



2. Literature Survey 24

the modified objective is

max
m′∑
l=1

π′la
′
l −

∑
C∈Gu

µCgC +
∑

C∈Hu

νChC (2.35)

Now we add constraints for the IBCs. For each of the smaller logical constraint β ∈ BC

we do not need extra variables ηβ. For β ≡ (l, b), b ∈ {0, 1}, we can directly use a′l. As

done previously, we derive the corresponding linear constraints for gC and hC differently.

We provide a lower bound on gC as follows

gC ≥ 1−
∑

(l,0)∈BC

a′l −
∑

(l,1)∈BC

(1− a′l)

On the other hand, we add an upper bound on hC as follows

hC ≤ (1− a′l) ∀ (l, 0) ∈ BC

hC ≤ a′l ∀ (l, 1) ∈ BC

Thus, the subproblem takes the following final form

max
m′∑
l=1

π′la
′
l −

∑
C∈Gu

µCgC +
∑

C∈Hu

νChC (2.36)

s.t.
m′∑
l=1

w′
la

′
l ≤ W (2.37)

pi+mi−1∑
l=pi

2l−pia′l ≤ amax
i ∀i = {1, . . . ,m} (2.38)

gC ≥ 1−
∑

(l,0)∈BC

a′l −
∑

(l,1)∈BC

(1− a′l) ∀C ∈ Gu (2.39)

hC ≤ (1− a′l) ∀ (l, 0) ∈ BC , ∀C ∈ Hu (2.40)

hC ≤ a′l ∀ (l, 1) ∈ BC , ∀C ∈ Hu (2.41)

a′l ∈ {0, 1} ∀l = {1, . . . ,m′} (2.42)

2.1.4 Branching on a Set of Columns with Item Lower Bounds

In subsection 2.1.3, we saw a branching scheme based on a set of item bound constraints

(IBCs). There, the IBCs were of both lower and upper bounds. However, it seems

that using lower bounds only, it is possible to develop branching. The branching scheme

proposed in Vanderbeck and Wolsey [1996] is such a special case of the scheme described

in 2.1.3. In this scheme the set of IBCs B consists of IBCs of the form β ≡ (i,≥ v).



25 2.1 Branching Constraints and Modified Subproblem

However, the size of B may be larger than blog fc+ 1.

Vance [1998] implemented a branching scheme which is a special case of using item lower

bound constraints (ILBCs). Before going further, let us restate the scheme using ILBCs.

We find a set of ILBCs B such that ∑
j | ∀ (i,≥,v)∈B, aij≥v

xj = α (2.43)

is fractional and branch accordingly. Now we discuss the implementation in Vance [1998].

Branching scheme

In the implementation, Vance [1998], assumed that only maximal cutting patterns are

allowed in the master problem. By maximal, we mean that the waste left after cutting

this pattern is shorter than the width of the smallest item. In other words, no more item

can be added in the pattern. We now prove that this assumption does not alter optimal

integer solution to the problem.

Proposition 2.1.5 Let x′ be an optimal integer solution to the Gilmore-Gomory formu-

lation and x′′ be an optimal integer solution to the formulation restricted with maximal

columns. Let J ′ and J ′′ be the set of columns respectively. J ′′ ⊆ J ′. Then
∑

j∈J ′ x′j =∑
j∈J ′′ x′′j .

Proof Since every feasible solution to the restricted formulation is also a solution to the

Gilmore-Gomory formulation,
∑

j∈J ′ x′j ≤
∑

j∈J ′′ x′′j . Now suppose, there is a column in

x′′ which is not maximal. Then, we can go on adding instances of the smallest item till

we get an maximal column. Thus get another set of columns x′′′ such that number of

columns does not change though it becomes feasible for the modified formulation. Thus∑
j∈J ′ x′j =

∑
j∈J ′′ x′′′j ≥

∑
j∈J ′′ x′′j . This completes the proof.

Vance [1998] utilized another fact from Vanderbeck and Wolsey [1996] that if only maximal

columns are used in the master problem, any fractional column can define the set of ILBCs

B. It can be explained as follows. Suppose, xk is a fractional column. The B consists of

all ILBCs of the form (i,≥, aik) such that aik > 0. Since xk is maximal, no other column

satisfies all ILBCs in B. Thus
∑

j | ∀ (i,≥,v)∈B, aij≥v xj = xk is fractional.

Modified Subproblem

It can be noted that the branching scheme is the same as the conventional branching

where only a single variable is used for branching. Only difference is that the columns

are maximal. Thus, the subproblem takes the form of a BKPFS (see 2.1.1) with extra



2. Literature Survey 26

condition that only maximal configurations are valid. We call this form of the subproblem

Bounded Maximal Knapsack Problem with Forbidden Solutions (BMKPFS).

The fact that the columns are maximal makes solving the subproblem easier. We discuss

the advantage of using maximal columns in solving the subproblem in subsection 2.2.

This brings us to the end of the discussion on the different branching schemes we studied.

We now describe the different approaches to solve the subproblem.

2.2 Solution to Modified Subproblem

In section 2.1, we saw that depending upon the branching scheme, we need to solve the

subproblem in one the following forms

• bounded knapsack problem with forbidden solutions (BKPFS), as discussed in sub-

section 2.1.1

• binary knapsack problem with conflicting item pairs (BKPCIP), i.e., with con-

straints of the form ak + al ≤ 1, discussed in subsection 2.1.2

• general integer programming problem with sets of item bound constraints that does

not have any special structure (so far unknown), discussed in subsection 2.1.3

• BKPFS with the extra constraint of maximal configurations (BMKPFS), discussed

in 2.1.4

One of them can not be solved with out general integer programming problem solver. The

others have special structure and can be solved using specialized algorithms. We discuss

the solvers that we studied.

Solution to BKPFS

In general, the problem is solved by modifying the branch-and-bound based algorithm

implemented by Horowitz and Sahni [1974] that solves a bounded knapsack algorithm

without any forbidden set. We call the implementation as HS1 algorithm. We, first, state

the algorithm and then modify it to work with forbidden set too.

The HS1 algorithm enumerates the solution space by considering items in the order of

non-increasing profit density (πi/wi). This order is well known as ‘greedy order’. However,

before exploring a branch, it calculates a upper bound on the profit on that branch. If the

bound is not greater than the best solution known so far, it does not explore that branch.

The bound is calculated as follows. Let at the current node in the enumeration tree, the

algorithm has already fixed items 1, . . . , s where s < m with the values â1, . . . , âs. An



27 2.2 Solution to Modified Subproblem

upper bound, based on the LP bound, corresponding to the current partial solution â is

given by

U =
s∑

i=1

πiâi +

(
W −

s∑
i=1

wiâi

)
πs+1/ws+1 (2.44)

A pseudocode for the algorithm is given in Algorithm 1.

Algorithm 1: HS Algorithm

Input : An instance (m;W ;w; π; b) of the bounded knapsack problem
Output: An optimal solution vector a

Initialize: s = 1, M = 0, âi = 0, for all i = 1, . . . ,m1

repeat2

if (M < U(â)) then3

s = s+ 14

/* Update partial solution */

âs = min{bs, (W −
∑s−1

i=1 wiâi)/ws}5

If â is an improvement, save it in a6

/* Backtrack to next unfathomed soln in the enumeration

order */

Find maximum k ≤ s such that âk > 0,7

s = k8

âs = âs − 19

until (s == 1) ;10

To work with forbidden set, the algorithm is modified as follows. Just before updating

a by a better solution â, it is searched in the forbidden set. a is updated only when the

search fails, i.e., â is not in the forbidden set. The modified algorithm is called HS2.

Solution to BKPCIP

Vance et al. [1994] replaces the constraints due to the conflicting item pairs by a graph.

The graph has a node for each of the items and an edge between two the nodes which

are conflicting. We call this graph the constraint graph. Without the constraints, the

subproblem takes the form of the standard 0/1 knapsack problem. However, we have

to modify the knapsack solver such that the solution does not contain conflicting items.

Vance et al. [1994] shows that an efficient implementation for such a modification is

possible in the special case where the edges in the constraint graph are non-overlapping

(without common node). However, if the special property is not met, Vance et al. [1994]

solves the problem using a general integer programming solver. We now describe the

implementation in the special case.

When there is no overlapping edge, the problem can be formulated as a Binary Knapsack



2. Literature Survey 28

Problem with Special Ordered Sets (BKPSOS). A special ordered set (SOS) is a set of

variables among which at most one can be non zero. The formulation is as follows:

max
∑
j∈L

∑
i∈Sj

πij xij (2.45)

s.t.
∑
j∈L

∑
i∈Sj

wij xij ≤ W (2.46)

∑
i∈Sj

xij ≤ 1 ∀j ∈ L (2.47)

xij ∈ {0, 1} ∀i ∈ Sj, j ∈ L (2.48)

where Sjs, j ∈ L are the SOSs. Each edge constraint is represented by a SOS of size 2

and each disconnected nodes is represented by SOSs of size 1.

Vance et al. [1994] used a modified version of the HS1 algorithm (see Algorithm 1) to

solve the BKPSOS. We call this modified algorithm HS3. The modification is as follows:

• The greedy ordering of the variables is replaced by an ordering of the SOSs as

defined below:

πi1

wi1

≥ πi2

wi2

≥ · · · ≥ πiL

wiL

where,
πij

wij

= max

{
πij

wij

| i ∈ Sj

}
∀ j ∈ L (2.49)

• Enumeration is done by adding at most one item from each SOS to the current

solution.

• The upper bound is calculated using the LP relaxation 1 of the residual BKPSOS

as follows

U =
s∑

j=1

∑
i∈Sj

πij âij + JP ({(s+ 1), . . . , h},W −
s∑

j=1

∑
i∈Sj

wij âij) (2.50)

JP (S,W ) denotes the LP relaxation of the BKPSOS containing the set of SOSs S

and knapsack size W .

