Improving Branch-And-Price Algorithms
For Solving One Dimensional Cutting Stock
Problem

M. Tech. Dissertation

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology
by

Soumitra Pal
Roll No: 05305015

under the guidance of

Prof. A. G. Ranade
Computer Science and Engineering
IIT Bombay

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Mumbai

Acknowledgements

I would like thank my guide Prof. Abhiram Ranade for his guidance throughout this
work. Without his support this work would not have been done.

I would also like to thank my parents, brother and sisters for their support all the time.

I would also like to acknowledge the generous support provided by my department and
my institute.

Soumitra Pal
Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

111

Abstract

Branch-and-price is a well established technique for solving large scale integer program-
ming problems. This method combines the standard branch-and-bound framework of
solving integer programming problems with Column Generation. In each node of the
branch-and-bound tree, the bound is calculated by solving the LP relaxation. The LP
relaxation is solved using Column Generation.

In this report, we discuss our project on improving the performance of branch-and-price
based algorithms for solving the industrial one-dimensional cutting stock problem. In
the early part our project, we studied several branch-and-price based algorithms that
are available in the literature for solving the cutting stock problem. We write down our
findings from the study in this report. In the later part of the project, we worked on a
few ideas to improve the performance of the algorithms. We publish the results in the
report. We conclude the report by giving some directions for future works.

Contents

Acknowledgements
Abstract
1 Introduction
1.1 One Dimensional Cutting Stock Problem
1.2 Gilmore-Gomory Formulation
1.3 Column Generation
1.4 Branch-and-Price
1.5 A Generic Branch-and-Price Algorithm
1.5.1 Imitialization oo
1.5.2 LP Solution Using Column Generation
1.5.3 Rounding Heuristic L.
1.5.4 Branching
1.5.5 Node Selectiono
1.5.6 Summary
1.6 Branch-Cut-Price
1.7 Conjectured Property of Gilmore-Gomory Formulation
1.8 Organization of the Report
1.8.1 Literature Survey
1.8.2 Our Contribution L
2 Literature Survey

2.1 Branching Constraints and Modified Subproblem

vil

iii

10
10
11
11
11
11

13

2.1.1 Conventional Branching on a Single Column 14

2.1.2 Branching on a Set of Binary Columns 15
2.1.3 Branching on a Set of Columns With Item Bounds 18
2.1.4 Branching on a Set of Columns with Item Lower Bounds 24
2.2 Solution to Modified Subproblem 26
2.3 Node Selection 29
2.4 Heuristic Solutions 30
2.4.1 Common Rounding Heuristics 30
2.4.2 A Sequential Heuristic Approach 31
2.5 Lower Bounds for Early Termination of Column Generation 32
2.6 Cutting Plane Algorithm 33
2.6.1 Gomory Fractional and Mixed-Integer Cuts 34
2.6.2 Cutting Planes without Branching 35
2.6.3 Cutting Planes with Branching 35
2.6.4 Modification to Subproblemo 36
2.6.5 Solution to Subproblem L. 37
2.6.6 Concluding Notes on the Cutting Plane Algorithm 41
2.7 Conclusions of Literature Survey 42
2.8 Summary 43
Our Contribution 45
3.1 COIN-OR Based Implementation 45
3.2 Dynamic Programming Solution to Subproblem 45
3.3 Accelerating Column Generation 47
3.3.1 Formulation 47
3.3.2 Proof of Correctness L. 48
3.4 A Quick Heuristic Approach 50
3.5 Summary ... 52
Experimental Results 53
4.1 GoodPrice Results 53

4.1.1 Results on ‘Duplet’ Set 53

4.1.2 Results on ‘Hard28 Set 54
4.2 Quick Heuristic Results o 54
4.3 Summary 58
Conclusions and Future Works 61
5.1 Conclusions 61
5.2 Future Works L 62
5.2.1 Short Term Goals 62
5.2.2 Medium Term Goals 63
5.2.3 Long Term Goals 63

1X

List of Tables

1.1 An instance of the 1D cutting stock problem 2
1.2 All possible valid cutting patterns for the example 1D CSP problem 3
4.1 Experimental result for GoodPrice in solving the root node of ‘duplet’ . . . 55
4.2 Experimental result for GoodPrice in complete solution of ‘duplet’ 56
4.3 Experimental result for GoodPrice in solving root node of ‘hard28 57
4.4 Experimental result for quick heuristic 59

x1

Chapter 1

Introduction

Branch-and-price is a well established technique for solving large scale integer program-
ming problems. This method, combines the standard branch-and-bound framework of
solving integer programming problems with ‘Column Generation’. In each node of the
branch-and-bound tree, the bound is calculated by solving the LP relaxation. The LP
relaxation is solved using Column Generation. In this report, we discuss our work on
improving the performance of the branch-and-price based algorithms for solving the in-
dustrial one-dimensional cutting stock problem.

In this chapter, we introduce the cutting stock problem and give an overview of how
the problem is solved using branch-and-price. In section 1.1, we describe the problem.
We give an integer programming formulation for solving the problem in section 1.2. As
it is generally done, the first attempt should be to solve the problem by solving its LP
relaxation. The main issue in solving the LP relaxation is the huge number of columns
in the formulation. In section 1.3, we discuss how this issue is taken care of using Col-
umn Generation. Converting the LP solution to an integer solution is another difficult
challenge. This is solved by using branch-and-price method described in section 1.4. We
give the outline of a generic branch-and-price algorithm and its subtasks in section 1.5.
Branch-and-price can be combined with the cutting plane approach of solving integer pro-
gramming problems. This is described briefly in section 1.6. By the end of that section,
the reader may have a fair introduction to the problem. Before concluding the chapter
we state a conjectured property of the Gilmore-Gomory formulation in section 1.7.

We conclude the chapter by providing an outline of the rest of the chapters in section 1.8.
In subsection 1.8.1, we give an overview of the literature survey that we conducted in the
initial phases of the project. We give a brief discussion of our contribution in subsection
1.8.2.

1. INTRODUCTION 2

1.1 One Dimensional Cutting Stock Problem

The cutting stock problem arises from many physical applications in industry. For ex-
ample, in a paper mill, there are a number of rolls of paper of fixed width (these rolls
are called stocks), yet different manufacturers want different numbers of rolls of various
smaller widths (these rolls are called items). How should the rolls be cut so that the least
amount of left-overs are wasted? Or rather, least number of rolls are cut? This turns
out to be an optimization problem, or more specifically, an integer linear programming
problem. The problem can be formally stated as:

e Input:

— Stock width, W
— Set of item widths, {wy,ws, ..., wy,}

— Set of demands, {b1,bs,...,b,}
e Output:

— Minimum number of stocks, z, required to satisfy the demands

— The cutting patterns, {A;, Ao, ..., A.}, such that each pattern A; = (ay;, ag;j, - .
fits in a stock, i.e. > 1" ajjw; < W forall j =1,...,z. a;; denotes the number
of instances of item ¢ that are obtained if the stock is cut in pattern j.

There are different well-known variants of the cutting stock problem, with different width
stocks, stocks cut in two dimension etc. However, we consider only the stated form of the

problem.

Example Let us consider an instance of the problem. The stocks have width W = 10
inches. There are orders for m = 4 different items as given in Table 1.1.

Table 1.1: An instance of the 1D cutting stock problem

i | Width of items w; (inches) | Quantity ordered b;

1 3 9

2 5 79
3 6 90
4 9 27

: >amj)

3 1.2 GILMORE-GOMORY FORMULATION

1.2 Gilmore-Gomory Formulation

The cutting stock problem is commonly solved using the following formulation introduced
by Gilmore and Gomory [1961, 1963]. The possible valid cutting patterns are enumer-
ated beforehand. The patterns are described by the vector (a;,--- ,a;j,- - , @) Where
element a;; represents the number of instances of item ¢ obtained in cutting pattern j.
Let z; be a decision variable that designates the number of rolls to be cut according to
cutting pattern j.

min z:ij (1.1)

jeJ

s.t. Zaijxj > bi, 1= 1,2,--~m (12)
jeJ

x; integer and > 0, VielJ (1.3)

where J is the set of valid cutting patterns. For the given example, the valid cutting
patterns are shown in Table 1.2

Table 1.2: All possible valid cutting patterns for the example 1D CSP problem

Ji Validity ajj G; Q35 Q4j
1110 > 9 1 0 0 0
2110 > 6 0O 1 0 0
3110 > 6+3 0O 1 0 1
4110 > 5 0 0 1 0
5110 > 545 o 0 2 0
610 > 5+3 0o 0 1 1
7110 > 3 0o 0 0 1
8110 > 3+3 o 0 0 2
9/10 > 3+34+3, 0 0 0 3

As an initial attempt, the formulation is solved using the LP relaxation. For the given
example, optimal LP solution, z = 156.7, corresponds to =7 = 27, 25 = 90, xf = 39.5.
This result is not useful because cutting a pattern fractionally does not make sense.
However, solving the LP relaxation is important. Later, in section 1.5, we will see that
we need to solve the LP relaxation in each node of the branch-and-bound tree to obtain
the integer solution.

1. INTRODUCTION 4

1.3 Column Generation

Solving the LP relaxation is also not easy. The difficulty originates due to the huge
number of valid patterns (and hence huge number of variables) involved in the instances
commonly encountered in the industry. For example, if the stock rolls are 200 in. wide
and if the items are ordered in 40 different lengths ranging from 20 in. to 80 in., then the
number of different patterns may easily exceed 10 or even 100 million. In that case, the
solution may not be tractable.

An ingenious way of getting around this difficulty was suggested by Gilmore and Gomory
[1961, 1963]. The trick is to work with only a few patterns at a time and to generate new
patterns only when they are really needed. The rationale is that, in the final solution, most
of the variables would be zero anyway. This process is called delayed column generation.
Here, we give a brief description of the process.

We first see how the pricing step in the revised simplex method works. In this step,
one non-basic variable replaces one basic variable so that the value of the cost function
improves. Let us consider the following LP,

Zip= min 'z s.t. Ax = b, r e RY.
and its dual
Wyp = max b s.t. ATr > ¢, T e R™.

We assume that rank(A) = m < n, so that all the redundant equations have been removed
from the LP. Let A = (@41, a2, - , @4n) Where a,; is the jth column of A. Since rank(A)
= m, there exists an m x m nonsingular submatrix Ag = (ag,,ap,, - ,ap,,). Let J =
{1,2,---,n}, B={B1,Bs, -+ ,Bn}, and N = J\ B. Now permute the columns of A so
that A = (Ap, Ay). We can write Az = b as Agrp + Anyxy = b, where x = (x5, 2N).
Then a solution to Ax = b is given by xg = A,}lb and zxy = 0. If we move from one
solution x to another 2/, reduction in cost is

e’ — e = chaly + chaly — chap — chay
= chaly + cnaly — cEAS'D replacing values of zp and zy
= ch(AG'b — AF Analy) + chaly — cEAG' 2 s also a solution of Ax = b

= (cn — cpdp An)ly

We can see that, as xy increases, the cost function goes up or down depending on the
sign of the reduced cost vector ¢ = (¢, — c5Az' Ay)T in parentheses. In each iteration of
the simplex method, we look for a non-basic variable corresponding to which the reduced
cost component is negative and bring it into the basis. That is, given the dual vector
7 = (c5AZY)T (because it feasible to the dual), we need to find the cost-improving non-

5 1.3 CoLUMN GENERATION

basic variable. One way to find this out is to calculate the minimum of all components of
the reduced cost vector and take it if it is negative. Thus we need to find

arg min{¢; = ¢; — 7 a.;|j € N} (1.4)

If the columns in Ap are also considered in calculating reduced cost vector, corresponding
components in the reduced cost becomes 0. Thus, inclusion of the basic columns does not
change the decision. The equation (1.4) can be re-written as

arg min{¢; = ¢; — 7w a.;|j € J} (1.5)

An explicit search of j from J may be computationally impossible when |J| is huge.
Gilmore and Gomory showed that the searching j from J explicitly is not necessary. If we
look carefully, it is not j that we are interested. Rather, we are interested in the column
a,; that can replace one column of the basic matrix Ap. In practical applications, these
columns often represent combinatorial objects such as paths, patterns, sets, permutations.
They follow some embedded constrains i.e. a,; € A, where A represents the constrained
set. For example, in the cutting stock problem with Gilmore-Gomory formulation, each
column represents a cutting pattern, which must satisfy the knapsack constraint - sum
of widths of items in a particular cutting pattern must not exceed the width of the stock
rolls.

Thus, in practice, one works with a reasonably small subset J C J of columns. The
problem with this smaller set of columns is called restricted master problem (RMP).
Assuming that we have a feasible solution, let ¥ and 7@ be primal and dual optimal
solutions of the RMP, respectively. When columns a,;, j € J, are given as elements
of a set A and the cost coefficient ¢; can be computed from a,;, ¢; = c(a,;), then the
subproblem or oracle

¢ =min{c(a) — 7' ala € A} (1.6)

gives answer to the pricing problem. For the cutting stock problem, ¢; = 1,Vj € J and
the set A is given by the constraint

Zaijwi S W, V] eJ (17)

i=1

Thus, for the cutting stock problem, the subproblem is

m m
maxZﬁiai s.t. Zaiwi <W, a; integer and > 0 (1.8)
i=1 i=1

The new column is added to the RMP and the process is continued. The process stops

1. INTRODUCTION 6

when no more new column with negative reduced cost can be found. That implies, the
optimum is reached.

This technique of starting with a basic set of columns and generating more columns as and
when necessary is known as Delayed Column Generation or simply Column Generation.