• While backtracking, before going back to the previous SOS set, the item inserted

last is removed from the current solution and another item (if any) in the current

SOS is considered (if it was not done already).

Solution to BMKPFS

The solution to the subproblem should address the following

1Vance et al. [1994] used an efficient algorithm, as given in Johnson and Padberg [1981], to get this
value



29 2.3 Node Selection

1. the new patterns generated should be maximal

2. no forbidden configuration should be generated

To address these issues, Vance [1998] modified algorithm HS1 (see subsection 2.2). We

call this modified algorithm HS4. The modification is as follows.

• The issue of generating maximal pattern is achieved by including items with zero

profit too, provided it is not full enough. Since the items with zero profit are at the

last in the greedy ordering, optimality is maintained.

• The same modification as in HS2 (see subsection 2.2) would suffice to make sure

that no forbidden configuration is generated. However, it seems that we can do

better in terms of efficiency. This is done as follows. For each forbidden pattern

a, the item i with ai > 0 which appears last in the greedy order is marked. It is

done before the actual enumeration begins. During enumeration, if a marked item

is set some value, it is immediately checked in the forbidden set. If present we can

backtrack immediately, there by, avoiding some of the unnecessary enumerations.

This scheme is applicable only when the patterns are maximal.

In summary, we described the algorithms for the subproblems formulated in section 2.1.

Next we describe another subtask of a branch-and-price algorithm which is related to

branching.

2.3 Node Selection

If the conventional branching on a single variable is used (section 2.1.1), the subprob-

lem on the right branch is easier to solve. Also, there is a possibility of reaching to a

solution quickly because the residual problem on the right branch is considerably smaller

than the original problem. Also, because of the fact that most of the 1D-CSP satisfy

IRUP property, the LP bound found on a node is strong enough to go to the depth of a

branch. For these reasons, almost all the branching schemes based on a single variable,

e.g. Degraeve and Schrage [1999], Degraeve and Peeters [2003], Vance [1998], used dfs

with higher priority to the right branch. Belov and Scheithauer [2006] uses branching

on a single variable. However, it implements the hybrid approach of diving from a bfs

node. At the beginning some number of nodes are chosen according bfs and after that

their children are processed in the dfs fashion. This approach helps in solving Non-IRUP

instances.

Though, Vance et al. [1994] implements branching on a set of columns, the observations

on node selection made in the context of single variable branching (i.e. easier subproblem,

quick solution to the constrained problem on the right branch), are still applicable. For

this reason, it implemented dfs with higher priority to right branch.



2. Literature Survey 30

The branching scheme of Vanderbeck [1999], by design, does not have imbalance between

the two branches. However, because of the IRUP property, it is better to go in depth of

a branch. Thus, dfs with equal priority to both the children was implemented.

However, it can be noted that the selection of nodes are not the only choices that are made

in the algorithms. There may be different parameters depending upon the branching

scheme. For example, in case of branching on single variables, if there are multiple

fractional variables which one should be picked? It is the general practice to choose

the variable having largest distance from nearest integer values on both ends. That is,

x1 = 1.5 is given higher priority than x2 = 3.05. This helps in better separation. However,

for other parameters, the decision may not be easy. For example, if there are different

sets of IBCs B in case of branching on multiple columns, which one should be used? This

needs deeper study of the implementation which we have not undertaken.

2.4 Heuristic Solutions

The performance of a branch-and-price based algorithm depends on the quality of the

initial heuristic solution used at the root node as well as the heuristic solution obtained

by rounding the LP solution at any node in the branch and bound tree. If this heuristic

solution is good, we can quickly fathom the nodes whose LP relaxations are higher than

this heuristic solution. In addition, the heuristic solution at the root node helps find

initial set of feasible columns.

2.4.1 Common Rounding Heuristics

The most commonly used heuristic solution is the First Fit Decreasing (FFD) heuristic. In

this scheme the items are filled in a non-increasing order of their widths. The item under

consideration is tried to fit in a stock used already. If it can not be done so, a new stock

is used. While searching for space in the stocks already used, the stocks are searched in

the order they were used first. Another heuristic procedure, Best Fit Decreasing (BFD),

is similar to the FFD. The only difference is that while searching for space in the already

used stocks, the one with smallest unused part is picked.

However, the performance of these procedures are not good in practice. There are different

enhanced heuristics. We studied one such procedure, Sequential Value Correction (SVC)

method, which is described in section 2.4.2. The method constructs an heuristic solution

from the LP solution. However, the two heuristics described here are still useful in finding

the initial solution when no other information such as LP solution etc. are known.



31 2.4 Heuristic Solutions

2.4.2 A Sequential Heuristic Approach

The branch-and-price based algorithm described in Belov and Scheithauer [2006] uses a

sequential value correction (SVC) heuristic. Like the other algorithms, it first obtains

rounded down LP solution and then solves the residual problem. However, unlike others,

it constructs a solution for the residual problem by generating pattern after pattern. While

solving iteratively, SVC constructs a new pattern using some information from previous

patterns. This information, pseudo-prices of products, is, in concept, similar to the dual

multiplier of the master LP relaxation. It is calculated on the basis of the material-per-

item-type consumption. Let l = W −
∑m

i=1wiai be the pattern waste. W − l represents

the utilization of the pattern. The expression W
W−l

reflects how ‘bad’ the current pattern

is. For a pattern with 0 waste, it is the minimum 1. The more the waste, the bigger

the expression is. Now the expression W
W−l

aiwi is a measure of the material-per-item-type

consumption by item i or, rather, ‘badness’ contributed by it. Suppose, we have already

generated n patterns. The expression
∑n

j=1
W

W−lj
aijwi gives a measure of the ‘badness’ of

item i with respect to the current set of generated patterns. However, if the demand of

an item is more, and the corresponding expression is more, we should not penalize that

item much. So the expression 1
bi

∑n
j=1

W
W−lj

aijwi gives a better measure of the ‘badness’ of

item i. Now, it makes sense to satisfy the demands of the ‘bad’ items as soon as possible

in the sequential heuristic process so that we can try with the other ‘good’ items which

mixes easily with each other to generate good patterns. So, this expression is used as the

cost function for generating a new pattern.

The implementation of Belov and Scheithauer [2006] maintains the pseudo-prices y ∈ Rm
+

as follows. They are initialized with scaled simplex multipliers. After generating pattern

a maximizing yTa, they are ‘corrected’. In this implementation, W
W−l

aiw
p
i is taken as a

measure of the ‘badness’ contributed by item i, where p is a parameter slightly greater

than 1. Experimentally, p = 1.03 was found to be a ‘good’ value. The new weight of piece

i is the following weighted average:

yi ← g1yi + g2
W

W − l
wp

i , ∀i : ai > 0 (2.51)

where g1, g2 are update weights with

g1/g2 = Ω(b′i + b′′i )/ai, (2.52)

g1 + g2 = 1, b′i is the residual demand of item i after the rounding down procedure, b′′i
is the so far unmet demand of the item i. The old value is weighted more if the total

demand of the item is more. Otherwise the new value is given more weight. The value

of the randomization factor Ω is uniformly chosen from [1/Ω̄, Ω̄] before generating each

pattern. Ω̄ is uniformly chosen from [1, ¯̄Ω] for each new solution. ¯̄Ω = 1.5 was found to

be a ‘good’ value.



2. Literature Survey 32

The heuristic solution is given in Algorithm 2. At the initialization step, the dual multi-

pliers are modified to some small value if they are zero. This is because, the oversupplied

items in the LP solution have dual value zero. However they may become undersupplied

in the rounding-down step. Without this modification, those items may never be picked

by the pattern generator.

This heuristic is repeated multiple times and the best solution is picked. This is done in

the outer loop. The optimality can be proved by using the rounded up value of residual

LP solution as a lower bound.

Algorithm 2: Sequential Value Correction

Input : An instance (m;W ;w; b′) of 1D-CSP; The simplex multipliers
π1, . . . , πm

Output: A feasible solution vector (xa∗j
), j ∈ {1, . . . , n}

Initialize: yi = max{1,Wπi} for all i = 1, . . . ,m, k = 01

repeat2

b′′ = b′; x̃ = 0; k = k + 1; /* start new solution */3

repeat4

a = arg max{yTa : wTa ≤ W ; a ≤ b′′; a ∈ Zm}5

f = mini:ai>0{bb′′i /aic} /* choose pattern frequency */6

x̂a = x̂a + f ; b′′ = b′′ − fa; /* reduce the right-hand side */7

Update Weights yi, 1 ≤ i ≤ m; /* value correction using 2.51 */8

until b′′i = 0 for all 1 ≤ i ≤ m ;9

If x̂ is an improvement, save it in x10

until (Optimality is Proved) or (Iteration Limit is Exceeded) ;11

2.5 Lower Bounds for Early Termination of Column

Generation

In section 1.5.2 we mentioned about the problem of slow convergence of the column

generation process and showed that there is a way to detect early in the column generation

process if the LP solution for the current node will be useful at all. Let us restate the

symbols used there. We used zu
IP , z

u
LP and z̄u

LP to denote the integer solution to the

problem on the space corresponding to node u, the corresponding LP solution and the LP

solution for the restricted master problem respectively. We also showed that if c̄ is the

objective of the subproblem solved last, then the quantity z̄u
LP/c̄ can be used as a lower

bound for zu
IP . If the value is greater than the current incumbent the column generation

is terminated.

Since, at the root node, the incumbent is not generally good, this test most often fails.

Vance et al. [1994] and Vance [1998] used an additional trick to terminate the root node



33 2.6 Cutting Plane Algorithm

column generation early. They used the following proposition.

Proposition 2.5.1 If dz̄r
LP e = dz̄r

LP/c̄e, then dz̄r
LP e ≤ zr

IP where r denotes root node.

Proof We already showed that z̄r
LP/c̄ ≤ zr

LP . Taking celling of both sides we get,

dz̄r
LP/c̄e ≤ dzr

LP e. Using the given assumption, we have dz̄r
LP e ≤ dzr

LP e. But we know

that z̄r
LP is an upper bound for zr

LP . Hence, dz̄r
LP e ≥ zr

LP . Combining inequalities in both

directions, we have dz̄r
LP e = dzr

LP e. However, dzr
LP e ≤ zr

IP . Thus, dz̄r
LP e ≤ zr

IP .

The importance of the proposition is that if, during column generation, we have already

reached a state where dz̄r
LP e = dz̄r

LP/c̄e, then we can no longer improve the lower bound

and hence the process can be terminated. This is because, from this onward the lower

bound dzr
LP e can decrease only.

So far we have discussed some of the algorithms based on pure branch-and-price. Now

we describe a branch-cut-price algorithm.

2.6 Cutting Plane Algorithm

Apart from the standard branch-and-price algorithms, there have been several efforts on

solving the problem by using cutting plane algorithms. Here, we discuss an algorithm

(Belov and Scheithauer [2006]) which uses a combination of both the approaches. In this

method, the LP relaxation at each branch-and-price node is strengthened by applying

cuts. The rest is similar to the standard branch-and-price algorithms. Branching is based

on a single variable as described in subsection 2.1.1. The heuristic solutions are obtained

using SVC method as described in subsection 2.4.2. Here we provide the basic information

of the cuts that are used and then the aspects that different from the algorithms described

so far.

In subsection 2.6.1 we describe the principle behind using super-additive cuts which are

based on linear combinations of current constraints. Chvatal-Gomory cuts, Gomory frac-

tional and Gomory Mixed Integer cuts are special super-additive cuts. We show in sub-

section 2.6.2 how to construct these special cuts for the Gilmore-Gomory formulation at

the root node. At the internal nodes, the branching variables are upper/lower bounded.

The modification necessary for this is discussed in subsection 2.6.3. The addition of the

cuts makes the subproblem complex. We explain the modifications in the subproblem

formulation in subsection 2.6.4 and how it is solved in subsection 2.6.5. We conclude the

section with some remarks on the overall algorithm in the subsection 2.6.6



2. Literature Survey 34

2.6.1 Gomory Fractional and Mixed-Integer Cuts

With respect to the current solution x of the LP relaxation Ax = b, x ≥ 0, a cut is defined

as an inequality

n∑
j=1

F (uTa∗j)xj ≤ F (uT b), (2.53)

where u is some vector producing a linear combination of the existing constraints and

F : R1 → R1 is some super-additive non-decreasing function such that the cut is valid for

all feasible integer solutions but invalid for the current fractional solution. An example

of F is the simple round down function b.c. There can be several ways of getting the

multiplies u. One of them is shown in section 2.6.2. If the LP solution of the problem

including this cut is not still integer, further inequalities are constructed recursively, based

on linear combinations of original constraints and the cuts added already.

Suppose initially there were m constraints. Assume that we have generated r − 1 cuts

already. The coefficient of the cut r in column j is defined recursively as follows:

ψr
j = F (

m∑
i=1

ur
iaij +

r−1∑
t=1

ur
m+tψ

t
j), r = 1, . . . , µ,

where ur
i , i = 1, . . . ,m+r−1, are the coefficients of the linear combination of all previous

constraints. It can be noted that ψr
j can be thought of as a function of the column a∗j.

This is because, if we unfold the last part of the right hand side by applying the definition

recursively, all the ψ terms will vanish and only an expression with aijs and ur
i s will

remain. Thus we also write ψr
j = ψr(a∗j).

The rth cut takes the form

n∑
j=1

ψr
jxj ≤ ψr

0

where ψr
0 = ψr(b).

Since each added cut is an inequality constraint, we need to add a slack variable to

generate further cuts.
∑n

j=1 ψ
r
jxj + s = ψr

0, s ≥ 0. The slack variable may or may not be

integer depending on the function F is used. Further cuts which depend on this cut have

their own coefficients in this column. Thus, cut r in general can be represented as

n∑
j=1

ψr
jxj +

r−1∑
t=1

ψr(sv)sv + sr = ψr
0. (2.54)

The coefficient of slack variables are set to 1, i.e., ψv(sv) = 1, v = 1, . . . , µ. If the



35 2.6 Cutting Plane Algorithm

slack variables are integers, they can be treated similar to the original variables. The

corresponding columns are in the form (0, 0, . . . , 1). Thus, the coefficient ψr(sv) of cut r for

the slack variable of cut v that is generated already is given by ψr(sv) = F (
∑r−1

t=1 ψ
t(sv)),

similar to (2.54).

Chvatal-Gomory valid inequalities are constructed using the rounding down function,

F (uTa) = buTac. Because of this, the slack variables are integer and hence can be treated

similar to the original variables.

Gomory fractional cuts are constructed by subtracting inequality buTAcx ≤ buT bc from

uTAx = uT b. This results in
∑n

j=1 fr(u
Ta∗j)xj ≥ fr(uT b), where fr(d) = d− bdc. Here

the slack variables are fractional and hence needs to be taken care of when subsequent

cuts are added. This means, once a Gomory fractional cut is added, subsequently only

mixed integer cuts can be added.

Gomory mixed-integer cuts are constructed using Fα(d) = bdc+ max{0, (fr(d)−α)/(1−
α)} which is a generalization of the rounding down function b.c.

With this basic introduction to the cuts, we now obtain the cuts for the problem we are

concerned about.

2.6.2 Cutting Planes without Branching

Belov and Scheithauer [2006] used Chvatal-Gomory valid inequalities on the master LP

relaxation of Gilmore-Gomory formulation after adding the slacks in the demand con-

straints for each of m items.

The only remaining part to be explained for the implementation of the cuts is how the

multipliers us are selected. Belov and Scheithauer [2006] constructed them using the

optimum simplex tableau. Suppose, the columns of the final simplex tableau is rearranged

so that basis part is separated from the others, i.e., A = (AB, AN). Let x be also similarly

rearranged, i.e., x = (xB, xN). Then, we have ABxB + ANxN = b, or xB + A−1
B ANxN =

A−1
B b. Suppose, the ith basic variable is fractional. Then the cut can be generated by

rounding down both sides of row i. Suppose v and w denote the ith row of A−1
B A and

A−1
B b respectively. That results in the cut bvcx ≥ bwbc or equivalently −bvcx ≤ b−wbc.

It can be easily shown that this cut removes the current LP optimum. Thus the required

u = −w, i.e., the ith row of −A−1
B .

2.6.3 Cutting Planes with Branching

There is a complication in applying the cutting planes at an internal node of the branch-

and-bound tree. This is because, at an internal node some variables (which are selected

in branching on a path from root to this node) are already set to lower and upper bounds

as branching constraints. This is taken care of as follows.



2. Literature Survey 36

Let the LP of the current node looks like the following where the matrix includes both

the original constraints and the added cuts.

min{cTx : Ax = b,L ≤ x ≤ U}.

Let J be the set of columns. As usual, let the optimal simplex tableau be rearranged as

A = (AB, AN). Let L = {j ∈ J : xj = Lj}, U = {j ∈ J : xj = Uj} be the index sets of

non-basic variables at their lower and upper bounds. Let Ā = A−1
B A, b̄ = A−1

B b. The last

simplex tableau implies

xB + ĀL(xL − LL)− ĀU(UU − xU) = b̄− ĀLLL − ĀUUU ,

Similar to the root node cuts, the cuts here are also generated by rounding down the

ith row of the above system of equations, provided the corresponding basic variable is

fractional.

2.6.4 Modification to Subproblem

We have seen in section 2.1.3, that if we add a constraint in the master problem, we have

to make sure that when a new column is generated by the subproblem, the corresponding

entry in the new column have the same value as it would have if the column were already

present in the master problem. Here, we are fortunate that the coefficient of the cuts are

nicely related only with the entries in the same column above it. Thus, it is enough to

make sure that the same relation is satisfied in the new column. The subproblem takes

the following form:

max
m∑

i=1

πiai +

µ∑
r=1

πm+ram+r (2.55)

s.t.
m∑

i=1

wiai ≤ W (2.56)

am+r = ψr(a) = F (
m∑

i=1

ur
iai +

r−1∑
t=1

ur
m+tψ

t(a)) r = 1, . . . , µ (2.57)

ai ∈ {0, . . . , amax
i } ∀i = 1, . . . ,m (2.58)

ai ∈ N ∀i = m+ 1, . . . ,m+ µ (2.59)

where π ∈ Rm+µ is an optimal dual solution to the master problem.

However, we do not need the extra variables because we can directly put the right hand



37 2.6 Cutting Plane Algorithm

side of the equality constraints in the objective. Thus the subproblem takes the form:

max
m∑

i=1

πiai +

µ∑
r=1

πm+rψ
r(a) (2.60)

s.t.
m∑

i=1

wiai ≤ W (2.61)

ai ∈ {0, . . . , amax
i } ∀i = 1, . . . ,m (2.62)

The issue of forbidden patterns is also present here. This is because branch-and-price

constraints are also added to the master. Thus a forbidden set is also added with the

subproblem formulation.

2.6.5 Solution to Subproblem

Let us assume that there is no forbidden pattern. Then the subproblem looks like a

knapsack problem with a modified objective function

c̄(a) =
m∑

i=1

πiai +

µ∑
r=1

πm+rψ
r(a). (2.63)

Let us think about the issues, if we have to use an algorithm like HS1 (see Algorithm 1).

We can immediately see that we can not order the items on the basis of πi/wi because

there is some part of the objective hidden in the expression
∑µ

r=1 πm+rψ
r(a). It is difficult

to separate out the actual objective of ai.

Even if we could separate out the objective by expanding the recursively defined ψr(a)

and regrouping the necessary parts, we can not make an ordering because of the non-linear

function F used for generating cuts. This also makes the bounding scheme to fail.