1.4 Branch-and-Price

The values of x;s (we say x}) may not be all integer in the optimal solution of the LP
relaxation. In that case, we can round each zj down to the nearest integer and obtain a
solution close to actual integer solution. The residual demands of items which are not met
due to rounding down can be found by brute-force. In our example CSP (see Table 1.1),
rounding each z down to nearest integer gives value of z = 157 which fortunately matches
with the optimal integer solution. There is no guarantee that this process will always give
an optimal integer solution. If the items are ordered in small enough quantities, then the
patterns used in the optimal integer valued solution may be quite different from those
used originally in the optimal fractional valued solutions.

However, this difficulty is solved by using a method commonly known as branch-and-
price. Here, the trick is to combine the delayed column generation with the standard
branch-and-bound algorithm for solving integer programs.

The idea of a branch-and-bound algorithm is as follows. If the LP solution of the problem
is not integral, then split the solution space into multiple subspaces so that the frac-
tional solution is eliminated from all the subspaces, recursively solve the problem on the
subspaces and take the best out of them. Moreover, if there is an ‘indication’ that the
problem on a subspace can never be better than the best solution found so far, then skip
recursing on that subspace. The recursion takes the form of a tree. This tree is known as
branch-and-bound tree.

In case of a minimization problem, the ‘indication’ can be obtained from the LP relaxation
of the problem. The LP solution acts as a global lower bound on the integer solution on
the current subspace in consideration. Thus, if the global lower bound is greater than the
best integer solution found so far, we can safely discard current subspace.

1.5 A Generic Branch-and-Price Algorithm

Here, we give the outline of a generic branch-and-price algorithm for the cutting stock
problem. Actual implementations differ in the details of the individual steps of this generic
algorithm.

1. Solve the problem with a heuristic solution. The incumbent is set with this solution.

7 1.5 A GENERIC BRANCH-AND-PRICE ALGORITHM

The incumbent represents the best solution found so far. Let this solution be the
set of columns in the RMP.

2. Form a branch and bound tree with a single node in it representing the entire solution
space. Mark this node undiscovered and unexamined. A node is ‘discovered’” means
its lower bound is already calculated. The node is ‘examined’ only if it is processed
completely.

3. Choose an unexamined node in the branch and bound tree. If no examined node
exists go to 6. If the node is discovered, go to 5, else go to 4.

4. (Node is undiscovered)

(a) Get a lower bound LB on the solution space represented by the node. It is
done by solving the LP relaxation using column generation.

(b) Find a feasible integer solution X for the current node. If X is less than
incumbent, let incumbent = X. It can be noted that if X = LB, it is the
optimal integer solution for the subtree under the current node. However,
this may not be the final integer solution because there can be better integer
solutions on other branches not under the current subtree. Hence, mark the
node only as discovered. Go to step 3.

5. (Node is discovered)

(a) Mark this node examined.

(b) If the lower bound value LB at this node is > incumbent, there is no need to
explore this subtree and hence go to step 3.

(c¢) Otherwise, divide the solution space at the node into two sets such that the
current fractional solution is eliminated from both, create two nodes for the
two solution subspaces, add them to the branch and bound tree, and mark
both undiscovered and unexamined. This step is known as branching. Go to
step 3.

6. Stop, incumbent gives the optimal solution value.

This is a very rough outline of a branch-and-price algorithm. We discuss the subtasks in
the following subsections. However, the algorithms available in literature differ in detailed
implementation of the subtasks. We discuss about them in chapter 2.

1.5.1 Initialization

The steps 1 and 2 are the initialization steps. At each branch-and-bound node, an initial
feasible LP solution is required to start up the column generation procedure. The step 1
sets up the feasible solution for the root node.

1. INTRODUCTION 8

One simple solution is to start the column generation procedure using an “unit matrix”,
i.e., a matrix made of one column for each item with a single non-zero entry, a; = [W/w;].
This initial solution, however is generally not good in terms of number of master iterations
and columns generated. So, one uses better heuristic solutions such as well know Fast Fit
Decreasing (FFD), Best Fit Decreasing (BFD) etc for the Bin Packing problem. It can
be noted that a bin packing problem is an instance of the cutting stock problem where
the items are ordered in small quantities.

1.5.2 LP Solution Using Column Generation

In step 4a, the LP is solved using column generation. The standard column generation
procedure described in section 1.3 is followed here.

However, one of the main problems of solving integer programming problems using branch-
and-price is the tailing-off effect or slow convergence of the column generation process at
each node. It takes many iterations without much improvement in cost, particularly, at
the end to get the optimal LP solution. This is a waste if the solution thus obtained is
not included in the final solution. Moreover, the main objective of solving the LP is to
obtain a lower bound on the optimal integer solution on the subspace corresponding to
the current node. It will be enough if this objective is met.

Fortunately, it is generally not necessary to solve the LP to optimality to get the lower
bound. The idea is as follows. Let us first describe the problem of slow convergence
formally. Let z}p be the integer solution to the problem on the space corresponding to
node u. Let 2}, be the corresponding LP solution. Then z}, is a lower bound on zyp.
However, at an intermediate step of column generation, we have only the LP solution
for the restricted master problem, z} . Unfortunately, z}p is not a lower bound on 2} p,
rather it is an upper bound on z} . Thus we can not use it as a lower bound on zj, until
we have reached the end of column generation when z}, = 27} p.

Let us know describe how this problem is solved. The solution is based on the theorem
in Farley [1990], which states that if ¢ is the objective of the subproblem solved last, then
Z¥p/¢ < z¥p. Thus the value z},/¢ can be taken as a lower bound on z}p. The column
generation is terminated when the value exceeds the current incumbent. However, the
algorithms in the literature uses lower bounds even tighter than this.

1.5.3 Rounding Heuristic

In step 4b of the generic algorithm, a heuristic solution is obtained from the LP solution.
A rounding heuristic is a procedure that attempts to find a “good” integer solution by
“rounding” the current integer solution. The difference between this heuristic and the
heuristic used at the initialization step is that this time we are more equipped to get the

9 1.5 A GENERIC BRANCH-AND-PRICE ALGORITHM

solution as we have already solved the LP relaxation. The performance of the branch-
and-price depends on the goodness of the rounding heuristic. If this heuristic solution is
good, we can quickly fathom the nodes whose LP relaxations themselves are higher than
this heuristic solution.

Here, the standard procedure consists of the following steps. First, round down the
fractional solution. Then, reduce demands by subtracting the columns that are fixed in
the rounding down procedure. Finally, solve the problem with residual demands using
some heuristic or exact procedure. The residual demands are generally small and can be
solved comparatively faster.

1.5.4 Branching

In step 5c of the generic algorithm, the branching is performed. The challenge in formu-
lating a branching rule is to find a scheme of separation of the feasible solution space.
The scheme is applied successively at each node of the branch and bound tree eliminating
fractional solutions. The scheme should have the following properties:

e It should exclude the current fractional solution and validly partition the solution
space of the problem. In addition, an effective branching scheme should partition
the solution space equally.

e There should be a guarantee that a feasible integer solution will be found (or infea-
sibility proved) after a finite number of branches.

e The branching makes the subproblem complex. This is because the subproblem
must ensure that the column invalidated by the branching rule is not regenerated.
This, in turn, makes sure that column generation can still be used to solve the more
restricted LP relaxation at the descendant nodes. A good branching scheme should
keep the master and subproblem tractable.

1.5.5 Node Selection

In step 3, a node from the set of active nodes are selected. The performance of a branch-
and-price algorithm also depends on the node selection strategy. The common practice
are the following

e Best first search (bfs): A node is chosen with the weakest lower bound (promising
best solution). The goal is to improve the global lower bound which is the minimum
of local bounds of all unprocessed leaves. However, the problem is that if the bound
improves slowly, the search tree grows considerably.

1. INTRODUCTION 10

e Depth first search (dfs): This rule chooses one of the deepest nodes in the tree. The
advantages of dfs are the small size of the search tree and fast re-optimization of the
subproblem. Also feasible solutions are found very quickly. The main disadvantage
is that the global lower bound stays untouched for a long time resulting in bad
solution guarantees, which leads to long optimality proof. Another drawback is if a
wrong branch is chosen around the top, considerable time is spent in exploring the
subtree which goes waste. For IRUP 1D-CSP instances, the correct LP bound is
known from the beginning so pure dfs are quite efficient.

e Diving from a bfs node: This is a hybrid approach. At the beginning some number
of nodes are chosen according bfs and after that their children are processed in the
dfs fashion.

1.5.6 Summary

An implementation of the generic branch-and-price algorithm should implement all the
tasks described above. However, if we have to explore different implementation of the
same algorithm, we should look for the following

1. How does the algorithm implements branching? How are the branching constraints
derived? How is the corresponding subproblem modified? How is the subproblem
solved?

2. On what criteria, the algorithm should pick one unexamined node when there are
several candidates?

3. How are the heuristic solutions obtained from the current LP solution? This also
includes the heuristic used to obtain the initial solution.

4. How does it solve the slow convergence of the column generation?

In chapter 2, when we study the algorithms available in literature, we see how these issues
are taken care of by them.

1.6 Branch-Cut-Price

One of the alternative approaches of getting integer solution from the LP solution is to add
constraints (called cuts) one by one to the LP relaxation to eliminate fractional solutions
until an integer solution is found. This type of algorithms are known as cutting plane
algorithms. It is also possible to combine branch-and-price with cutting plane methods.
The combined approach is known as branch-cut-price. In this method, in addition to the

11 1.7 CONJECTURED PROPERTY OF GILMORE-GOMORY FORMULATION

standard branch-and-price procedures, the LP relaxation in each node are made tighter
by adding cuts.

By this time, the reader may have a reasonably fair introduction of the problem we are
going to solve, the standard branch-and-price algorithm for solving it and some higher
level details of its subtasks. However, before concluding this introduction, we state a
property of the Gilmore-Gomory formulation which will be used in the report.

1.7 Conjectured Property of Gilmore-Gomory For-
mulation

An instance of an integer (minimization) programming problem I P satisfies Integer Round-
Up Property (IRUP) if the relation Z;p = [Zp]| holds where Z;p and Zp are the integer
and LP optimal solutions respectively. Corresponding, the instance is also called an IRUP
instance. If an instance does not satisfy IRUP, it called a Non-IRUP instance.

An instance of an integer (minimization) programming problem [P satisfies Modified
Integer Round-Up Property (MIRUP) if the relation Z;p < [Zpp| + 1 holds. In other
words, for an instance satisfying MIRUP, the integrality gap is strictly less than 2.

It is conjectured that the following proposition holds.

Conjecture 1.7.1 All instances of the cutting stock problem with Gilmore-Gomory for-
mulation satisfy MIRUP.

With this background created, we give an overview of the rest of report.

1.8 Organization of the Report

1.8.1 Literature Survey

In chapter 2, we report our findings from the survey of a few branch-and-price algorithms
and a branch-cut-price algorithm. Though the algorithms in literature implement the
generic branch-and-price algorithm described in section 1.5, they differ in the detailed
implementation of the subtasks. We study them and provide a summary.

1.8.2 Our Contribution

Though a considerable amount of time was spent in the literature survey, we were able
come up with an implementation of the generic branch-and-bound algorithm and exper-

1. INTRODUCTION 12

imented with a few alternative approaches to solve some of the subtasks of the generic
branch-and-price algorithm. We tried the following ideas:

e accelerating the column generation procedure by modifying the master problem
formulation

e solving the subproblems using a dynamic programming algorithm.

e obtaining a heuristic integer solution quickly from the LP solution of the master
problem

We provide details of the implementation of these ideas in chapter 3 and present the
experimental results in chapter 4.

We conclude the report in chapter 5. There, we also mention how our work can be
extended in future.

Chapter 2

Literature Survey

In chapter 1, we described the generic branch-and-bound algorithm to solve the 1D cutting
stock problem. We provided a brief description of the different subtasks of this generic
algorithm. We also mentioned that the algorithms existing in the literature differ in the
details of the implementation of the subtasks. In this chapter, we give the details of
the algorithms we studied. The literature we covered are mainly Degraeve and Schrage
[1999], Degraeve and Peeters [2003], Vance et al. [1994], Vance [1998], Vanderbeck [1999].
Instead of describing these publications one after another, we discuss them according to
the subtasks of the generic algorithm. In each of the sections 2.1 through 2.5, we discuss
one of the subtasks.

In section 2.1, we discuss the branching rules and the corresponding modification to the
subproblems. We start with a simple scheme of branching on a single variable in subsection
2.1.1. A special branching scheme for the binary cutting stock problem is discussed in
subsection 2.1.2. Two different implementations of the branching in general CSP are
provided in subsections 2.1.4 and 2.1.3. Both of them use a set of variables for branching
but differ in the choice of the variables.

In section 2.2, we discuss the solutions to the modified subproblems. Node selection is dis-
cussed in section 2.3. In section 2.4, we describe rounding heuristics. The commonly used
rounding heuristics are mentioned in subsection 2.4.1. In subsection 2.4.2, we describe
another rounding procedure named as Sequential Value Correction method. Section 2.5
describes the intermediate lower bounds used for early termination of column generation.

In section 2.6, we discuss a branch-cut-price algorithm provided in Belov and Scheithauer
[2006]. We provide our conclusion from the survey in section 2.7. There, we mention the
tasks that we identified to improve the performance of branch-and-price algorithms.

13

2. LITERATURE SURVEY 14

2.1 Branching Constraints and Modified Subproblem

We start with the two most important subtasks of the generic branch-and-price algorithm
— (i) Devising branching constraints and (ii) Solving the modified subproblem. Since the
form of the subproblem is determined by the branching rules, in this section, we mention
the different branching decisions that are followed in literature and the corresponding
subproblem formulations. The solutions to the subproblems are described in the section
2.2.

2.1.1 Conventional Branching on a Single Column

The obvious choice for branching is to branch on a single fractional variable. Degraeve
and Schrage [1999], Degraeve and Peeters [2003], and Vance [1998] used this scheme.

Branching Scheme

Branching is done on a single fractional variable, say z; = «, « is fractional, by adding a
simple upper bound z; < |«] at the left branch and a simple lower bound z; > [a] at
the right branch.

Modified Subproblem

We need to take care of the effect of this branching in the corresponding subproblem.
We discuss the effect on the two branches separately. The effect on the right branch is
easier to handle. Since, in this case, x; for the column j is > [«], adding the constraint is
equivalent to reducing the demand vector by the column j multiplied by [«| and solving
the residual problem. The residual problem can be solved as if it is a new problem. We do
not need to modify the subproblem at all. If the same column j appears in the solution
of the residual problem with a value (3, we make z; = [a/] + § in the final solution.

The problem comes in the left branch where an upper bound on the decision variable
is added. Since the variable is forcefully upper bounded, it is quite possible that the
column corresponding to the variable will once again be generated by the subproblem.
This is because, according to the new dual prices of the new restricted master, it may
still be an optimal column. The subproblem should make sure that it does not regenerate
this ‘forbidden’ column. As new nodes are created, more forbidden columns are added
to master LP. We formalize the subproblem in a general node, as a Bounded Knapsack
Problem with Forbidden Solutions (BKPFS). The details are given below.

15 2.1 BRANCHING CONSTRAINTS AND MODIFIED SUBPROBLEM

Bounded Knapsack Problem with Forbidden Solutions (BKPFS)

Let us consider the problem where a knapsack of capacity W should be filled using m given
item types, where type ¢ has a profit m;, weight w;, and a bound b; on the availability. A
configuration is a set of items whose weight-sum does not exceed capacity. A configuration
can be represented by a = (a1, as,...,a,), a; € {0,1,....b;}, Y7 wia; < W. We are
also provided with a forbidden of set configurations S = {A;, As, ..., A,}. The problem is
to find out a configuration such that the profit-sum of the included items is maximized and
it is not in the forbidden set. The Bounded Knapsack Problem with Forbidden Solutions
(BKPFS) may thus be defined as the following Integer Programming problem:

max Z T, (2.1)
i=1

s.t. Zwiai <W (2.2)
i=1
a; €{0,1,...,b;} Vie{l,2,...,m}

(a,a9,....am) ¢ S

2.1.2 Branching on a Set of Binary Columns

Vance et al. [1994] pointed out the following problem of conventional branching using a
single variable. The branching rule does not divide the set of feasible solutions into two
subsets of approximately equal size. The reason is as follows. The division of feasible
solutions may be thought of equivalent to the division of the set of new columns that may
get generated by the subproblem. On the right branch, the variable is lower bounded
and the corresponding residual problem is generally smaller. Since the demand vector
is reduced considerably, number of possible new columns that may be generated by the
subproblem is small. However, on the left branch, since the variable is upper-bounded,
we can not think of such a residual problem. Only one pattern is excluded, leading to a
problem that is restricted not more than the one at the parent node.

Vance et al. [1994] introduced a new scheme of branching for the binary cutting stock
problem (BCS). Here, the demand for each item is 1 i.e. b; = 1Vi. Also, they modified the
Gilmore-Gomory formulation by making all inequality constraints as equality constraints.
The formulation is the following:

min 2z = Zajj (2.5)
jeJ
st Y aym;=1b;, i=1,2,--m (2.6)
jeJ
x; integer and > 0, VjelJ (2.7)

2. LITERATURE SURVEY 16

We claim that, this change in formulation does not alter the optimal integer solution. For
that, we prove the following proposition.

Proposition 2.1.1 Let 2’ be an optimal integer solution to the Gilmore-Gomory formu-
lation and x" be an optimal integer solution to the modified formulation. Then), ;x); =

eJ g
"
ZjeJ Ly

Proof Since every feasible solution to the modified formulation is also a solution to the
JjeJ ;‘I'
columns selected by solution z’ and get another set of columns z’” such that number of
columns does not change though it becomes feasible for the modified formulation. Thus

dier Ty = ;) = > iy oy, This completes the proof. [

. . , . .
Gilmore-Gomory formulation, >, 2} < > ;2. Again, we can reduce items from

Branching Scheme

The branching rule is based on the following proposition:

Proposition 2.1.2 (Ryan and Foster [1981]) If any basic solution to the master LP
relaxation for BCS is fractional, then there exists rows k and l of the master problem such
that

0< Y <l (2.8)

j:akal,aljzl

Proof Let z; be a fractional variable and k be any row with ay; = 1. Let us consider
the kth constraint of the form (2.6). We have ZJEJ ag;x; = by = 1. Now agjxj is one of
the terms in the left hand side with ax;; = 1 and z; fractional. Since all the coefficients
are either 0 or 1, there must be at least one more term ayj»x;» such that ay;» = 1 and x;»
fractional. Now consider the two columns j' and j”. Since they are different and have 1
at row k, there must be one row [where they differ. Without loss of generality, assume

that a;;; = 1 and a;;» = 0. Thus we have the following derivation.
1= E AR5 T4
jeJ
= g T because coefficients are either 0 or 1
j€J|akj:1
== E l’j + E [L’j
j€J|akj:l,alj:1 j6J|akj:l,alj:0

> Z X

j€J|Cij=1, alj=1

17 2.1 BRANCHING CONSTRAINTS AND MODIFIED SUBPROBLEM

because z;» is among the omitted terms and we know it to be fractional and hence strictly
greater than 0

>0

because z ;s is among the retained terms and we know it to be fractional and hence strictly
greater than 0. |

Suppose, we find the pair k,[using proposition 2.1.2. Then, it is possible to branch on
the set of variables {x; | ax; = 1, a;; = 1} by creating two new nodes

x; <0 and r;>1 (2.9)
Z J Z J

Jlag;=l,a;;=1 Jlag;=1l,a;;=1

The branching constraints have the following implication. On the left branch, all the
columns having 1 at both the rows k£ and [must be set to zero. Further more, no column
which satisfies this property should be generated by the subproblem. On the right branch
the branching constraint along with the fact that only one column satisfies the demand
of one item (because of the equality constraints in the formulation) implies that if any
non-zero column has a 1 at one of the rows k£ and [must have 1 at the other row.

It can be seen that the branching scheme separates the solution space into subsets of
approximately equal size. On the left branch only columns with 1 at only one of row k
and row [or none, are valid. On the left branch only columns with 1 at both row k£ and
row [or none, are valid. These two sets are approximately of equal size unlike in the case
of branching on a single variable.

Modified Subproblem

We discuss the right branch first. There a, the new column generated, should satisfy
ay = a;. This can be done by replacing the two items k£ and [by an item of width wy 4+ wy,
and profit m, + 7.

Solving the subproblem on the left branch, however, is trickier. There, the new column
generated should not have 1 at both the rows k& and [. This can be enforced by adding
the constraint a; + a; < 1 to the subproblem.

However, at a node, deep in the branch and bound tree, there might be branching con-
straints of both types. So the subproblem formulation should have modified item sets (as
done on the right branch) as well as several constraints of the form a, + a; < 1 (as done
on the left branch). Let us assume that branching decision at each step is represented by
the pair (k,1). Each node is associated with a set B of such pairs. Thus, in general, the
subproblem looks like the following.

2. LITERATURE SURVEY 18

max Zﬂgai (2.10)
i=1

s.t. Zw;ai <W (2.11)
i=1

ar+a; <1 V(k,l) €eB (212)

a; € {0,1} Vi=1,...,m' (2.13)

where m’ denotes the modified item count, 7’ and w’ are the modified profit and weight
vectors. We call this formulation Binary Knapsack Problem with Conflicting Item Pairs
(BKPCIP).

2.1.3 Branching on a Set of Columns With Item Bounds

In the general cutting stock problem, the demand for items can possibly be more than 1.
Hence, the column coefficients and right hand sides are general integers. The branching
scheme used by Vance et al. [1994] based on the proposition 2.1.2 is not applicable when
the master problem contains general integer values. Hence, the same branching rule can
not be applied.

However, it seems that the basic spirit of the proposition 2.1.2 may be continued in the
general CSP too. The key idea is to find a set of columns J € J with a ‘special property’
such that the sum of the variables corresponding those columns is fractional, say equal to
a. We can, then, have the following branching scheme.

ij < |af and ij > [a] (2.14)

jeJd jed

Simultaneously, the ‘special property’ should also make sure that the modified structure
of subproblem, as per this branching, still remains solvable. The modification is required
because, the columns characterized by the ‘special property’ has fractional sum of values.
However, in both the branches, we have added the constraints that the sum should not
be fractional. We have to make sure that the subproblem does not generate the columns
with this ‘special property’. In this report, we describe two implementations of this idea.
One of them, Vanderbeck [1999] is described in this subsection. The other, Vance [1998]
is described in subsection 2.1.4.

Vanderbeck [1999] implemented branching based on a set of bounds on the number of
instances of a particular item present in a column. We call such a bound as an item
bound constraint (IBC) on a column. Let J be the set of columns present in the current
master and a € J be such a column. An item lower bound constraint is of the form a; > v.

19 2.1 BRANCHING CONSTRAINTS AND MODIFIED SUBPROBLEM

The constraint is denoted by a triple 5 = (i, >, v), wherei € 1,...,m and v € N. Similarly
an item upper bound constraint is of the form a; < v and denoted by g = (i, <,v). Let
J(B) = {a € J | a satisfies §}. The complement of the IBC 3, denoted by (3¢, has the
inequality > replaced by < and vice versa. It is easy to see that J(8) N J(5¢) = @ and
J(B)U J(B°) = J. Let B be a set of IBCs (possibly having either type). J(B) is defined
to be the set of columns that satisfy all IBCs in B, i.e., J(B) = NgepJ ().

Vanderbeck [1999] showed that given any master fractional solution, it is possible to find a
set of IBCs B such that the columns which satisfy all the constraints in B, have fractional
sum. Moreover, the cardinality of B is small. This fact is stated in proposition 2.1.3. We
use the notation f(B) to denote the sum of fractional parts of all columns satisfying all
constraints of B, ie., f(B) = > ;cyp 2 — [z;]. [is the sum of fractional parts of all
columns in J. In an other way f = f(9).

Proposition 2.1.3 Given a fractional solution x to the master LP relaxation, there exists
a set of IBCs B of size at most (|log f| + 1) such that ;¢ ;) x; is fractional.

Before going to the proof, let us think about the significance of the proposition. One could
argue that without finding any IBCs, we get the set of columns (trivially all columns in
the current master) whose sum is fractional (provided we have not got an solution such
that the sum is integer). But in that case, if we use the set of columns for branching, then
we get the worst branching. This is because all the integer feasible solutions are on one
side of the branch. On the other hand, one could go to the other extreme of using a single
fractional column and finding out set of IBCs, B, such that only that column satisfies B,
and branch accordingly. However, in that case cardinality of B might be huge. Since the
computation for branching, both in the master and the subproblem, depends on |B], it
is better to have a small B with fractional) jes(p) Tj- Proposition 2.1.3 addresses that
need.

Let us now have the proof. The proof is by construction. It is based on the following
lemma which helps us find out the set of IBCs with smaller cardinality.

Lemma 2.1.4 Suppose, we are given a set of IBCs B such that f(B) > 1. There ezists
a IBC 3 ¢ B such that 0 < f(BU{S}) < f(B)/2.

Proof of Lemma 2.1.4 Since f(B) > 1, there exist at least two columns a,;,, a.;, €
J(B) such that z;, — [z;,] > 0 and z;, — [z;,] > 0. Since the two columns are different,
there must be a row on which they differ. Let r € {1,...,m} be that row. Without loss
of generality let a,;, < a,j,. Let v = [(a,j, + a,j,)/2]. Consider the IBC g = (r,<,v)
and its complement ¢ = (r,>,v). Then a,;, € J(BU{f}) and a.;, € J(B U {5°}).
Thus f(BU{8}) > z;, — |x;,] > 0 and f(BU{5°}) > x;, — |xj,] > 0. Again, since
f(B) = f(BU{B})+ f(BU{B°}), the smaller of f(BU{3}) and f(BU{3°}) has value
< f(B)/2. The corresponding IBC i.e. BU {3} or BU {3} is the required IBC. |

2. LITERATURE SURVEY 20

Proof of Proposition 2.1.3 Here we mention the idea without giving a formal proof.
We start with empty B. As we keep on using Lemma 2.1.4 to add new IBCs, the f value
reduces by half. Thus after at most (|log f| + 1) steps, f value reduces to less than 1
which is definitely fractional. Since, in each step one IBC is added, | B| is upper bounded
([log f] + 1). In general, we may get B with fractional f(B) early. However, we can not
prove it. This is because, in the proof of Lemma 2.1.4, we show f(BU{f3}) or f(BU{3°})
to be greater than 0 but not necessarily fractional. |

Branching Scheme

The proposition 2.1.3 provides the foundation for branching. Suppose, we have got the
set of IBCs B and the columns J(B) that satisfy all constraints in B. Let ao = Z]EJ(B) xj.
We create two branches by adding branching constraint ;. ;5 z; < [@] to the master
LP on the left branch and), ;p 2; > |a + 1 on the right. We call these branching
constraints as of type-G and type-H respectively. It should be noted that these branching
constraints are different from the IBCs. The branching constraints are added to master
LP. However, IBCs are on the column elements and help find out the set of columns
on which the branching happens. The link between them is that each of the branching
constraints is associated with a set of IBCs.