In the next subsections we will see how these two issues are taken care of.

Item Order in Enumeration

Belov and Scheithauer [2006] used the following scheme. The objective function is linearly

approximated by omitting the non-linear function. Thus, approximate cut coefficients are

defined recursively as

ψ̃r
j = ψ̃r(aj) =

m∑
i=1

ur
iaij +

r−1∑
t=1

ur
m+tψ̃

t(aj), r = 1, . . . , µ, (2.64)

It can be noted that now the expression does not depend on the function F . This also



2. Literature Survey 38

has linearity because ψ̃r(a) =
∑m

i=1 aiψ̃
r(ei) for all r, where ei is the ith unit vector. The

approximate objective function is then

c̃(a) =
m∑

i=1

πiai +

µ∑
r=1

πrψ̃
r(a) =

m∑
i=1

π̃iai (2.65)

with π̃i = πi +
∑µ

r=1 πm+rψ̃
r(ei).

With this new objective, the enumeration is done by arranging the items in the order

π̃1/l1 ≥ . . . ≥ π̃m/lm.

The Upper Bound

In order to avoid full enumeration, after we have filled some entries in the new column,

we need an upper bound for the objective value c̄(a) irrespective of how the rest of the

entries are filled. If the upper bound is less than the best solution found so far, we can

readily skip filling rest of the entries. The proposition 2.6.3 gives such a bound.

Before going to proposition 2.6.3, we prove that the approximation in the objective is not

bad. This is done using the proposition 2.6.2. Again, before that, we define three terms

α̃(x), ᾱr and αr recursively as follows:

α̃r(x) =

{
xᾱr, x ≥ 0,

xαr, x < 0

ᾱr =

{ ∑r−1
t=1 α̃t(u

r
m+t), r > 1,

0, r = 1

αr =

{
−αr −

∑r−1
t=1 α̃t(−ur

m+t), r > 1,

−α1, r = 1

where αk denotes the parameter used for generating cut k using the generic super-additive,

non-decreasing function Fαk
(). It can be noted that

uTa− αk ≤ Fαk
(uTa) ≤ uTa. (2.66)

In particular, when the function is just the rounding down function, uTa− 1 ≤ buTac ≤
uTa. Before proceeding to the proposition 2.6.2, we prove a result on the three expressions

we just defined.

Proposition 2.6.1 The quantities ᾱr and αr are an upper bound and a lower bound

respectively, on the error incurred by approximating rth cut-coefficient ψr(a) by ψ̃r(a).

That is, αr ≤ ψr(a)− ψ̃r(a) ≤ ᾱr.

Proof We prove by induction. The relationship is trivially true for k = 1. Let us assume



39 2.6 Cutting Plane Algorithm

that it is true for r ≤ k − 1. Then,

ψk(a)
def
= Fαk

(
m∑

i=1

uk
i ai +

k−1∑
t=1

uk
m+tψ

t(a)

)

≤
m∑

i=1

uk
i ai +

k−1∑
t=1

uk
m+tψ

t(a) using (2.66)

=
m∑

i=1

uk
i ai +

k−1∑
t=1

uk
m+tψ̃

t(a) +
k−1∑
t=1

uk
m+tψ

t(a)−
k−1∑
t=1

uk
m+tψ̃

t(a)

= ψ̃k(a) +
k−1∑
t=1

uk
m+t(ψ

t(a)− ψ̃t(a))

= ψ̃k(a) +
k−1∑
t=1

{
uk

m+t(ψ
t(a)− ψ̃t(a)), if uk

m+t ≥ 0,

−uk
m+t(ψ̃

t(a)− ψt(a)), otherwise

≤ ψ̃k(a) +
k−1∑
t=1

{
uk

m+t(ᾱt), if uk
m+t ≥ 0,

−uk
m+t(−αt), otherwise

by induction hypothesis

= ψ̃k(a) +
k−1∑
t=1

{
uk

m+tᾱt, if uk
m+t ≥ 0,

uk
m+tαt, otherwise

= ψ̃k(a) +
k−1∑
t=1

α̃t(u
k
m+t) using definition of α̃k(x)

= ψ̃k(a) + ᾱk using definition of ᾱk

This implies ψk(a)− ψ̃k(a) ≤ α̃k. Similarly,

ψk(a)
def
= Fαk

(
m∑

i=1

uk
i ai +

∑
t<k

uk
m+tψt(a)

)

≥ −αk +
m∑

i=1

uk
i ai +

k−1∑
t=1

uk
m+tψ

t(a) using (2.66)

= −αk +
m∑

i=1

uk
i ai +

k−1∑
t=1

uk
m+tψ̃

t(a) +
k−1∑
t=1

uk
m+tψ

t(a)−
k−1∑
t=1

uk
m+tψ̃

t(a)

= −αk + ψ̃k(a)−
k−1∑
t=1

−uk
m+t(ψ

t(a)− ψ̃t(a))

= −αk + ψ̃k(a)−
k−1∑
t=1

{
−uk

m+t(ψ
t(a)− ψ̃t(a)), if − uk

m+t ≥ 0,

uk
m+t(ψ̃

t(a)− ψt(a)), otherwise



2. Literature Survey 40

≥ −αk + ψ̃k(a)−
k−1∑
t=1

{
−uk

m+t(ᾱt), if − uk
m+t ≥ 0,

uk
m+t(−αt), otherwise

by induction hypothesis

= −αk + ψ̃k(a)−
k−1∑
t=1

{
−uk

m+tᾱt, if − uk
m+t ≥ 0,

−uk
m+tαt, otherwise

= ψ̃k(a)− αk −
k−1∑
t=1

α̃t(−uk
m+t) using definition of α̃k(x)

= ψ̃k(a) + αk using definition of αk

Thus we proved by induction that for all r = 1, . . . , µ, αr ≤ ψr(a)− ψ̃r(a) ≤ ᾱr.

Now we state the proposition giving an upper bound on the approximation error.

Proposition 2.6.2 The objective function c̄(a) of (2.63) is bounded from above as

c̄(a) ≤ c̃(a) +

µ∑
r=1

α̃r(πm+r) (2.67)

for any pattern a.

Proof

c̄(a)− c̃(a) =

(
m∑

i=1

πiai +

µ∑
r=1

πm+rψ
r(a)

)
−

(
m∑

i=1

πiai +

µ∑
r=1

πm+rψ̃
r(a)

)

=

µ∑
r=1

πm+rψ
r(a)−

µ∑
r=1

πm+rψ̃
r(a)

=

µ∑
r=1

πm+r(ψ
r(a)− ψ̃r(a))

=

µ∑
r=1

{
πm+r(ψ

r(a)− ψ̃r(a)), if πm+r ≥ 0,

−πm+r(ψ̃
r(a)− ψr(a)), otherwise

≤
µ∑

r=1

{
πm+r(ᾱr), if πm+r ≥ 0,

−πm+r(−αr), otherwise

=

µ∑
r=1

{
πm+rᾱr, if πm+r ≥ 0,

πm+rαr, otherwise

=

µ∑
r=1

α̃(πm+r)

That implies c̄(a) ≤ c̃(a) +
∑µ

r=1 α̃(πm+r).



41 2.6 Cutting Plane Algorithm

It can be noted that the approximation errors are constants and hence can be calculated

before enumeration.

Now we state the proposition 2.6.3 which gives us the required upper bound.

Proposition 2.6.3 Let a partial solution â = (â1, . . . , âs, 0, . . . , 0) be given. Then an

upper bound for c̄() on all the patterns built by adding some items of types i = s+1, . . . ,m

to â is given as follows:

U = δc̃+ c̃(â) +
∑

r

α̃r(πm+r), (2.68)

where δc̃ is the solution to the residual problem (i.e., the problem of filling a knapsack of

capacity W −
∑s

i=1wiâi with items s+ 1, . . . ,m having profits π̃s+1, . . . , π̃m).

Proof The first two terms give the optimal solution of the problem with approximate

objective. Adding the approximation error to it gives the required upper bound (using

Proposition 2.6.3).

As we did in HS1 (section 2.2), an upper bound on δc̃ can be obtained by using LP

relaxation of the residual problem.

Enumeration Procedure

With all the result from the previous subsection, we are now at a position to state the

enumeration procedure. It works as follows. Suppose, the items 1, . . . , s are already fixed.

Now the value of the upper bound as given in (2.6.3) on it is calculated. If it is less

than the current best solution, this partial solution is fathomed and we backtrack. On

the other hand, if it is greater than the best solution, the original objective function is

calculated and checked. If it is still a better solution, it is taken to be the new best.

Now we take care of the issue of forbidden set. As we have done in HS2 (see section 2.2),

before updating the current best solution with a new one, we make sure that it is not

already present in the forbidden set.

2.6.6 Concluding Notes on the Cutting Plane Algorithm

It can be noted that starting from the root node, just by repeatedly solving master

problem using column generation and adding cutting planes, will eventually lead to an

integer solution. One may ask – why do we need branching as in branch-and-price then?

The experimental result shows that with the initial cutting planes the LP lower bound

improves faster. However, it takes many more iterations to reach the final integer solution.



2. Literature Survey 42

For this, Belov and Scheithauer [2006] used the following strategy. They generated only

some limited number of cutting planes to the LP relaxation (10 for the root node and 3 for

the internal nodes). If an integer solution is not reached yet, branching is applied. Thus

the cutting plane was mainly used to get tighter lower bounds. Since the LP lower bound

is already tight for the IRUP instances, it helped only with the non-IRUP instances.

2.7 Conclusions of Literature Survey

We studied the details of the implementations of the different subtasks of the generic

branch-and-price algorithm in Degraeve and Schrage [1999], Degraeve and Peeters [2003],

Vance et al. [1994], Vance [1998], and Vanderbeck [1999]. Also studied a branch-price-cut

algorithm as given in Belov and Scheithauer [2006]. Here we mention our findings.