Let us, now, think about the modified master LP relaxation at some node u in the branch-
and-bound tree. Depending upon the path from root node to it, it will have some type-G
and some type-H constraints. Let us partition the branching constraints into sets G* and
H" according to their types. Thus the master LP relaxation at u takes the form

min) x; (2.15)

jeJ

s.t. Zaixj > b, i=1,...,n (2.16)

jeJ

Y oz < Kc VC € G* (2.17)
j€J(Bc)

> a;>Le VC e H" (2.18)
Jj€J(Bc)

z; >0 jeld (2.19)

where C' denotes a branching constraint. If it is of type-G, its right hand side is denoted
by K¢; otherwise, by L. Be denotes the set of IBCs associated with C.

21 2.1 BRANCHING CONSTRAINTS AND MODIFIED SUBPROBLEM

Modified Subproblem

It can be noted that the master LP has more constraints. In fact, it has m + |G"| + |H"|
number of constraints. If a new column is generated, it should have m + |G*| 4+ |H"|
entries. The first m, as in root node LP, are for the number of instances of the items
included in the pattern corresponding to the column. However, the rest are 0/1 values
such that they would have been the coefficients of the branching constraints in the column
if the pattern were already present in the master LP. If we look for a column of negative
reduced cost, the objective of the column generation subproblem takes the following form:

max imai — Z ego + Z vohe (2.20)
i=1

CeGv CeHv

where (7, u,v) € R™HEHH] is an optimal dual solution to the master LP. Negative
coefficients are due to the opposite direction of inequalities in G*.

Let us now consider the constraints of the subproblem. The constraint on a;s is the usual
knapsack capacity constraint. In addition, we have to make sure that if the new pattern
satisfy all the IBCs associated with the branching constraint C', then the corresponding
entry in the new column, (g¢ or Ao which actually represents the coefficient of the branch-
ing constraint C' in that column if it were already present in the master LP), must be 1;
0 otherwise.

Thus the constraints in subproblem look lie the following

i=1
1, ifa € J(Bo)
= v “ 2.22
ge { 0, otherwise Ced (222)
1, ifa e J(Bo)
he = H" 2.2
¢ { 0, otherwise vee (223)

However, we need to express the logical constraint a € J(B¢) using one or more lin-
ear constraints. For that, we express the logical constraint as logical AND of smaller
constraints as follows

a € J(Be) <= Ngepe(a € J(B)) <= Nz wepe(ali] = v) N\ Ai<wese(ali] <v)

For each of the smaller logical constraint 3 € Be we need to use a variable nz € {0,1}.
Then we need to find the linear relationship among go (he) and the ngs. However,
since the signs of objective of go and h¢ are different, we derive the corresponding linear
constraints differently.

2. LITERATURE SURVEY 22

For go the objective is negative. So if we can provide a lower bound on g¢ it will be
enough, because the solver will anyway try to make it as low as possible so that the
objective is maximized. We add the lower bound as follows

ge =>1— 2(1—776)

BeBc

The lower bounds on the variables for smaller constraints are added as follows

(a;nax_v_i_ 1)77g > (CLi —U‘|‘1) VB (i72>v) € BC
?}’I’}BZU—CLZ' \V/ﬁE(Z'7<,U)EBC

max

where a* = min{b;, | - |} denotes the maximum possible value of a;.

On the other hand, it is enough to provide an upper bound on ho. We add the upper
bound as follows

he < ng V3 € Be
The upper bounds on the variables for smaller constraints are added as follows

vng < a VB = (i,>,v) € Be
(amax — v+]_)77ﬁ S af“ax — a; \V/ﬁ = (27 <7U) € BC

7

Thus the consolidated form of the subproblem is the following

max Zﬁiai — Z Hedo + Z vehe (2.24)
i=1

cegu CeHv
s.t. Zaiwi <Ww (2.25)
i=1
go>1— Z (1 =) VBc € G* (2.26)
BeBc
(@™ —v+1)ng > (a; —v+1) V@ = (i,>,v) € Be, VBe € G (2.27)
g > v —a; VB = (i,<,v) € Bo, VB € G* (2.28)
he <ng V3 € Be, VBe € H* (2.29)
g < a; V@ = (i,>,v) € Be, YBe € H* (2.30)
(@™ —v+1)ng < a™ —q; V@ = (i,<,v) € Be, VBc € H* (2.31)
a; €{0,1,..., a5 i=1,....,m (2.32)
(2.33)

7756{0,1} V3 € Be, VBe € GYU H*

23 2.1 BRANCHING CONSTRAINTS AND MODIFIED SUBPROBLEM

Simpler Branching Scheme

A simpler branching scheme can be designed if the columns of the master LP are stored
as binary columns. This is because, if the column elements are binary, the IBCs take the
form 5 = (i,>,1) or § = (i,<,1). This is equivalent to saying that § = (a; = 1) or
B = (a; = 0). This can be denoted in short as = (i, 1) or § = (4,0). This also simplifies
the way the subproblem is formulated.

Before going to further details, let us see how binary columns can be obtained. The
binary equivalent ¢’ € {0, 1}m/ of a general column a € N™ can be obtained by using
the conversion as follows. Let, m’ = > m;, where m; = [log(a™* + 1)] and a™>
denotes the maximum possible value of a;. The elements of a and a’ have the relation
a; = ;iio_l 2! a;)iﬂ, Vi=1,...,m, where p; =1+ Z;;i my. The equivalence between a
and a’ is represented by a < a’. To avoid confusion, from now on, we will use i to index
a and [to index a'.

We need to extend some of the symbols used earlier to be applied on the converted binary
columns. Let B be a set of IBCs on the binary columns. J(B) is defined to be the set of
columns in the master LP, that satisfy all IBCs in B, i.e., J(B) ={a € J|a < d, a] =
0v(l,0) € B, and a; = 1V(l,1) € B}.

With this new definition of IBCs, Proposition 2.1.3 still holds. However, the proof in
Lemma 2.1.4 need to be slightly modified for this. Let the binary representation of the
two columns used there be the following. a.;, < a;jl, Ayjy < a;jQ. Since the two columns
are different, there must be a row in the binary representation, on which they differ. Let
L € {1,...,m'} be that row. Without loss of generality let aj; = 0 and a;;, = 1. Then
B =(1,0) and 3¢ = (I,1). The rest of the proof remains same.

Let us now think about the branching. The scheme and master LP formulation at a node
u after branching remain same because the change is encapsulated in the way the IBCs
C € Bg, VBe € G*U H" are stored.

Simpler Modified Subproblem

As before, the objective of the column generation subproblem have the form:

max Zmai — Z Hege + Z vohe (2.34)
i=1

CeGu CeHv

However, since all the IBCs are on the binary representation of the column, we change the
pattern a to its equivalent binary form a’. The objective and item weights are changed
as follows. m = 2Fm;, w) = 2%w;, Vl=p; +k, k=0,...,m; —1,and i = 1,...,m. Thus

2. LITERATURE SURVEY 24

the modified objective is

> mar— > pege+ Y vehe (2.35)
=1

CeGu CeHv

Now we add constraints for the IBCs. For each of the smaller logical constraint § € Beo
we do not need extra variables ng. For g = (1,b),b € {0,1}, we can directly use a]. As
done previously, we derive the corresponding linear constraints for go and h¢ differently.
We provide a lower bound on g¢ as follows

go>1— Z a; — Z (1—a)

(l,O)EBC (l,l)EBC

On the other hand, we add an upper bound on h¢ as follows

he < (1—a) Vv (1,0) € Bc
he < a V(l,1) € Be

Thus, the subproblem takes the following final form

Zﬂfaf — Y nege+ Y vohe (2.36)

CeGu CeHv
Z Wl < (2.37)
pz—i-mz—l
Z Ql*pz‘a; < a;nax Vi = {1, . ,m} (2.38)
l=p;

gc = 1— Z a; — Z (1—a)) vC e G* (2.39)

(1,0)eBe (L1)eBe

he < (1—a) V(l,0) € Be, VC € H* (2.40)
he < q V(l,1) € Bo, VC € H* (2.41)
a; € {0,1} Vi=A{1,...,m'} (2.42)

2.1.4 Branching on a Set of Columns with Item Lower Bounds

In subsection 2.1.3, we saw a branching scheme based on a set of item bound constraints
(IBCs). There, the IBCs were of both lower and upper bounds. However, it seems
that using lower bounds only, it is possible to develop branching. The branching scheme
proposed in Vanderbeck and Wolsey [1996] is such a special case of the scheme described
in 2.1.3. In this scheme the set of IBCs B consists of IBCs of the form § = (i,> v).

25 2.1 BRANCHING CONSTRAINTS AND MODIFIED SUBPROBLEM

However, the size of B may be larger than |log f| + 1.

Vance [1998] implemented a branching scheme which is a special case of using item lower
bound constraints (ILBCs). Before going further, let us restate the scheme using ILBCs.
We find a set of ILBCs B such that

> T, =« (2.43)

J|V(@E,>v)€B, ajj>v

is fractional and branch accordingly. Now we discuss the implementation in Vance [1998].

Branching scheme

In the implementation, Vance [1998], assumed that only maximal cutting patterns are
allowed in the master problem. By maximal, we mean that the waste left after cutting
this pattern is shorter than the width of the smallest item. In other words, no more item
can be added in the pattern. We now prove that this assumption does not alter optimal
integer solution to the problem.

Proposition 2.1.5 Let x’ be an optimal integer solution to the Gilmore-Gomory formu-
lation and " be an optimal integer solution to the formulation restricted with mazximal
columns. Let J' and J" be the set of columns respectively. J" C J'. Then Zjej/ =

"
2 ey

Proof Since every feasible solution to the restricted formulation is also a solution to the
Gilmore-Gomory formulation, s T < > jeqn . Now suppose, there is a column in
2" which is not maximal. Then, we can go on adding instances of the smallest item till
we get an maximal column. Thus get another set of columns x” such that number of
columns does not change though it becomes feasible for the modified formulation. Thus

dien Ty = e =D i m ;. This completes the proof. [

Vance [1998] utilized another fact from Vanderbeck and Wolsey [1996] that if only maximal
columns are used in the master problem, any fractional column can define the set of ILBCs
B. It can be explained as follows. Suppose, xj is a fractional column. The B consists of
all ILBCs of the form (i, >, a;) such that a; > 0. Since xy is maximal, no other column
satisfies all ILBCs in B. Thus >,y ;>) en, ayy >0 L3 = Tk 18 fractional.

Modified Subproblem

It can be noted that the branching scheme is the same as the conventional branching
where only a single variable is used for branching. Only difference is that the columns
are maximal. Thus, the subproblem takes the form of a BKPFS (see 2.1.1) with extra

2. LITERATURE SURVEY 26

condition that only maximal configurations are valid. We call this form of the subproblem
Bounded Maximal Knapsack Problem with Forbidden Solutions (BMKPFS).

The fact that the columns are maximal makes solving the subproblem easier. We discuss
the advantage of using maximal columns in solving the subproblem in subsection 2.2.

This brings us to the end of the discussion on the different branching schemes we studied.
We now describe the different approaches to solve the subproblem.

2.2 Solution to Modified Subproblem

In section 2.1, we saw that depending upon the branching scheme, we need to solve the
subproblem in one the following forms

e bounded knapsack problem with forbidden solutions (BKPFS), as discussed in sub-
section 2.1.1

e binary knapsack problem with conflicting item pairs (BKPCIP), i.e., with con-
straints of the form a; + a; < 1, discussed in subsection 2.1.2

e general integer programming problem with sets of item bound constraints that does
not have any special structure (so far unknown), discussed in subsection 2.1.3

e BKPFS with the extra constraint of maximal configurations (BMKPFS), discussed
in 2.1.4

One of them can not be solved with out general integer programming problem solver. The
others have special structure and can be solved using specialized algorithms. We discuss
the solvers that we studied.

Solution to BKPFS

In general, the problem is solved by modifying the branch-and-bound based algorithm
implemented by Horowitz and Sahni [1974] that solves a bounded knapsack algorithm
without any forbidden set. We call the implementation as HS1 algorithm. We, first, state
the algorithm and then modify it to work with forbidden set too.

The HS1 algorithm enumerates the solution space by considering items in the order of
non-increasing profit density (; /w;). This order is well known as ‘greedy order’. However,
before exploring a branch, it calculates a upper bound on the profit on that branch. If the
bound is not greater than the best solution known so far, it does not explore that branch.
The bound is calculated as follows. Let at the current node in the enumeration tree, the
algorithm has already fixed items 1,...,s where s < m with the values aq,...,a,. An

27 2.2 SOLUTION TO MODIFIED SUBPROBLEM

upper bound, based on the LP bound, corresponding to the current partial solution a is

U= Z 771‘&1' + (W - Z ’LUZ&l) 7TS+1/’LU5+1 (244)
i=1

i=1

given by

A pseudocode for the algorithm is given in Algorithm 1.

Algorithm 1: HS Algorithm
Input : An instance (m; W;w;m;b) of the bounded knapsack problem
Output: An optimal solution vector a

1 Initialize: s=1, M =0, a; =0, forallt=1,...,m
2 repeat
3 if (M <U(a)) then
4 s=s+1
/* Update partial solution x/
A~ . —1 A~
5 as = min{bs, (W — > 7771 w;a;) /ws}
6 If a is an improvement, save it in a
/* Backtrack to next unfathomed soln in the enumeration
order */
7 Find maximum & < s such that a; > 0,
s=k

as = a5 — 1

10 until (s ==1) ;

To work with forbidden set, the algorithm is modified as follows. Just before updating
a by a better solution a, it is searched in the forbidden set. a is updated only when the
search fails, i.e., a is not in the forbidden set. The modified algorithm is called HS2.