We studied four different ways of branching. However, it can be noted that the scheme

of branching based on binary columns (2.1.2) is a special case of the scheme using a set

of columns with IBCs (section 2.1.3). This is evident from the similarity of the proofs of

the proposition 2.1.2 and the lemma 2.1.4. The scheme based on a set of columns using

ILBCs 2.1.4, though by design, is a special case of the scheme using a set of columns with

IBC, turns out to be similar to the branching on a single fractional variable.

Thus we have two main approaches of branching – (i) using a single variable and (ii)

using a set of columns with specific properties. The later one seems to be better because

it divides the solution space almost equally. However, the former one is popular because of

its well known formulation of the subproblem. Here, it is possible to solve the subproblem

using some specialized algorithm unlike the other case where the subproblem is formulated

as a general integer programming problem.

The hybrid node selection scheme of Belov and Scheithauer [2006] seems better as it

balances performance in instances of both types, IRUP and Non-IRUP. The SVC heuristic

seems to be the best among the existing approaches, as far as heuristic solutions are

concerned. Almost all the algorithms use the same scheme of solving the problem of slow

convergence of the column generation process. The use of cuts as in Belov and Scheithauer

[2006] proved to be useful in solving the Non-IRUP instances.

Thus, if we have to come up with a better branch-and-price based algorithm, it should

have following properties:

1. It solves the LP relaxation at each node efficiently. Any trickier formulation which

can accelerate the finding of the optimal set of columns will improve the overall

performance of the algorithm.

2. It solves the subproblem faster. The branching scheme based on a single variable

is prevalent in the literature. Hence, we should have a better solver for the BKPFS

form of the subproblem.



43 2.8 Summary

3. It obtains better and quick heuristic solutions. We need to come up with a better

approach to obtain heuristic solutions not only quickly but also with better quality.

4. It implements tighter LP relaxation, at least, for the non-IRUP instances. Cutting

plane like ideas help in Non-IRUP instances where the LP relaxation does not give

a tight lower bound.

2.8 Summary

We discussed several implementations of the generic branch-and-price algorithms and a

branch-cut-price algorithm. We concluded the literature survey by identifying the tasks

that we should work on to improve the performance of the branch-and-price algorithms.





Chapter 3

Our Contribution

In this chapter, we describe our contribution on improving the branch-and-price algo-

rithms. The first thing we did is to implement a working version of the generic branch-

and-price algorithm. We implemented the algorithm using the BCP framework provided

by COIN-OR. We describe the implementation in section 3.1. The solution to subproblem

is discussed in section 3.2.

In section 2.7 we mentioned that one of the tasks identified is to accelerate the column

generation process. In section 3.3 we describe a scheme of modifying the LP relaxation to

accelerate the column generation. We experimented with a scheme to obtain the heuristic

solution faster. We describe that in section 3.4.

3.1 COIN-OR Based Implementation

We implemented a version of the basic branch-and-price algorithm using the BCP frame-

work provided by COIN-OR, http://www.coin-or.org. We used this open source frame-

work so that we do not have to rewrite code afresh for many of the subtasks.

We implemented the simple branching scheme using a single variable. The subproblem

is solved using a dynamic programming algorithm described in section 3.2. The heuristic

solutions are obtained using SVC method.

3.2 Dynamic Programming Solution to Subproblem

We have seen that if the conventional branching with a single variable is used, the subprob-

lem takes the form of a bounded knapsack problem constrained with a list of forbidden

patterns.

We used the following dynamic programming solution to the BKPFS. We introduce few

45



3. Our Contribution 46

notations before explaining the algorithm. φi(a) is the vector comprised of the first i

components of the vector a. φi(S) is the set comprising of the first i components of

vectors in S, i.e., φi(S) = {φi(a) | a ∈ S}. ϕi(a, k) is the vector comprised of the first i

components of the vector a such that ith component is k, i.e., ϕi(a, k) = (φi(a) | ai = k).

ϕi(S, k) = {ϕi(a, k) : a ∈ S}.

Let f(i, Ŵ , Ŝ), i ∈ {0, 1, . . . ,m}, Ŵ ∈ {0, 1, . . . ,W}, Ŝ ⊆ φi(S), be an optimal solution

to the following subproblem of the BKPFS.

max
i∑

j=1

πjaj (3.1)

s.t.
i∑

j=1

wjaj ≤ Ŵ (3.2)

aj ∈ {0, 1, . . . , bj} ∀j ∈ {1, 2, . . . , i} (3.3)

(a1, a2, . . . ,ai) /∈ Ŝ (3.4)

We use the following recursion for the solution of BKPFS:

f(i, Ŵ , Ŝ) = max


f(i− 1, Ŵ , ϕi(Ŝ, 0)) if Ŵ ≥ 0

f(i− 1, Ŵ − wi, ϕi(Ŝ, 1)) if Ŵ − wi ≥ 0
...

f(i− 1, Ŵ − biwi, ϕi(Ŝ, bi)) if Ŵ − biwi ≥ 0

(3.5)

with the boundary values f(0, Ŵ ,∅) = 0, f(0, Ŵ , Ŝ 6= ∅) = −∞.

Worstcase Time Complexity

It can be seen that the subproblem has three input parameters which vary. The parameters

are i, Ŵ and Ŝ. Let bmax = max{bi}. A quick calculation should reveal that the size of

the dynamic programming table is = O(no of possible values of i × no of possible values

of W × no of possible values of S) = O(m×W×bmmax) since the number of configurations,

and hence possibly the forbidden set, of m items is bmmax.

However, a deeper look into the operation on the table will reveal that only a few entries

of the dynamic programming table are in fact accessed by the algorithm. For the partic-

ular value of i and Ŵ there can be at most bi possible values of Ŝ, this is because the

corresponding item could be present bi times in the forbidden list. The maximum number

of entries in the table that are accessed by the algorithm is O(bmaxmW ). Again for filling

each of these entries takes O(|S|) time. Hence, the time complexity = O(bmaxmW |S|).

The time complexity of the branch-and-bound algorithm, HS2 (see 2.2) is O(bmmax +m|S|).



47 3.3 Accelerating Column Generation

This is because, in the worst case, the branch-and-bound tree can be the complete bmax-ary

tree with height m and since at each level the list of |S| forbidden columns is distributed

among the nodes, the time required summed up for a level is |S|.

Hence, we see that if W < bnmax, in the worst case, dynamic programming solution works

better. On the other case, branch-and-bound algorithm works better.

3.3 Accelerating Column Generation

We mentioned in the section on our learning from literature survey (see 2.7) that one way

to improve the performance is to accelerate the column generation process while solving

the LP relaxation at any node in the branch and bound tree. For solving the LP relaxation,

initially, we take a very restricted or constrained form of the master problem with only few

columns enough to ensure the feasibility and gradually relax the formulation by adding

new columns. This is continued until we get an optimal solution. Any trickier formulation

to accelerate the finding of the optimal set of columns should make this relaxation process

faster.

To find such a formulation that relaxes the master problem, we thought of allowing the

demand of an item of smaller width be met by an item of larger width. Mathematically,

suppose we need to cut b1 number of items of width w1 and b2 number of items of width

w2 where w1 ≥ w2. We can relax this requirement by saying that we require b1 number of

items of width w1 and together b1 + b2 number of items of width either w2 or w1. This is

reasonable because if in the solution the demand of w2 is met by w1, we can easily replace

w1 by w2 in the corresponding cutting pattern though the cutting may not be optimal.

In the following section, we state the formulation formally. This scheme is named as

‘GoodPrice’ as we will see in section 3.3.2 that in the optimal solution to the dual of the

modified formulation, the variables are also in the same order as the widths of the items.

3.3.1 Formulation

Before stating the new formulation, let us restate the constraints of the original formula-

tion.

a1∗x ≥ b1 (3.6)

a2∗x ≥ b2 (3.7)

. . . (3.8)

am∗x ≥ bm (3.9)

where ai∗ is the ith row of the matrix A.



3. Our Contribution 48

If we apply the relaxation as described above, the constraints take the form

a1∗x
′ ≥ b1 (3.10)

(a1∗ + a2∗)x
′ ≥ b1 + b2 (3.11)

. . . (3.12)

(a1∗ + a2∗ + · · ·+ am∗)x
′ ≥ b1 + b2 + · · ·+ bm (3.13)

note that solution to the relaxed system may not be a solution to the original system and

that is why new variable x′ is used.

3.3.2 Proof of Correctness

It needs to prove that with the relaxed primal, the solution obtained at the end of column

generation process, the objective would be same as that objective that would have been

obtained if the relaxation was not used. We prove the correctness of the ‘GoodPrice’

using two lemmas.

Lemma 3.3.1 The ‘GoodPrice’ relaxation is equivalent to adding the constraint π1 ≥
π2 ≥ · · · ≥ πm in its dual.

Proof The relaxed formulation is equivalent to pre-multiplying both sides by a lower

triangular matrix L with all non-zero elements 1 i.e.

L =


1 0 . . . 0

1 1 . . . 0

. . . . . . . . . . . .

1 1 . . . 1

 (3.14)

Thus, the related master LP is

min 1Tx′ (3.15)

s.t. LAx′ ≥ Lb (3.16)

x′ ≥ 0 (3.17)

The corresponding dual is

max bTLTπ′ (3.18)

s.t. ATLTπ′ ≤ 1 (3.19)

π′ ≥ 0 (3.20)



49 3.3 Accelerating Column Generation

If we substitute LTπ′ by π, i.e., π′ = (LT )−1π, we have

max bTπ (3.21)

s.t. ATπ ≤ 1 (3.22)

(LT )−1π ≥ 0 (3.23)

However, (LT )−1 is given by

(LT )−1 =


1 −1 0 . . . 0

0 1 −1 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 1 −1

0 0 . . . 0 1

 (3.24)

The extra constraint (3.23) implies

π1 ≥ π2 ≥ · · · ≥ πm (3.25)

Lemma 3.3.2 The dual solution to the original formulation (1.1..1.3) implicitly satisfies

the constraints (3.25).