Solution to BKPCIP

Vance et al. [1994] replaces the constraints due to the conflicting item pairs by a graph.
The graph has a node for each of the items and an edge between two the nodes which
are conflicting. We call this graph the constraint graph. Without the constraints, the
subproblem takes the form of the standard 0/1 knapsack problem. However, we have
to modify the knapsack solver such that the solution does not contain conflicting items.
Vance et al. [1994] shows that an efficient implementation for such a modification is
possible in the special case where the edges in the constraint graph are non-overlapping
(without common node). However, if the special property is not met, Vance et al. [1994]
solves the problem using a general integer programming solver. We now describe the
implementation in the special case.

When there is no overlapping edge, the problem can be formulated as a Binary Knapsack

2. LITERATURE SURVEY 28

Problem with Special Ordered Sets (BKPSOS). A special ordered set (SOS) is a set of

variables among which at most one can be non zero. The formulation is as follows:

max Z Z 5 Lij (245)

jJjeL iESj

JEL i€S;
» ay < Vj €L (2.47)
iGSj

z;; € {0,1} VieS;, jel (2.48)
where Sjs, j € L are the SOSs. Each edge constraint is represented by a SOS of size 2
and each disconnected nodes is represented by SOSs of size 1.

Vance et al. [1994] used a modified version of the HS1 algorithm (see Algorithm 1) to
solve the BKPSOS. We call this modified algorithm HS3. The modification is as follows:

e The greedy ordering of the variables is replaced by an ordering of the SOSs as
defined below:

T Tij | . .
where, L = max { -|i€ Sj}Vj €L (2.49)

i Wi

e Enumeration is done by adding at most one item from each SOS to the current
solution.

e The upper bound is calculated using the LP relaxation ! of the residual BKPSOS
as follows

j=1 €S8, J=114€S;

JP(S,W) denotes the LP relaxation of the BKPSOS containing the set of SOSs S
and knapsack size W.

e While backtracking, before going back to the previous SOS set, the item inserted
last is removed from the current solution and another item (if any) in the current
SOS is considered (if it was not done already).

Solution to BMKPFS

The solution to the subproblem should address the following

Wance et al. [1994] used an efficient algorithm, as given in Johnson and Padberg [1981], to get this
value

29 2.3 NODE SELECTION

1. the new patterns generated should be maximal

2. no forbidden configuration should be generated

To address these issues, Vance [1998] modified algorithm HS1 (see subsection 2.2). We
call this modified algorithm HS4. The modification is as follows.

e The issue of generating maximal pattern is achieved by including items with zero
profit too, provided it is not full enough. Since the items with zero profit are at the
last in the greedy ordering, optimality is maintained.

e The same modification as in HS2 (see subsection 2.2) would suffice to make sure
that no forbidden configuration is generated. However, it seems that we can do
better in terms of efficiency. This is done as follows. For each forbidden pattern
a, the item ¢ with a; > 0 which appears last in the greedy order is marked. It is
done before the actual enumeration begins. During enumeration, if a marked item
is set some value, it is immediately checked in the forbidden set. If present we can
backtrack immediately, there by, avoiding some of the unnecessary enumerations.
This scheme is applicable only when the patterns are maximal.

In summary, we described the algorithms for the subproblems formulated in section 2.1.
Next we describe another subtask of a branch-and-price algorithm which is related to
branching.

2.3 Node Selection

If the conventional branching on a single variable is used (section 2.1.1), the subprob-
lem on the right branch is easier to solve. Also, there is a possibility of reaching to a
solution quickly because the residual problem on the right branch is considerably smaller
than the original problem. Also, because of the fact that most of the 1D-CSP satisfy
IRUP property, the LP bound found on a node is strong enough to go to the depth of a
branch. For these reasons, almost all the branching schemes based on a single variable,
e.g. Degraeve and Schrage [1999], Degraeve and Peeters [2003], Vance [1998], used dfs
with higher priority to the right branch. Belov and Scheithauer [2006] uses branching
on a single variable. However, it implements the hybrid approach of diving from a bfs
node. At the beginning some number of nodes are chosen according bfs and after that
their children are processed in the dfs fashion. This approach helps in solving Non-IRUP
instances.

Though, Vance et al. [1994] implements branching on a set of columns, the observations
on node selection made in the context of single variable branching (i.e. easier subproblem,
quick solution to the constrained problem on the right branch), are still applicable. For
this reason, it implemented dfs with higher priority to right branch.

2. LITERATURE SURVEY 30

The branching scheme of Vanderbeck [1999], by design, does not have imbalance between
the two branches. However, because of the IRUP property, it is better to go in depth of
a branch. Thus, dfs with equal priority to both the children was implemented.

However, it can be noted that the selection of nodes are not the only choices that are made
in the algorithms. There may be different parameters depending upon the branching
scheme. For example, in case of branching on single variables, if there are multiple
fractional variables which one should be picked? It is the general practice to choose
the variable having largest distance from nearest integer values on both ends. That is,
x1 = 1.5 is given higher priority than x5 = 3.05. This helps in better separation. However,
for other parameters, the decision may not be easy. For example, if there are different
sets of IBCs B in case of branching on multiple columns, which one should be used? This
needs deeper study of the implementation which we have not undertaken.

2.4 Heuristic Solutions

The performance of a branch-and-price based algorithm depends on the quality of the
initial heuristic solution used at the root node as well as the heuristic solution obtained
by rounding the LP solution at any node in the branch and bound tree. If this heuristic
solution is good, we can quickly fathom the nodes whose LP relaxations are higher than
this heuristic solution. In addition, the heuristic solution at the root node helps find
initial set of feasible columns.

2.4.1 Common Rounding Heuristics

The most commonly used heuristic solution is the First Fit Decreasing (FFD) heuristic. In
this scheme the items are filled in a non-increasing order of their widths. The item under
consideration is tried to fit in a stock used already. If it can not be done so, a new stock
is used. While searching for space in the stocks already used, the stocks are searched in
the order they were used first. Another heuristic procedure, Best Fit Decreasing (BFD),
is similar to the FFD. The only difference is that while searching for space in the already
used stocks, the one with smallest unused part is picked.

However, the performance of these procedures are not good in practice. There are different
enhanced heuristics. We studied one such procedure, Sequential Value Correction (SVC)
method, which is described in section 2.4.2. The method constructs an heuristic solution
from the LP solution. However, the two heuristics described here are still useful in finding
the initial solution when no other information such as LP solution etc. are known.

31 2.4 HEURISTIC SOLUTIONS

2.4.2 A Sequential Heuristic Approach

The branch-and-price based algorithm described in Belov and Scheithauer [2006] uses a
sequential value correction (SVC) heuristic. Like the other algorithms, it first obtains
rounded down LP solution and then solves the residual problem. However, unlike others,
it constructs a solution for the residual problem by generating pattern after pattern. While
solving iteratively, SVC constructs a new pattern using some information from previous
patterns. This information, pseudo-prices of products, is, in concept, similar to the dual
multiplier of the master LP relaxation. It is calculated on the basis of the material-per-
item-type consumption. Let [= W — >~ w;a; be the pattern waste. W — [represents

the utilization of the pattern. The expression % reflects how ‘bad’ the current pattern

is. For a pattern with 0 waste, it is the minimum 1. The more the waste, the bigger

the expression is. Now the expression %aiwi is a measure of the material-per-item-type

consumption by item ¢ or, rather, ‘badness’ contributed by it. Suppose, we have already

generated n patterns. The expression Z?Zl %azjwi gives a measure of the ‘badness’ of
J

item ¢ with respect to the current set of generated patterns. However, if the demand of

an item is more, and the corresponding expression is more, we should not penalize that
: Lol W
item much. So the expression ;- > 7, Te=r

item i. Now, it makes sense to satisfy the demands of the ‘bad’ items as soon as possible

a;;w; gives a better measure of the ‘badness’ of

in the sequential heuristic process so that we can try with the other ‘good’ items which
mixes easily with each other to generate good patterns. So, this expression is used as the
cost function for generating a new pattern.

The implementation of Belov and Scheithauer [2006] maintains the pseudo-prices y € R}

as follows. They are initialized with scaled simplex multipliers. After generating pattern

W P
, g aiw; s taken as a

measure of the ‘badness’ contributed by item ¢, where p is a parameter slightly greater

a maximizing y”a, they are ‘corrected’. In this implementation

than 1. Experimentally, p = 1.03 was found to be a ‘good’ value. The new weight of piece
1 is the following weighted average:

w

Yi < Q1Yi +92W — lw?’ Vi:a; >0 (2.51)
where ¢1, go are update weights with
91/92 = Qb; + b7) /ai, (2.52)

g1 + g2 = 1, b is the residual demand of item i after the rounding down procedure, b}
is the so far unmet demand of the item 2. The old value is weighted more if the total
demand of the item is more. Otherwise the new value is given more weight. The value
of the randomization factor Q is uniformly chosen from [1/€2, Q] before generating each
pattern. Q is uniformly chosen from [1, 5:2] for each new solution. Q = 1.5 was found to
be a ‘good’ value.

2. LITERATURE SURVEY 32

The heuristic solution is given in Algorithm 2. At the initialization step, the dual multi-
pliers are modified to some small value if they are zero. This is because, the oversupplied
items in the LP solution have dual value zero. However they may become undersupplied
in the rounding-down step. Without this modification, those items may never be picked
by the pattern generator.

This heuristic is repeated multiple times and the best solution is picked. This is done in
the outer loop. The optimality can be proved by using the rounded up value of residual
LP solution as a lower bound.

Algorithm 2: Sequential Value Correction

Input : An instance (m; W;w; ') of 1D-CSP; The simplex multipliers
T1yee-yTm
Output: A feasible solution vector (z,,,),7 € {1,...,n}

1 Initialize: y; = max{1l, Wr;} foralli=1,...,m, k=0

2 repeat

3 V' =0;2=0;k=k+1;, /* start new solution */
4 repeat

5 a = arg max{yTa: wla < W;a <b';a € Z™}

6 f =min;q~0{[b!/a;|} /* choose pattern frequency */
7 To =124+ f;0" =b"— fa; /* reduce the right-hand side */
8 Update Weights y;, 1 < ¢ < m; /* value correction using 2.51 x/
9 until b7 =0 for all 1 <i<m;

10 If £ is an improvement, save it in x

11 until (Optimality is Proved) or (Iteration Limit is Exceeded) ;

2.5 Lower Bounds for Early Termination of Column
Generation

In section 1.5.2 we mentioned about the problem of slow convergence of the column
generation process and showed that there is a way to detect early in the column generation
process if the LP solution for the current node will be useful at all. Let us restate the
symbols used there. We used zjp,z}p and zjp to denote the integer solution to the
problem on the space corresponding to node u, the corresponding LP solution and the LP
solution for the restricted master problem respectively. We also showed that if ¢ is the
objective of the subproblem solved last, then the quantity z},/¢ can be used as a lower
bound for zjp. If the value is greater than the current incumbent the column generation
is terminated.

Since, at the root node, the incumbent is not generally good, this test most often fails.
Vance et al. [1994] and Vance [1998] used an additional trick to terminate the root node

33 2.6 CUTTING PLANE ALGORITHM

column generation early. They used the following proposition.

Proposition 2.5.1 If [z}] = [z} p/c], then [Z] p| < z]p where v denotes root node.

Proof We already showed that z},/¢ < zj,. Taking celling of both sides we get,
[Z]p/¢] < [2]p]. Using the given assumption, we have [z]p] < [z]p]. But we know
that z} p is an upper bound for 2} p. Hence, [z} p| > 2] p. Combining inequalities in both
directions, we have [z} p| = [2] p|. However, [2] 5] < 27p. Thus, [Z]p] < zjp. |

The importance of the proposition is that if, during column generation, we have already
reached a state where [z} | = [Z] p/¢], then we can no longer improve the lower bound
and hence the process can be terminated. This is because, from this onward the lower
bound [z} 5] can decrease only.

So far we have discussed some of the algorithms based on pure branch-and-price. Now
we describe a branch-cut-price algorithm.

2.6 Cutting Plane Algorithm

Apart from the standard branch-and-price algorithms, there have been several efforts on
solving the problem by using cutting plane algorithms. Here, we discuss an algorithm
(Belov and Scheithauer [2006]) which uses a combination of both the approaches. In this
method, the LP relaxation at each branch-and-price node is strengthened by applying
cuts. The rest is similar to the standard branch-and-price algorithms. Branching is based
on a single variable as described in subsection 2.1.1. The heuristic solutions are obtained
using SVC method as described in subsection 2.4.2. Here we provide the basic information
of the cuts that are used and then the aspects that different from the algorithms described
so far.

In subsection 2.6.1 we describe the principle behind using super-additive cuts which are
based on linear combinations of current constraints. Chvatal-Gomory cuts, Gomory frac-
tional and Gomory Mixed Integer cuts are special super-additive cuts. We show in sub-
section 2.6.2 how to construct these special cuts for the Gilmore-Gomory formulation at
the root node. At the internal nodes, the branching variables are upper/lower bounded.
The modification necessary for this is discussed in subsection 2.6.3. The addition of the
cuts makes the subproblem complex. We explain the modifications in the subproblem
formulation in subsection 2.6.4 and how it is solved in subsection 2.6.5. We conclude the
section with some remarks on the overall algorithm in the subsection 2.6.6

2. LITERATURE SURVEY 34

2.6.1 Gomory Fractional and Mixed-Integer Cuts

With respect to the current solution x of the LP relaxation Az = b,z > 0, a cut is defined
as an inequality

i F(u"a.)x; < F(u'b), (2.53)

where u is some vector producing a linear combination of the existing constraints and
F: R — R! is some super-additive non-decreasing function such that the cut is valid for
all feasible integer solutions but invalid for the current fractional solution. An example
of F'is the simple round down function |.|. There can be several ways of getting the
multiplies u. One of them is shown in section 2.6.2. If the LP solution of the problem
including this cut is not still integer, further inequalities are constructed recursively, based
on linear combinations of original constraints and the cuts added already.

Suppose initially there were m constraints. Assume that we have generated r — 1 cuts
already. The coefficient of the cut r in column 5 is defined recursively as follows:

m r—1
w;:F<Zu:aU+ZuTm+tw§)v r= 17“'7“7
=1 t=1

where u},i =1,...,m+7r—1, are the coefficients of the linear combination of all previous
constraints. It can be noted that ¢7 can be thought of as a function of the column a.;.
This is because, if we unfold the last part of the right hand side by applying the definition
recursively, all the 1 terms will vanish and only an expression with a;;s and ufs will
remain. Thus we also write ¢} = 9" (a.;).

The rth cut takes the form
> wim; < g
j=1

where 9§ = " (D).
Since each added cut is an inequality constraint, we need to add a slack variable to
generate further cuts. Z?Zl Yix;+s =g, s > 0. The slack variable may or may not be

integer depending on the function F'is used. Further cuts which depend on this cut have
their own coefficients in this column. Thus, cut r in general can be represented as

n r—1
D WY W (sy)s, + 5 = U (2.54)
t=1

j=1

The coefficient of slack variables are set to 1, i.e., ¢¥¥(s,) = 1,o = 1,...,pu. If the

35 2.6 CUTTING PLANE ALGORITHM

slack variables are integers, they can be treated similar to the original variables. The
corresponding columns are in the form (0,0, ..., 1). Thus, the coefficient ¥" (s,) of cut r for
the slack variable of cut v that is generated already is given by 9" (s,) = F(:;11 (sy)),
similar to (2.54).

Chvatal-Gomory valid inequalities are constructed using the rounding down function,
F(u'a) = |u”a]. Because of this, the slack variables are integer and hence can be treated
similar to the original variables.

Gomory fractional cuts are constructed by subtracting inequality [u” A|z < |u’b] from
u" Az = u"b. This results in Y77, fr(u"a.;)z; > fr(u’b), where fr(d) = d — |d]. Here
the slack variables are fractional and hence needs to be taken care of when subsequent
cuts are added. This means, once a Gomory fractional cut is added, subsequently only
mixed integer cuts can be added.

Gomory mixed-integer cuts are constructed using F,(d) = |d| + max{0, (fr(d) —«a)/(1 —
«)} which is a generalization of the rounding down function |.].

With this basic introduction to the cuts, we now obtain the cuts for the problem we are
concerned about.

2.6.2 Cutting Planes without Branching

Belov and Scheithauer [2006] used Chvatal-Gomory valid inequalities on the master LP
relaxation of Gilmore-Gomory formulation after adding the slacks in the demand con-
straints for each of m items.

The only remaining part to be explained for the implementation of the cuts is how the
multipliers us are selected. Belov and Scheithauer [2006] constructed them using the
optimum simplex tableau. Suppose, the columns of the final simplex tableau is rearranged
so that basis part is separated from the others, i.e., A = (A, Ay). Let z be also similarly
rearranged, i.e., ¥ = (wp,7y). Then, we have Aprp + Ayry = b, or x5 + Az'Ayay =
Aglb. Suppose, the ith basic variable is fractional. Then the cut can be generated by
rounding down both sides of row i. Suppose v and w denote the ith row of Az'A and
AL'b respectively. That results in the cut [v]z > [wb] or equivalently —|v]z < [—wb].
It can be easily shown that this cut removes the current LP optimum. Thus the required
u = —w, i.e., the ith row of —AZ".

2.6.3 Cutting Planes with Branching

There is a complication in applying the cutting planes at an internal node of the branch-
and-bound tree. This is because, at an internal node some variables (which are selected
in branching on a path from root to this node) are already set to lower and upper bounds
as branching constraints. This is taken care of as follows.

2. LITERATURE SURVEY 36

Let the LP of the current node looks like the following where the matrix includes both
the original constraints and the added cuts.

min{c’'z : Az =b,L < 2 < U}.

Let J be the set of columns. As usual, let the optimal simplex tableau be rearranged as
A= (Ap,An). Let L={j e J:z; =L;},U ={j € J:x; =U;} be the index sets of
non-basic variables at their lower and upper bounds. Let A = AZ'A b= AZ'b. The last
simplex tableau implies

rp + AL(BCL — L) — AU(Z/{U —ay) = b— ALy — Agly,

Similar to the root node cuts, the cuts here are also generated by rounding down the
ith row of the above system of equations, provided the corresponding basic variable is
fractional.

2.6.4 Modification to Subproblem

We have seen in section 2.1.3, that if we add a constraint in the master problem, we have
to make sure that when a new column is generated by the subproblem, the corresponding
entry in the new column have the same value as it would have if the column were already
present in the master problem. Here, we are fortunate that the coefficient of the cuts are
nicely related only with the entries in the same column above it. Thus, it is enough to
make sure that the same relation is satisfied in the new column. The subproblem takes
the following form:

m 1
max Z mia; + Z Tt Gty (2.55)
i=1 r=1
s.t. Zwiai <W (2.56)
i=1
m r—1
i = 07(0) = F(Y e+ 3 . 0(0) r=lop (257
i=1 t=1
a; €4{0,...,a5"™ Vi=1,...,m (2.58)
a; € N Vi=m+1,....m+p (2.59)

where m € R™*# is an optimal dual solution to the master problem.

However, we do not need the extra variables because we can directly put the right hand

37 2.6 CUTTING PLANE ALGORITHM

side of the equality constraints in the objective. Thus the subproblem takes the form:

m p
max Z T + Z T " (@) (2.60)
1=1 r=1
st Y wia <W (2.61)
i=1
a; € {0,...,a"™ Vi=1,...,m (2.62)

The issue of forbidden patterns is also present here. This is because branch-and-price
constraints are also added to the master. Thus a forbidden set is also added with the
subproblem formulation.

2.6.5 Solution to Subproblem

Let us assume that there is no forbidden pattern. Then the subproblem looks like a
knapsack problem with a modified objective function

c(a) = Z mia; + Z TP (a). (2.63)

Let us think about the issues, if we have to use an algorithm like HS1 (see Algorithm 1).
We can immediately see that we can not order the items on the basis of m;/w; because
there is some part of the objective hidden in the expression > % | 7,1, (a). It is difficult
to separate out the actual objective of a;.

Even if we could separate out the objective by expanding the recursively defined ¢"(a)
and regrouping the necessary parts, we can not make an ordering because of the non-linear
function F' used for generating cuts. This also makes the bounding scheme to fail.

In the next subsections we will see how these two issues are taken care of.

Item Order in Enumeration

Belov and Scheithauer [2006] used the following scheme. The objective function is linearly
approximated by omitting the non-linear function. Thus, approximate cut coefficients are
defined recursively as

m r—1
Y =4 (a?) = Zu;-"aij + Zufnﬂwt(aj), r=1,...,pu, (2.64)
i=1 t=1

It can be noted that now the expression does not depend on the function F. This also

2. LITERATURE SURVEY 38

has linearity because ¢ (a) = 327" aq)" (e;) for all 7, where ¢; is the ith unit vector. The
approximate objective function is then

m I m
éla) = Z mia; + Z " (a) = Z Tia; (2.65)
i=1 r=1 i=1

with 7; = m + > 8, 7rm+,,7ﬁr(ei).

With this new objective, the enumeration is done by arranging the items in the order
T/l > > T/l

The Upper Bound

In order to avoid full enumeration, after we have filled some entries in the new column,
we need an upper bound for the objective value ¢(a) irrespective of how the rest of the
entries are filled. If the upper bound is less than the best solution found so far, we can
readily skip filling rest of the entries. The proposition 2.6.3 gives such a bound.

Before going to proposition 2.6.3, we prove that the approximation in the objective is not
bad. This is done using the proposition 2.6.2. Again, before that, we define three terms
a(x), a, and q, recursively as follows:

i (2) oy, x>0,
a(x) =
" ra,, <0
1 -
. — Do Gu(tp,yy), 7> 1
" 0, r=1
1 -~
R Bl i G(—up), > 1
= -, r=1

where «, denotes the parameter used for generating cut £ using the generic super-additive,
non-decreasing function F,, (). It can be noted that

u'a —ap, < F,, (u'a) < ula. (2.66)

In particular, when the function is just the rounding down function, u’a — 1 < |uTa] <
uTa. Before proceeding to the proposition 2.6.2, we prove a result on the three expressions
we just defined.

Proposition 2.6.1 The quantities &, and «, are an upper bound and a lower bound
respectively, on the error incurred by approximating rth cut-coefficient " (a) by V" (a).

That is, o, < " (a) — " (a) < &

Proof We prove by induction. The relationship is trivially true for £ = 1. Let us assume

39 2.6 CUTTING PLANE ALGORITHM

that it is true for r < k — 1. Then,
m k—1
def
"a) € F,, (Z ufa; + Z ufn+t@/)t(a))
i=1 t=1
m k—1
< Z ufa; + Z ul W'(a) using (2.66)
i=1 t=1
m k—1
= Z ufa; + Z ufn+t¢) + Z “m+t¢t Z Um+t¢t a)

+Zum+t 7;()

k(g Um+t(¢t() — wt() if ua]?nth > 0,
)+Z{ _u’:n+t<1;t() —¥'(a)), otherwise

- k(& if ub >0
*(a) + Z { e 02), e = T by induction hypothesis

—ul ,(—q,), otherwise

k—1
ko = ek
k G,) + E Uy 41Ot if U4 > 0,
— K otherwise

U’m-i—tgt?
Pk (a) + Z ay(uf,,,) using definition of &y (z)

= &k(a) + oy, using definition of ay,

This implies ¥*(a) — ¢¥*(a) < @. Similarly,

d:ef Fy, (ZU a; + Zum—l-tqvbt)

t<k

> —ay + Z ufa; + Z ulW'(a) using (2.66)
i=1

2. LITERATURE SURVEY 40

k—1 L _ .
- —u ay), if —ub >0 ' ' '
Z ot Wg(a) B k m+t< % k= by induction hypothesis
= L Ungy (—a,), otherwise
k—1 Lo i
= —a + ¢ (a) - U g0, 3 — Uy, 20,

k. .
—u,, .0, otherwise

t=1

k—1
=" (a) —ar — Y @(—uk,.,) using definition of é(z)
t=1

= @Ek(a) + a;, using definition of o,

Thus we proved by induction that for all r = 1,..., 4, o, < ¥"(a) — " (a) < &,. [
Now we state the proposition giving an upper bound on the approximation error.

Proposition 2.6.2 The objective function ¢(a) of (2.63) is bounded from above as

I

E(CL) S 5(&) + Z dr(ﬂ-m—H") (267)

r=1

for any pattern a.

Proof

m

c(a) —é(a) =

R

=1

p m 7
mia; + Z 7Tm+r¢r(a)> - (Z mia; + Z 7rm+r¢’"(a)>
r=1 i=1 r=1

W
7Tm+r¢r(a) - Z 7Tm+rlﬁr(a)
r=1

I
M=

1

\3
I

Tt (V' (a) — Y7 (a))

I
M=

\3
Il
—

7Tm+r(7,bT£a) - z;r(a))a if Tt > 0,
— s (W7 (a) — Y7 (a)), otherwise
7Tm+r(0_5r)7 lf Tm+r Z 07
—Tmar(—aq,), otherwise

I
M=

IA
M=

~z
Il
—

,3
I
—

7Tm+rdr7 if Tm+r Z 07

I
B

Tm+4rQ,., otherwise

ﬁ
Il
—

I
M=

&(ﬂ—m—&-r)
1

\3
Il

That implies ¢(a) < é(a) + > 5 a(mmsr). B

T

41 2.6 CUTTING PLANE ALGORITHM

It can be noted that the approximation errors are constants and hence can be calculated
before enumeration.

Now we state the proposition 2.6.3 which gives us the required upper bound.

Proposition 2.6.3 Let a partial solution a = (ay,...,as,0,...,0) be given. Then an
upper bound for ¢() on all the patterns built by adding some items of typesi = s+1,...,m
to a s given as follows:

U=odc+c(a)+ Y (), (2.68)

where §¢ is the solution to the residual problem (i.e., the problem of filling a knapsack of
capacity W — > 7, w;a; with items s + 1,...,m having profits Tsi1, ..., Tpm).

Proof The first two terms give the optimal solution of the problem with approximate
objective. Adding the approximation error to it gives the required upper bound (using
Proposition 2.6.3). |}

As we did in HS1 (section 2.2), an upper bound on é¢ can be obtained by using LP
relaxation of the residual problem.

Enumeration Procedure

With all the result from the previous subsection, we are now at a position to state the
enumeration procedure. It works as follows. Suppose, the items 1,..., s are already fixed.
Now the value of the upper bound as given in (2.6.3) on it is calculated. If it is less
than the current best solution, this partial solution is fathomed and we backtrack. On
the other hand, if it is greater than the best solution, the original objective function is
calculated and checked. If it is still a better solution, it is taken to be the new best.