Proof We prove by contradiction. Suppose that the solution to the original formulation

(1.1..1.3) has two dual variables πk and πl such that πk < πl and wk ≥ wl. Suppose,

in the corresponding primal solution, xj > 0, where the pattern j contains the item k.

Let the column for the pattern j be given by [a1 . . . ak . . . al . . . am]T . Using

complementary slackness, in the dual, the constraint corresponding to pattern j is tight.

That means,

a1π1 + . . .+ akπk + . . .+ alπl . . .+ amπm = 1 (3.26)

However, since, wk ≥ wl if we replace each instance of item k in pattern j by an instance

of item l, we get a new valid pattern. The column for the new pattern is given by

[a1 . . . 0 . . . ak + al . . . am]T . The left hand of the corresponding constraint in

the dual is

a1π1 + . . .+ 0πk + . . .+ (ak + al)πl . . .+ amπm (3.27)

>a1π1 + . . .+ akπk + . . .+ alπl . . .+ amπm πl > πk (3.28)

=1 (3.29)

That means, the constraint in the dual is violated. That is not possible.



3. Our Contribution 50

The two lemmas 3.3.1 and 3.3.2 imply that with the extra constraint (3.25), we have, in

fact, added no extra constraint to the formulation. Hence, the solution obtained after

adding the extra constraints is same as that would have been obtained without adding it.

3.4 A Quick Heuristic Approach

The update to pseudo-cost in the sequential value correction method (section 2.4.2) is

adhoc in the sense it gives some arbitrary weight to the old and new values. We wanted to

come up with a more theoretically sound update scheme. Before describing the heuristic,

we give the following two propositions.

Proposition 3.4.1 Suppose b be the initial demand and x∗, y∗ be an optimal primal-dual

solution pair to the LP relaxation of the master problem. Let the rounded down primal

solution be x∗ and b′ be the residual demand. Then y∗ is also a dual LP optimal solution

the residual problem.

Proof Let fr(x) denote the fractional part of x, i.e. fr(x) = x − bxc. Then fr(x∗) is

a feasible solution to the residual primal LP. This is because Afr(x∗) = A(x∗ − x∗) =

Ax∗−Ax∗ ≥ b−Ax∗ = b′. Also, y∗ is a feasible solution to the dual because the constraints

in the dual remain same. Now from LP duality theorem,∑
j

x∗j = b.y∗

⇒
∑

j

x∗j +
∑

j

fr(x∗j) = b.y∗

⇒
∑

j,x∗
j >0

x∗j +
∑

j

fr(x∗j) = b.y∗

Using complementary slackness, the constraints in the dual corresponding to the non-zero

primal variables are tight. That means∑
i

y∗i aij = 1 ∀j, x∗j > 0

i.e., a∗j.y
∗ = 1



51 3.4 A Quick Heuristic Approach

Now

b′ = b−
∑

j,x∗
j >0

x∗ja∗j

⇒ b = b′ +
∑

j,x∗
j >0

x∗ja∗j

⇒ b.y∗ = b′.y∗ + (
∑

j,x∗
j >0

x∗ja∗j).y
∗

⇒ b.y∗ = b′.y∗ +
∑

j,x∗
j >0

x∗j(a∗j.y
∗)

⇒ b.y∗ = b′.y∗ +
∑

j,x∗
j >0

x∗j

⇒ b′.y∗ =
∑

j

fr(x∗j)

That means fr(x∗) and y∗ are a primal-dual solution pair for the residual problem. Hence

they must be an optimal pair.

Proposition 3.4.2 If y∗ is used for generating a new column solving the residual problem,

the optimal objective of the subproblem is ≤ 1.

Proof It is true otherwise the column generation would have picked this column before

stopping.

More over, if a column of objective 1 is chosen and a new residual problem is formed by

subtracting this column from the residual demand, there is a possibility that the optimal

LP objective of the new residual problem is 1 less than the optimal LP solution of first

residual problem. This implies that if can continue this process, eventually the LP solution

gets converted into a integer solution.

Using the above two propositions and the above observation we came up with the following

scheme for generating the heuristic solution.

1. Get the rounded down solution and form the residual problem

2. Generate a column selecting at random from the all possible columns with objec-

tive 1 using a modified version of the dynamic programming solver for the subprob-

lem

3. If the LP solution of the new residual problem after subtracting the generated

column satisfies the relationship mentioned in the above observation, recurse with

the new residual problem



3. Our Contribution 52

4. Otherwise, reject this new column and backtrack using an alternate column of ob-

jective 1

3.5 Summary

We discussed about an implementation of the basic branch-and-price algorithm. We also

implemented a scheme to accelerate the column generation process. An approach to get

heuristic solutions quickly was described.



Chapter 4

Experimental Results

In chapter 3, we discussed about the two ideas we worked on with an aim to improve the

performance of the branch-and-price based algorithms. In this chapter, we publish the

results of implementing the ideas on our implementation of the generic branch-and-price

algorithm.

One idea, named GoodPrice, is to modify the master formulation to accelerate the column

generation process so that an optimal LP relaxation is obtained quickly. We show the

result of implementing this idea in section 4.1. The results on the other idea to generate

quick heuristic solutions are provided in section 4.2.

It should be noted that for the solving the subproblem, we implemented the solver based

on the dynamic programming solution of BKPFS only. Hence, we do not show any results

for it.

4.1 GoodPrice Results

We measured the performance of the GoodPrice scheme on two sets of CSP examples. The

first set of examples were constructed randomly with item widths in the range 1..1, 000

and stock width 10, 000 such that the items fit exactly in two stocks. We call this set as

‘duplet’. The second set of example is a subset of the ‘hard28’ set of one dimensional bin

packing problems as given in Belov and Scheithauer [2006]. It can be noted that a bin

packing problem is an instance of the cutting stock problem where the items are ordered

in small quantities.

4.1.1 Results on ‘Duplet’ Set

In table 4.1 we show, as a first result, the performance improvement in solving the root

node master LP relaxation. It can be seen that GoodPrice based solution took on an

53



4. Experimental Results 54

average 54% less number of iterations compared to the simple column generation process.

However, the time taken is increased by 9% on an average. Increase in time is due to

the fact that the subproblem becomes harder to solve. However, we can anticipate that

the gain in using the scheme may fructify in the overall branch and price process where

the LP is not often solved to optimality. It can be seen that time to solve the master

LP relaxation is almost constant per iteration in both the cases. We will omit this in the

subsequent tables.

The improvement over all the nodes in the branch-and-bound tree is shown in table 4.2.

As we expected, except in two instances, the scheme generates faster solution. We see

that number of columns generated is lesser by 33%. The reduction of this percentage can

be explained by the fact that as we go deeper in the tree, the master LP becomes more

constrained and the effectiveness of the scheme reduces. On the other hand the time to

solve the subproblems also get reduced by around 33%. This increase in the percentage

improvement on the subproblem time can be explained by the fact that in the overall

solution the column generation is stopped early, if possible, so that the we do not need

to solve many ‘hard’ instances of the subproblem which are generally formed at the end

stage of the column generation process. Thus, overall, the time taken is reduced by 33%.

4.1.2 Results on ‘Hard28’ Set

The results for the ‘hard28’ set is given in Table 4.3. With our dynamic programming

solution to the BKPFS, it was not possible to solve the instances for integer solution. The

results correspond to solving the root only. It should be noted that, we have used the

Bounded Knapsack Solver (see the future works section 5.2.1) which is applicable only to

the root node where the forbidden set is empty. The number of iterations were reduced

by 28%. More reduction (44%) on the overall time is because of the faster subproblem

solver.

4.2 Quick Heuristic Results

The results on the quick heuristic is shown in Table 4.4. The result shows the quick

heuristic applied to ‘hard28’ set. Because of the limitation of the subproblem solver, we

measured the quantities only for getting the heuristic solution for the root node LP. All

except the last 5 are IRUP instances. Compared to the SVC approach of finding a heuristic

solution directly, our approach assumes that there is a solution of a particular value and

tries to find that. For that reason, we executed three sets of experimention. In the first

two case, we assumed that there is an IRUP solution. In the third we assumed that there

is a MIRUP solution. The difference between the first two is that in the first case we

tried with maximum 5 best solutions of objective 1 returned by the modified dynamic



55 4.2 Quick Heuristic Results

T
ab

le
4.

1:
E

x
p
er

im
en

ta
l
re

su
lt

fo
r

G
o
o
d
P

ri
ce

in
so

lv
in

g
th

e
ro

ot
n
o
d
e

of
‘d

u
p
le

t’

#
G

il
m

or
e

G
om

or
y

F
or

m
u
la

ti
on

G
o
o
d
P

ri
ce

%
G

ai
n

T
T

N
S

M
T

S
T

T
T

N
S

M
T

S
T

T
T

N
S

M
T

S
T

1
35

.3
2

16
3

0.
24

35
.0

8
25

.9
1

67
0.

11
25

.7
9

26
.6

4
58

.9
0

54
.1

7
26

.4
8

2
47

.7
4

16
0

0.
28

47
.4

6
36

.0
4

65
0.

10
35

.9
4

24
.5

1
59

.3
8

64
.2

9
24

.2
7

3
30

.8
7

14
4

0.
19

30
.6

8
39

.8
4

62
0.

08
39

.7
6

-2
9.

06
56

.9
4

57
.8

9
-2

9.
60

4
39

.0
7

11
9

0.
10

38
.9

8
36

.4
1

61
0.

06
36

.3
5

6.
81

48
.7

4
40

.0
0

6.
75

5
26

.0
8

15
8

0.
26

25
.8

2
23

.4
7

70
0.

11
23

.3
6

10
.0

1
55

.7
0

57
.6

9
9.

53
6

48
.5

2
16

3
0.