Now we take care of the issue of forbidden set. As we have done in HS2 (see section 2.2),
before updating the current best solution with a new one, we make sure that it is not
already present in the forbidden set.

2.6.6 Concluding Notes on the Cutting Plane Algorithm

It can be noted that starting from the root node, just by repeatedly solving master
problem using column generation and adding cutting planes, will eventually lead to an
integer solution. One may ask — why do we need branching as in branch-and-price then?
The experimental result shows that with the initial cutting planes the LP lower bound
improves faster. However, it takes many more iterations to reach the final integer solution.

2. LITERATURE SURVEY 42

For this, Belov and Scheithauer [2006] used the following strategy. They generated only
some limited number of cutting planes to the LP relaxation (10 for the root node and 3 for
the internal nodes). If an integer solution is not reached yet, branching is applied. Thus
the cutting plane was mainly used to get tighter lower bounds. Since the LP lower bound
is already tight for the IRUP instances, it helped only with the non-IRUP instances.

2.7 Conclusions of Literature Survey

We studied the details of the implementations of the different subtasks of the generic
branch-and-price algorithm in Degraeve and Schrage [1999], Degraeve and Peeters [2003],
Vance et al. [1994], Vance [1998], and Vanderbeck [1999]. Also studied a branch-price-cut
algorithm as given in Belov and Scheithauer [2006]. Here we mention our findings.

We studied four different ways of branching. However, it can be noted that the scheme
of branching based on binary columns (2.1.2) is a special case of the scheme using a set
of columns with IBCs (section 2.1.3). This is evident from the similarity of the proofs of
the proposition 2.1.2 and the lemma 2.1.4. The scheme based on a set of columns using
ILBCs 2.1.4, though by design, is a special case of the scheme using a set of columns with
IBC, turns out to be similar to the branching on a single fractional variable.

Thus we have two main approaches of branching — (i) using a single variable and (ii)
using a set of columns with specific properties. The later one seems to be better because
it divides the solution space almost equally. However, the former one is popular because of
its well known formulation of the subproblem. Here, it is possible to solve the subproblem
using some specialized algorithm unlike the other case where the subproblem is formulated
as a general integer programming problem.

The hybrid node selection scheme of Belov and Scheithauer [2006] seems better as it
balances performance in instances of both types, IRUP and Non-IRUP. The SVC heuristic
seems to be the best among the existing approaches, as far as heuristic solutions are
concerned. Almost all the algorithms use the same scheme of solving the problem of slow
convergence of the column generation process. The use of cuts as in Belov and Scheithauer
[2006] proved to be useful in solving the Non-IRUP instances.

Thus, if we have to come up with a better branch-and-price based algorithm, it should
have following properties:

1. It solves the LP relaxation at each node efficiently. Any trickier formulation which
can accelerate the finding of the optimal set of columns will improve the overall
performance of the algorithm.

2. It solves the subproblem faster. The branching scheme based on a single variable
is prevalent in the literature. Hence, we should have a better solver for the BKPFS
form of the subproblem.

43 2.8 SUMMARY

3. It obtains better and quick heuristic solutions. We need to come up with a better
approach to obtain heuristic solutions not only quickly but also with better quality.

4. It implements tighter LP relaxation, at least, for the non-IRUP instances. Cutting
plane like ideas help in Non-IRUP instances where the LP relaxation does not give
a tight lower bound.

2.8 Summary

We discussed several implementations of the generic branch-and-price algorithms and a
branch-cut-price algorithm. We concluded the literature survey by identifying the tasks
that we should work on to improve the performance of the branch-and-price algorithms.

Chapter 3

Our Contribution

In this chapter, we describe our contribution on improving the branch-and-price algo-
rithms. The first thing we did is to implement a working version of the generic branch-
and-price algorithm. We implemented the algorithm using the BCP framework provided
by COIN-OR. We describe the implementation in section 3.1. The solution to subproblem
is discussed in section 3.2.

In section 2.7 we mentioned that one of the tasks identified is to accelerate the column
generation process. In section 3.3 we describe a scheme of modifying the LP relaxation to
accelerate the column generation. We experimented with a scheme to obtain the heuristic
solution faster. We describe that in section 3.4.

3.1 COIN-OR Based Implementation

We implemented a version of the basic branch-and-price algorithm using the BCP frame-
work provided by COIN-OR, http://www.coin-or.org. We used this open source frame-
work so that we do not have to rewrite code afresh for many of the subtasks.

We implemented the simple branching scheme using a single variable. The subproblem
is solved using a dynamic programming algorithm described in section 3.2. The heuristic
solutions are obtained using SVC method.

3.2 Dynamic Programming Solution to Subproblem

We have seen that if the conventional branching with a single variable is used, the subprob-
lem takes the form of a bounded knapsack problem constrained with a list of forbidden
patterns.

We used the following dynamic programming solution to the BKPFS. We introduce few

45

3. OUR CONTRIBUTION 46

notations before explaining the algorithm. ¢;(a) is the vector comprised of the first i
components of the vector a. ¢;(S) is the set comprising of the first ¢ components of
vectors in S, i.e., ¢;(S) = {¢i(a) | a € S}. ¢i(a, k) is the vector comprised of the first
components of the vector a such that ith component is k, i.e., v;(a, k) = (¢;(a) | a; = k).
(S, k) = {eila,k) ra € S}

Let f(i,W,5),ie{0,1,...,m}, W € {0,1,...,W}, S C ¢;(S), be an optimal solution
to the following subproblem of the BKPFS.

max Z Tja; (3.1)
j=1

s.t. ijaj <W (3.2)
j=1
a;j € {0,1,...,b;} Vie{l,2,...,i}
(a1, a2,...,0;) & S (3.4)

We use the following recursion for the solution of BKPFS:

fli—1,W,0i(5,0)) if W >0

. i— 1, W —w;, (S, 1 if W —w; >0
FE8) = maxd T o5, 1) (3.5)

with the boundary values f(O,W, @) =0, f(0, W,S +) = —o0.

Worstcase Time Complexity

It can be seen that the subproblem has three input parameters which vary. The parameters
are i, W and S. Let b4, = max{b;}. A quick calculation should reveal that the size of
the dynamic programming table is = O(no of possible values of i x no of possible values

of W x no of possible values of S) = O(m x W x b,) since the number of configurations,

m
max-*

and hence possibly the forbidden set, of m items is b

However, a deeper look into the operation on the table will reveal that only a few entries
of the dynamic programming table are in fact accessed by the algorithm. For the partic-
ular value of 7 and W there can be at most b, possible values of S , this is because the
corresponding item could be present b; times in the forbidden list. The maximum number
of entries in the table that are accessed by the algorithm is O(b,..mW). Again for filling
each of these entries takes O(]S|) time. Hence, the time complexity = O(bya.mW|S]).

The time complexity of the branch-and-bound algorithm, HS2 (see 2.2) is O(b",, +m|S|).

47 3.3 ACCELERATING COLUMN GENERATION

This is because, in the worst case, the branch-and-bound tree can be the complete b,,,.-ary
tree with height m and since at each level the list of |.S| forbidden columns is distributed
among the nodes, the time required summed up for a level is |S].

Hence, we see that if W < b . in the worst case, dynamic programming solution works

max?

better. On the other case, branch-and-bound algorithm works better.

3.3 Accelerating Column Generation

We mentioned in the section on our learning from literature survey (see 2.7) that one way
to improve the performance is to accelerate the column generation process while solving
the LP relaxation at any node in the branch and bound tree. For solving the LP relaxation,
initially, we take a very restricted or constrained form of the master problem with only few
columns enough to ensure the feasibility and gradually relax the formulation by adding
new columns. This is continued until we get an optimal solution. Any trickier formulation
to accelerate the finding of the optimal set of columns should make this relaxation process
faster.

To find such a formulation that relaxes the master problem, we thought of allowing the
demand of an item of smaller width be met by an item of larger width. Mathematically,
suppose we need to cut by number of items of width w; and by number of items of width
we where wy > wy. We can relax this requirement by saying that we require b; number of
items of width w; and together b; + by number of items of width either ws or w;. This is
reasonable because if in the solution the demand of w, is met by w;, we can easily replace
wi by wsy in the corresponding cutting pattern though the cutting may not be optimal.

In the following section, we state the formulation formally. This scheme is named as
‘GoodPrice’ as we will see in section 3.3.2 that in the optimal solution to the dual of the
modified formulation, the variables are also in the same order as the widths of the items.

3.3.1 Formulation

Before stating the new formulation, let us restate the constraints of the original formula-

tion.
A1 Z b1 (36)
24T 2 b2 (37)
(3.8)
s > by (3.9)

where a;, is the i*" row of the matrix A.

3. OUR CONTRIBUTION 48

If we apply the relaxation as described above, the constraints take the form

ap.x’ > by (3.10)

(@14 + ag.)x’ > by + by (3.11)

. (3.12)

(15 + Qs + -+ 4 Qs)T' > by + by + -+ + by (3.13)

note that solution to the relaxed system may not be a solution to the original system and
that is why new variable 2’ is used.

3.3.2 Proof of Correctness

It needs to prove that with the relaxed primal, the solution obtained at the end of column
generation process, the objective would be same as that objective that would have been
obtained if the relaxation was not used. We prove the correctness of the ‘GoodPrice’
using two lemmas.

Lemma 3.3.1 The ‘GoodPrice’ relaxation is equivalent to adding the constraint m >
Mg >« -+ > T,y 40 1ts dual.

Proof The relaxed formulation is equivalent to pre-multiplying both sides by a lower
triangular matrix L with all non-zero elements 1 i.e.

1 0 0
1 ...
L- 0 (3.14)
1 1 1
Thus, the related master LP is
min 172/ (3.15)
st. LAx' > Lb (3.16)
>0 (3.17)
The corresponding dual is
max b LT7 (3.18)
st. ATLT7' <1 (3.19)

>0 (3.20)

49 3.3 ACCELERATING COLUMN GENERATION

If we substitute LT7’ by 7, i.e., 7’ = (LT)"'7, we have

max b7 (3.21)
st. ATm <1 (3.22)
(LYY 'r >0 (3.23)
However, (LT)~! is given by
[1 -1 0 0]
1 -1 ... 0
(LH™t=1| (3.24)
0 0 1 -1
0 0 . 1
The extra constraint (3.23) implies
T > Ty > e > Ty, (3.25)

Lemma 3.3.2 The dual solution to the original formulation (1.1..1.3) implicitly satisfies
the constraints (3.25).

Proof We prove by contradiction. Suppose that the solution to the original formulation
(1.1..1.3) has two dual variables 7, and m; such that m, < m and wy, > w;. Suppose,
in the corresponding primal solution, x; > 0, where the pattern j contains the item k.
Let the column for the pattern j be given by [a1 ... ax ... a ... ay]’. Using
complementary slackness, in the dual, the constraint corresponding to pattern j is tight.
That means,

T+ T+ ATy, = 1 (3.26)

However, since, wy > w; if we replace each instance of item k in pattern j by an instance
of item [, we get a new valid pattern. The column for the new pattern is given by

[ap ... 0 ... apr+a ... an]t. Theleft hand of the corresponding constraint in
the dual is

arm 4. 0+ (a +a)T . ATy (3.27)

>aim . apTm T T, > T (3.28)

-1 (3.29)

That means, the constraint in the dual is violated. That is not possible. |

3. OUR CONTRIBUTION 50

The two lemmas 3.3.1 and 3.3.2 imply that with the extra constraint (3.25), we have, in
fact, added no extra constraint to the formulation. Hence, the solution obtained after
adding the extra constraints is same as that would have been obtained without adding it.

3.4 A Quick Heuristic Approach

The update to pseudo-cost in the sequential value correction method (section 2.4.2) is
adhoc in the sense it gives some arbitrary weight to the old and new values. We wanted to
come up with a more theoretically sound update scheme. Before describing the heuristic,
we give the following two propositions.

Proposition 3.4.1 Suppose b be the initial demand and x*,y* be an optimal primal-dual
solution pair to the LP relaxation of the master problem. Let the rounded down primal
solution be x* and b' be the residual demand. Then y* is also a dual LP optimal solution
the residual problem.

Proof Let fr(z) denote the fractional part of z, i.e. fr(zx) = x — [z]. Then fr(z*) is
a feasible solution to the residual primal LP. This is because Afr(z*) = A(z* — x*) =
Ax*—Ax* > b— Ax* = b'. Also, y* is a feasible solution to the dual because the constraints
in the dual remain same. Now from LP duality theorem,

Zx; =b.y"
J
= Zz}k + Zfr(a:;‘) =by*
J J
= Z X+ Zfr(a:;‘) =by*

Gas>0 j

Using complementary slackness, the constraints in the dual corresponding to the non-zero
primal variables are tight. That means

Zy;‘kai]’:l Vi, x5 >0

ie, a, .y =1

51 3.4 A Quick HEURISTIC APPROACH

Now

V=b— Z X0

j,:v;>0
:>b:b/+ Z)_<;7a*j
j,x;>0
= by =V 4+ () Kay)y
j,x;f>0
= by =Vy + > x(ayy)
j,x;>0
Sby =by+ > X
j,x;f>0

= by = Zfr(x;)

That means fr(z*) and y* are a primal-dual solution pair for the residual problem. Hence
they must be an optimal pair. |

Proposition 3.4.2 Ify* is used for generating a new column solving the residual problem,
the optimal objective of the subproblem is < 1.