29
48

.2
2

60
.8

1
70

0.
12

60
.6

9
-2

5.
33

57
.0

6
58

.6
2

-2
5.

86
7

42
.0

6
14

2
0.

19
41

.8
7

49
.1

5
71

0.
10

49
.0

6
-1

6.
86

50
.0

0
47

.3
7

-1
7.

17
8

24
.2

7
13

3
0.

16
24

.1
1

44
.2

4
64

0.
10

44
.1

4
-8

2.
28

51
.8

8
37

.5
0

-8
3.

08
9

27
.2

1
16

4
0.

30
26

.9
1

23
.1

3
69

0.
12

23
.0

1
14

.9
9

57
.9

3
60

.0
0

14
.4

9
10

43
.7

1
16

1
0.

24
43

.4
7

49
.8

8
63

0.
10

49
.7

8
-1

4.
12

60
.8

7
58

.3
3

-1
4.

52

A
v
g

-8
.4

7
55

.7
4

53
.5

9
-8

.8
7

T
T

T
ot

al
T

im
e

N
S

N
u
m

b
er

of
S
u
b
p
ro

b
le

m
s

M
T

M
as

te
r

T
im

e
S
T

S
u
b
p
ro

b
le

m
T

im
e



4. Experimental Results 56

T
ab

le
4.2:

E
x
p
erim

en
tal

resu
lt

for
G

o
o
d
P

rice
in

com
p
lete

solu
tion

of
‘d

u
p
let’

T
est#

G
ilm

ore
G

om
ory

F
orm

u
lation

G
o
o
d
P

rice
%

G
ain

T
otT

im
e

N
u
m

S
u
b
p

S
u
b
p
T

im
e

T
otT

im
e

N
u
m

S
u
b
p

S
u
b
p
T

im
e

T
otT

im
e

N
u
m

S
u
b
p

S
u
b
p
T

im
e

1
154.102

228
132.344

70.152
115

59.368
54.48

49.56
55.14

2
136.669

195
118.063

111.547
167

95.486
18.38

14.36
19.12

3
74.489

128
63.292

52.271
89

44.491
29.83

30.47
29.71

4
88.142

199
75.361

34.222
79

29.226
61.17

60.3
61.22

5
98.206

158
83.205

103.198
158

88.298
-5.08

0
-6.12

6
172.663

232
149.861

107.371
159

92.314
37.81

31.47
38.4

7
135.140

205
116.135

104.355
154

90.146
22.78

24.88
22.38

8
78.149

139
66.108

30.974
55

26.202
60.37

60.43
60.37

9
141.133

213
121.192

165.234
211

143.957
-17.08

0.94
-18.78

10
264.561

326
230.102

82.525
119

71.068
68.81

63.5
69.11

A
v
g

33.147
33.590

33.054



57 4.2 Quick Heuristic Results
T
ab

le
4.

3:
E

x
p
er

im
en

ta
l
re

su
lt

fo
r

G
o
o
d
P

ri
ce

in
so

lv
in

g
ro

ot
n
o
d
e

of
‘h

ar
d
28

’

T
es

t#
G

il
m

or
e

G
om

or
y

F
or

m
u
la

ti
on

G
o
o
d
P

ri
ce

%
G

ai
n

T
ot

T
im

e
N

u
m

S
u
b
p

S
u
b
p
T

im
e

T
ot

T
im

e
N

u
m

S
u
b
p

S
u
b
p
T

im
e

T
ot

T
im

e
N

u
m

S
u
b
p

S
u
b
p
T

im
e

B
P

P
13

6.
39

2
80

3
0.

19
2

4.
16

8
66

9
0.

22
4

34
.7

94
16

.6
87

-1
6.

66
9

B
P

P
14

4
6.

77
2

78
1

0.
24

0
3.

62
8

51
8

0.
17

6
46

.4
26

33
.6

75
26

.6
68

B
P

P
17

8
7.

01
6

83
0

0.
18

0
3.

79
6

64
9

0.
25

6
45

.8
95

21
.8

07
-4

2.
22

3
B

P
P

18
1

4.
71

6
76

2
0.

19
6

2.
57

6
52

5
0.

16
4

45
.3

77
31

.1
02

16
.3

27
B

P
P

19
5

7.
07

6
77

7
0.

13
6

4.
13

2
53

8
0.

20
4

41
.6

05
30

.7
59

-5
0.

00
0

B
P

P
36

0
3.

70
0

59
7

0.
11

6
2.

16
4

45
9

0.
10

8
41

.5
14

23
.1

16
6.

89
4

B
P

P
40

5.
26

4
72

9
0.

18
8

2.
90

4
49

1
0.

12
4

44
.8

33
32

.6
47

34
.0

45
B

P
P

41
9

7.
98

1
87

6
0.

30
0

4.
33

2
65

3
0.

27
2

45
.7

14
25

.4
57

9.
33

4
B

P
P

47
5.

25
2

68
5

0.
09

6
2.

46
0

53
1

0.
08

8
53

.1
61

22
.4

82
8.

33
0

B
P

P
48

5
5.

41
2

78
3

0.
25

2
2.

65
2

52
1

0.
21

6
50

.9
98

33
.4

61
14

.2
85

B
P

P
53

1
4.

43
6

70
0

0.
10

8
2.

63
2

56
1

0.
09

6
40

.6
67

19
.8

57
11

.1
04

B
P

P
56

1
7.

95
7

78
3

0.
17

6
4.

76
8

53
7

0.
18

0
40

.0
70

31
.4

18
-2

.2
70

B
P

P
60

3.
49

6
64

4
0.

20
8

1.
94

8
47

0
0.

18
0

44
.2

79
27

.0
19

13
.4

61
B

P
P

64
0

4.
54

8
65

9
0.

11
6

2.
19

6
45

8
0.

08
8

51
.7

15
30

.5
01

24
.1

36
B

P
P

64
5

4.
50

8
68

0
0.

13
6

2.
87

6
48

3
0.

14
8

36
.2

02
28

.9
71

-8
.8

24
B

P
P

70
9

5.
98

8
74

5
0.

21
6

3.
73

2
54

4
0.

19
6

37
.6

75
26

.9
80

9.
26

4
B

P
P

71
6

4.
07

2
67

7
0.

12
8

1.
81

6
48

0
0.

08
8

55
.4

03
29

.0
99

31
.2

50
B

P
P

74
2

3.
31

6
59

4
0.

12
8

2.
00

4
44

5
0.

13
2

39
.5

66
25

.0
84

-3
.1

24
B

P
P

76
6

4.
20

0
69

2
0.

22
0

1.
99

6
45

1
0.

17
6

52
.4

76
34

.8
27

20
.0

00
B

P
P

78
1

9.
15

3
85

8
0.

22
8

7.
08

0
74

3
0.

22
8

22
.6

40
13

.4
03

-0
.0

03
B

P
P

78
5

7.
15

2
84

9
0.

25
6

4.
45

2
61

3
0.

22
8

37
.7

52
27

.7
97

10
.9

36
B

P
P

81
4

5.
22

8
67

2
0.

10
4

1.
88

8
39

7
0.

12
0

63
.8

87
40

.9
23

-1
5.

39
2

B
P

P
83

2
3.

27
2

61
8

0.
18

4
2.

24
4

45
7

0.
16

4
31

.4
18

26
.0

52
10

.8
71

B
P

P
90

0
7.

39
6

86
9

0.
29

2
3.

87
6

59
8

0.
25

2
47

.5
93

31
.1

85
13

.6
98

B
P

P
11

9
6.

82
4

83
8

0.
22

8
3.

62
0

60
0

0.
23

2
46

.9
52

28
.4

01
-1

.7
55

B
P

P
14

3.
21

2
59

2
0.

20
4

2.
11

2
45

4
0.

16
4

34
.2

47
23

.3
11

19
.6

06
B

P
P

17
5

6.
90

8
85

7
0.

24
4

3.
66

4
60

8
0.

16
4

46
.9

60
29

.0
55

32
.7

88
B

P
P

35
9

4.
60

8
69

5
0.

14
4

2.
38

0
52

6
0.

17
6

48
.3

51
24

.3
17

-2
2.

22
1

B
P

P
71

6
4.

05
6

67
7

0.
15

2
1.

81
2

48
0

0.
12

8
55

.3
25

29
.0

99
15

.7
90

A
v
g

44
.2

58
27

.5
34

5.
73

5



4. Experimental Results 58

programming solver for the subproblem. In the second case, we tried with maximum 10

best solutions.

It can be seen from the table that assuming IRUP, we could not find any solution. How-

ever, assuming MIRUP, we got solutions for all except 1. It can be also seen that the SVC

also got the same solution. The quick heuristic could find the solution in lesser number

of iterations. By iterations, we mean the number of extra patterens generated in the

heuristic procedure. However, it can be mentioned that we could have also altered the

SVC to look for MIRUP solution. Thus we can conclude that the quick heuristic solution

is no better than the SVC.

4.3 Summary

We showed the results for the two ideas we worked on. The GoodPrice scheme is shown

to improve performance by 33%. The quick heuristic approach does not improve solution

compared to the SVC method.



59 4.3 Summary

T
ab

le
4.

4:
E

x
p
er

im
en

ta
l
re

su
lt

fo
r

q
u
ic

k
h
eu

ri
st

ic

T
es

t#
L
P

V
al

u
e

IP
V
al

u
e

S
V

C
IR

U
P
,
B

es
t

5
IR

U
P
,
B

es
t

10
M

IR
U

P
,
B

es
t

5

H
eu

S
ol

It
er

s
H

eu
S
ol

It
er

s
H

eu
S
ol

It
er

s
H

eu
S
ol

It
er

s

B
P

P
13

69
.9

99
67

68
80

0
n
o

13
n
o

25
68

16
97

B
P

P
14

4
73

.0
00

73
74

70
0

n
o

1
n
o

1
74

10
9

B
P

P
17

8
79

.9
95

80
81

50
0

n
o

12
n
o

15
81

37
B

P
P

18
1

71
.9

99
72

73
60

0
n
o

3
n
o

16
73

49
B

P
P

19
5

63
.9

96
64

65
10

00
n
o

10
n
o

19
65

36
8

B
P

P
36

0
62

.0
00

62
63

80
0

n
o

1
n
o

1
63

32
41

B
P

P
40

58
.9

99
59

60
50

0
n
o

4
n
o

2
60

96
B

P
P

41
9

79
.9

99
80

81
50

0
n
o

1
n
o

3
81

12
3

B
P

P
47

71
.0

00
71

72
80

0
n
o

1
n
o

1
72

25
80

B
P

P
48

5
70

.9
97

71
72

50
0

n
o

6
n
o

8
72

18
7

B
P

P
53

1
83

.0
00

83
84

50
0

n
o

1
n
o

1
84

33
30

B
P

P
56

1
71

.9
96

72
73

11
01

n
o

8
n
o

15
73

30
1

B
P

P
60

62
.9

98
63

64
50

0
n
o

4
n
o

8
64

50
B

P
P

64
0

74
.0

00
74

75
40

0
n
o

1
n
o

1
75

14
9

B
P

P
64

5
57

.9
99

58
59

70
0

n
o

2
n
o

1
59

50
B

P
P

70
9

67
.0

00
67

68
70

0
n
o

1
n
o

1
68

18
8

B
P

P
74

2
64

.0
00

64
65

70
0

n
o

1
n
o

1
65

25
5

B
P

P
76

6
61

.9
99

62
63

60
0

n
o

3
n
o

5
63

48
B

P
P

78
1

70
.9

99
71

72
60

0
n
o

1
n
o

5
n
o

11
B

P
P

78
5

67
.9

94
68

69
80

0
n
o

19
n
o

47
69

10
3

B
P

P
83

2
59

.9
98

60
61

60
0

n
o

6
n
o

9
61

97

B
P

P
11

9
76

.0
00

77
77

80
0

77
90

B
P

P
14

60
.9

98
62

62
70

1
62

10
8

B
P

P
17

5
83

.0
00

83
84

60
0

84
11

98
B

P
P

35
9

74
.9

98
3

76
76

60
0

76
15

1
B

P
P

71
6

75
.0

00
0

76
76

40
0

76
41





Chapter 5

Conclusions and Future Works

In this chapter, we conclude our report. In section 5.1, we give a summary of the tasks we

were able to achieve. The future works that can be undertaken are described in section

5.2.

5.1 Conclusions

We studied some of the branch-and-price based algorithms existing in literature for solving

the one dimensional cutting stock problem. We came to the conclusion that a better

branch-and-price based algorithm, should have following properties:

1. It solves the LP relaxation at each node efficiently.

2. It solves the subproblem faster.

3. It obtains better and quick heuristic solutions.

4. It implements tighter LP relaxation, at least, for the non-IRUP instances.

With this finding, we worked on the following

1. An implementation of the generic branch-and-price algorithm in which the subprob-

lem was solved by a dynamic programming algorithm.

2. Worked on a scheme, named GoodPrice, to accelerate the solution of the LP relax-

ation using column generation method

3. A quick heuristic solution

The GoodPrice scheme was found to improve performance by 33%. However, the quick

heuristic approach did not improve solution and performance compared to the SVC

method.

61



5. Conclusions and Future Works 62

5.2 Future Works

Our implementation is a good starting point. However, this basic implementation is not

as fast as the implementation existing in the current literature. Hence, though our new

technique gives better performance over our base performance, it is not good overall.

Thus, a faster base implementation is urgently needed. Also, we have few more ideas

which are supposed to improve the overall performance but could not implement. Those

need to be implemented. There are few directions where further research may improve

the algorithms. In this section we mention all of them.

Depending on the difficulty we classify the future works into three categories. Short term

goals are the ones which are urgently needed and can be easily implemented. Medium

term goals are the ones which are not totally new but will require more research. Long

term goals are on using ideas which are comparatively new and there is a hope that they

may improve the performance further.

5.2.1 Short Term Goals

Improvement of the base implementation is the need of the hour. We found out that

the slow performance is mainly because of the dynamic programming solution to the

subproblem in the form of a Bounded Knapsack Problem with Forbidden Solution. We

have to make sure that there are no implementation issues. For that an analysis of the

implementation is needed. We have already thought of an improvement on the dynamic

programming solution. We tried the implementation of the bounded knapsack solver

of Pisinger [2000] for solving the subproblem on the root node where the forbidden set

is empty. We found out significant improvement on the performance. It makes the

subproblem solver around 800 times faster. The algorithm also solves the problem using

dynamic programming but significantly reduces the number of states explored by using

dominance relation on the states and an upper bound on the objective over a set of states.

We have also figured out that similar dominance relation and bounding is applicable even

when there are forbidden sets. We need to implement them.

We also have some reservations on the performance of solvers used in COIN-OR. We did

some experimentation and found out that the CPLEX LP solver is around 4 times faster

and the CPLEX IP solver is around 40 times faster on the problems generated on the CSP

instances we experimented. We should try to setup our implementation to work using

the CPLEX solvers. Also, we may have to come up with a branch-and-bound framework

specific for our need unlike the generic branch-and-bound framework of COIN-OR.

One of the few things that we wanted to do is to have a clear idea about the exact impact

of different tricks or choices used by the implementations existing in the literature on the

overall performance. Some of them is easy to figure out. However, some are not. For

example, Degraeve and Peeters [2003] with branching on single variables claims to have



63 5.2 Future Works

performance similar to that of Vanderbeck [1999] which implements branching using a

set of columns. From this we can not conclude whether one branching scheme is better

than the other. The best thing should be to implement both the approaches and make

the comparison. For that, we need to have an experimental setup where we can generate

random instances of varying difficulty as followed in many of the existing literature.

5.2.2 Medium Term Goals

We have seen that using cutting planes to tighten the LP relaxation at a node in the

branch-and-bound tree is one of the most recent ideas for improvement. We thought

about strengthening cutting planes used in Belov and Scheithauer [2006]. We thought

that we should first form an integer solution, say v using the current columns. Then

add cut a by lower bounding the current solution by v. This is a tight constraint on

the restricted master. We also thought of correspondingly modifying the subproblem.

However, we found that the integer solution to the restricted master (an instance of the

set cover problem) is hard to find.

Our experimentation on ‘GoodPrice’ and on the quick approach showed that one of the

most challenging problem in branch-and-price algorithms is to devise mechanisms so that

after we solve the restricted master problem, the dual variables get assigned sensibly, i.e.

the pseudo-costs gets assigned sensibly to the various items. Cutting planes also help

in reassigning the dual variables. Thus, thinking about this directly might be useful in

general for developing cutting plane like ideas.

5.2.3 Long Term Goals

It seems that the solution to the Gilmore-Gomory formulation depends on the structure

of the corresponding knapsack problem. Even we can totally omit the master problem

and restate the cutting stock problem as finding minimum k such that the demand vector

bi can be expressed as sum of k integer points in the knapsack polytope. The dependence

on the knapsack polytope is evident from the following fact stated in Baum and Trotter Jr

[1981].

Proposition 5.2.1 (Baum and Trotter Jr [1981]) A CSP instance satisfies IRUP iff

the corresponding knapsack polyhedron has integral decomposition property. A polyhedron

P ⊆ Rn
+ has integral decomposition property if for every integer k, any integral vector in

the polyhedron {kx | x ∈ kP} can be expressed as sum of k integral vector in P .

Thus, one possible direction of research would be to get a proof of the conjecture on

MIRUP of CSP instances so that the insight gained will help in improving the branch-

and-price algorithms we described in this report. However, this may require significant

effort.





References

S. Baum and L. E. Trotter Jr. Integer Rounding for Polymatroid and Branching Opti-

mization Problems. SIAM Journal on Algebraic and DiscreteMethods, 2:416–425, 1981.

G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional

stock cutting and two-dimensional two-stage cutting. European journal of operational

research, 171(1):85–106, 2006.

Z. Degraeve and M. Peeters. Optimal Integer Solutions to Industrial Cutting-Stock Prob-

lems: Part 2, Benchmark Results. INFORMS Journal on Computing, 15(1):58–81,

2003.

Zeger Degraeve and Linus Schrage. Optimal integer solutions to industrial cutting stock

problems. INFORMS J. on Computing, 11(4):406–419, 1999. ISSN 1526-5528.

A. A. Farley. A note on bounding a class of linear programming problems, including

cutting stock problems. Operations Research, 38(5):922–923, 1990.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock

problem. Operations Research, 9:849–859, 1961.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock

problem - part ii. Operations Research, 11:863–888, 1963.

E. Horowitz and S. Sahni. Computing Partitions with Applications to the Knapsack

Problem. Journal of the ACM (JACM), 21(2):277–292, 1974.

E. Johnson and M. W. Padberg. A note on the knapsack problem with special ordered

sets. Operations Research Letters, 1:18–22, 1981.

D. Pisinger. A Minimal Algorithm for the Bounded Knapsack Problem. INFORMS

Journal on Computing, 12(1):75–82, 2000.

D.M. Ryan and BA Foster. An integer programming approach to scheduling. Computer

Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pages

269–280, 1981.

65



REFERENCES 66

P.H. Vance. Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Prob-

lem. Computational Optimization and Applications, 9(3):211–228, 1998.

P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser. Solving binary cutting stock

problems by column generation and branch-and-bound. Computational Optimization

and Applications, 3(2):111–130, 1994.

F. Vanderbeck. Computational study of a column generation algorithm for bin packing

and cutting stock problems. Mathematical Programming, 86(3):565–594, 1999.

F. Vanderbeck and LA Wolsey. An exact algorithm for IP column generation. Operations

Research Letters, 19(4):151–159, 1996.