Proof It is true otherwise the column generation would have picked this column before
stopping. |

More over, if a column of objective 1 is chosen and a new residual problem is formed by
subtracting this column from the residual demand, there is a possibility that the optimal
LP objective of the new residual problem is 1 less than the optimal LP solution of first
residual problem. This implies that if can continue this process, eventually the LP solution
gets converted into a integer solution.

Using the above two propositions and the above observation we came up with the following
scheme for generating the heuristic solution.

1. Get the rounded down solution and form the residual problem

2. Generate a column selecting at random from the all possible columns with objec-
tive 1 using a modified version of the dynamic programming solver for the subprob-
lem

3. If the LP solution of the new residual problem after subtracting the generated
column satisfies the relationship mentioned in the above observation, recurse with
the new residual problem

3. OUR CONTRIBUTION 52

4. Otherwise, reject this new column and backtrack using an alternate column of ob-
jective 1

3.5 Summary

We discussed about an implementation of the basic branch-and-price algorithm. We also
implemented a scheme to accelerate the column generation process. An approach to get
heuristic solutions quickly was described.

Chapter 4

Experimental Results

In chapter 3, we discussed about the two ideas we worked on with an aim to improve the
performance of the branch-and-price based algorithms. In this chapter, we publish the
results of implementing the ideas on our implementation of the generic branch-and-price
algorithm.

One idea, named GoodPrice, is to modify the master formulation to accelerate the column
generation process so that an optimal LP relaxation is obtained quickly. We show the
result of implementing this idea in section 4.1. The results on the other idea to generate
quick heuristic solutions are provided in section 4.2.

It should be noted that for the solving the subproblem, we implemented the solver based
on the dynamic programming solution of BKPFS only. Hence, we do not show any results
for it.

4.1 GoodPrice Results

We measured the performance of the GoodPrice scheme on two sets of CSP examples. The
first set of examples were constructed randomly with item widths in the range 1..1,000
and stock width 10,000 such that the items fit exactly in two stocks. We call this set as
‘duplet’. The second set of example is a subset of the ‘hard28’ set of one dimensional bin
packing problems as given in Belov and Scheithauer [2006]. It can be noted that a bin
packing problem is an instance of the cutting stock problem where the items are ordered
in small quantities.

4.1.1 Results on ‘Duplet’ Set

In table 4.1 we show, as a first result, the performance improvement in solving the root
node master LP relaxation. It can be seen that GoodPrice based solution took on an

23

4. EXPERIMENTAL RESULTS 54

average 54% less number of iterations compared to the simple column generation process.
However, the time taken is increased by 9% on an average. Increase in time is due to
the fact that the subproblem becomes harder to solve. However, we can anticipate that
the gain in using the scheme may fructify in the overall branch and price process where
the LP is not often solved to optimality. It can be seen that time to solve the master
LP relaxation is almost constant per iteration in both the cases. We will omit this in the
subsequent tables.

The improvement over all the nodes in the branch-and-bound tree is shown in table 4.2.
As we expected, except in two instances, the scheme generates faster solution. We see
that number of columns generated is lesser by 33%. The reduction of this percentage can
be explained by the fact that as we go deeper in the tree, the master LP becomes more
constrained and the effectiveness of the scheme reduces. On the other hand the time to
solve the subproblems also get reduced by around 33%. This increase in the percentage
improvement on the subproblem time can be explained by the fact that in the overall
solution the column generation is stopped early, if possible, so that the we do not need
to solve many ‘hard’ instances of the subproblem which are generally formed at the end
stage of the column generation process. Thus, overall, the time taken is reduced by 33%.

4.1.2 Results on ‘Hard28’ Set

The results for the ‘hard28’ set is given in Table 4.3. With our dynamic programming
solution to the BKPFS, it was not possible to solve the instances for integer solution. The
results correspond to solving the root only. It should be noted that, we have used the
Bounded Knapsack Solver (see the future works section 5.2.1) which is applicable only to
the root node where the forbidden set is empty. The number of iterations were reduced
by 28%. More reduction (44%) on the overall time is because of the faster subproblem
solver.

4.2 Quick Heuristic Results

The results on the quick heuristic is shown in Table 4.4. The result shows the quick
heuristic applied to ‘hard28’ set. Because of the limitation of the subproblem solver, we
measured the quantities only for getting the heuristic solution for the root node LP. All
except the last 5 are IRUP instances. Compared to the SVC approach of finding a heuristic
solution directly, our approach assumes that there is a solution of a particular value and
tries to find that. For that reason, we executed three sets of experimention. In the first
two case, we assumed that there is an IRUP solution. In the third we assumed that there
is a MIRUP solution. The difference between the first two is that in the first case we
tried with maximum 5 best solutions of objective 1 returned by the modified dynamic

4.2 Quick HEURISTIC RESULTS

25

owl T, worqoxdqng .S
owiL], 1SN LIN
sworqoxdqng jo equmnyN SN
owIlT, 1e101, IL.L
188" | 6G°€S | LGS | LP'S- sy
COVI-| €884 | L1809 | ¢T'VI-| 8L67 | OT'0 | €9 | 886V LV'EV ¥¢0 | 191 | TL'EV || OT
6V’ FT | 00009 | €6°2G | 6671 || TOEC | ¢T°0 | 69 | €1°CC 16°9¢ 0€0 | 79T | TG LC || 6
80°€8- | 09°L¢ | 881G | 8¢'CS- || VI'¥¥ | OT'0 | ¥9 | ¥CT¥ TT¥¢ 9T°0 | €61 | LCVC || 8
LTAT- | LE°LY | 000G | 98°9T- || 90°6F | OT'O | TL | 9T°6¥% LS TV 610 | ¢Vl | 90°CV || L
98°GC- | ¢9°8G | 90°LG | €€°6¢- || 6909 | ¢T°0 | 04 | 1809 GG'8Y 660 | €91 | 48V || 9
€86 | 694G | 0L°GG | TOOT || 9€°¢c | TTO | 0L | LV'EC G8°G¢ 9¢'0 | 8GT | 80'9¢ || &
GL9 | 000V | VL8V | 189 Ge€'9¢ | 900 | 19 | TV 9¢€ 86'8¢ OT°0 | 6TT | LO'6E || ¥
09°6G- | 68°LG | #6°9G | 90°6C- || 9L°6E | 80°0 | €9 | ¥8°6¢E 89°0¢ 61°0 | PPT | L8°0C || €
LCVG | 66T9 | 8€°6S | T9VC | ¥6°GE | OT°0 | §9 | ¥O'9¢ 9Y° Ly 8GO0 | 09T | WL LV || €
SV'9C | LIPS | 068G | #9°9¢C || 6L°GC | TT°0 | L9 | 16°GC 80°G¢ ¥¢0 | €91 | €€'6¢ || T
LS LN SN LL £LS IIN | SN | LL LS IIN | SN | LL
uren) o/ LIJPOON) UOT)R[NULIO] AIOWOX) 2IOW[IY) | #

JJordnp, Jo opou 1001 9} SUIA[OS UL 9OLIJPOOL) I0J JNSol [RJUOWLIDAXY ' o[qR],

56

4. EXPERIMENTAL RESULTS

Table 4.2: Experimental result for GoodPrice in complete solution of ‘duplet’

Test# Gilmore Gomory Formulation GoodPrice % Gain
TotTime | NumSubp | SubpTime || TotTime | NumSubp | SubpTime || TotTime | NumSubp | SubpTime

1 154.102 228 132.344 70.152 115 59.368 54.48 49.56 55.14
2 136.669 195 118.063 111.547 167 95.486 18.38 14.36 19.12
3 74.489 128 63.292 5H2.271 89 44.491 29.83 30.47 29.71
4 88.142 199 75.361 34.222 79 29.226 61.17 60.3 61.22
5 98.206 158 83.205 103.198 158 88.298 -5.08 0 -6.12
6 172.663 232 149.861 107.371 159 92.314 37.81 31.47 38.4
7 135.140 205 116.135 104.355 154 90.146 22.78 24.88 22.38
8 78.149 139 66.108 30.974 55 26.202 60.37 60.43 60.37
9 141.133 213 121.192 165.234 211 143.957 -17.08 0.94 -18.78
10 264.561 326 230.102 82.525 119 71.068 68.81 63.5 69.11

Avg 33.147 33.590 33.054

4.2 Quick HEURISTIC RESULTS

o7

GeL'e PECLT 86T ¥ sy
06L°GT 6606 GTeae 8210 087 CI8'T eS1°0 L19 9607 || 91.ddd
136°6¢- LTETE TGE'ST 9L1°0 95 08€°C PP1°0 69 8097 || 6geddd
88.°CE GS0'6¢ 096°9% 791°0 809 799°¢ iaiall 168 8069 || SLTddd
90961 T1€°€T LVCvE 7910 iZ5 eI1'C 7020 c6¢ ATas v1ddd
GGL'T- T07°8¢ 2S6°97 cee0 009 029°€¢ 82%°0 8¢8 789 || 611ddd
869°€T GRT'TE €6S°LY réstall] 866 9.8°¢ 2620 698 96¢°L || 006ddd
T.8°0T 2G0°9% 8TV 1€ 791°0 LGV A 781°0 8T9 clee || cesddd
c6eGT- €T6°0F 188°€9 021°0 L6€ 888'T 70T°0 L9 8cc'e || ¥18ddd
9€6°0T L6LLT oGl Le 822 0 €19 asily 9620 678 eST°L | 98Lddd
€00°0- eov'eT 079°C¢ 8220 e 080°L 8220 8G8 €ST1°6 || 18.ddd
000°0¢ L8 VE 9,728 9L1°0 15517 966'T 0320 69 00¢7 || 99.ddd
Vol e- 780°G¢ 99G°6¢ ceT’0 ST 700°C 8210 768 91¢’¢ || ehLddd
05z 1€ 6606 S0l 880°0 087 918'T 8¢T°0 119 ¢L0v | 91Lddd
7926 0869 GLO'LE 96T°0 7S ceLe 9120 52 886G | 60Lddd
708°8- 1L6'8% c0g 9¢ 8FT°0 €8y 9.8C 9eT°0 089 80SV | ¢voddd
9eT'¥¢ 106°0¢ GTLTG 880°0 G 961°C 911°0 659 8YCT || 0v9ddd
T97°¢T 610°L¢ 6L T 081°0 0LV 8T6'T 8020 779 967°¢ 09ddd
0LG°C STV 1€ 0L0°0F 081°0 L€G 89L'Y 9L1°0 89 166, | 19¢ddd
FOT'TT L6861 L99°0F 960°0 195 2€9°C 80T°0 00. 9ery || Teeddd
68TV 197°€¢ 866°0C 9120 125 28T ST 0 89 eS| 98vddd
0£€'8 e81'Te 191°€S 880°0 165 097G 960°0 89 rastals Lyddd
7EE6 LST°GE PIL Gy rdxall €59 ceey 00€°0 9.8 186°, || 617ddd
STOTE L¥9°2¢ ces Ty 7e1°0 167 706°C 881°0 62. 792°G 0vddd
768°9 9T1°€% PICTY 80T°0 657 7I1°C 9T1°0 L6 00L°¢ || 09eddd
000°0G- 65L°0€ G09° TV 7020 8¢ ceET'V 9eT°0 LLL, 9.0°L || $6Tddd
L2€ 91 c01T'1¢ LLE°SY 791°0 s 9.8°C 961°0 9L 91LT || 18Tddd
€TT Th- L08'TC G68°CT 952°0 679 96.L°¢ 081°0 0€8 910°L || 8L1ddd
899°9% GL9'CE 9z1 9 9L1°0 8T¢ 829°¢ 0720 182 ¢LL9 | vriddd
699°9T- 18991 V6L TE 752 0 699 89TV z61°0 €08 z6¢°9 e1ddd

owrrdqng | dqngumy | ewrgieg, || ewrrdqng | dquguny | ourtyof, || outrdqng | dqugumy | owLLio],
uren) 9 ILIJPOON) UOT)R[NULIO AIOWOL) 9IOWI[IX) #1897,

.8ZPIeY, JO 9POU 3001 SUIAJOS UL 9ILIJPOOK) I0] J[NSal [ejuowIodXy ¢'§ o[qe],

4. EXPERIMENTAL RESULTS 58

programming solver for the subproblem. In the second case, we tried with maximum 10
best solutions.

It can be seen from the table that assuming IRUP, we could not find any solution. How-
ever, assuming MIRUP, we got solutions for all except 1. It can be also seen that the SVC
also got the same solution. The quick heuristic could find the solution in lesser number
of iterations. By iterations, we mean the number of extra patterens generated in the
heuristic procedure. However, it can be mentioned that we could have also altered the
SVC to look for MIRUP solution. Thus we can conclude that the quick heuristic solution
is no better than the SVC.

4.3 Summary

We showed the results for the two ideas we worked on. The GoodPrice scheme is shown
to improve performance by 33%. The quick heuristic approach does not improve solution
compared to the SVC method.

4.3 SUMMARY

29

¥ 9. 00% | 9. 9. 0000°GL | 91.ddd
16T 9. 009 | 9L 9. €866 7. | 65€ddd
S6TT | #8 009 | ¥8 €8 000°€S ¢L1ddd
80T 29 10L | 29 29 866°09 P1ddd
06 L. 008 | LL L. 000°9. 611ddd
L6 19 6 ou 9 ou 009 | 19 09 866°6G ze8ddd
) 69 Ly ou 61 | ou 008 | 69 89 76629 68.dd¢d
A ou G ou T ou 009 | L 1 666°0L 18Lddd
¥ €9 G ou ¢ ou 009 | €9 29 666°T9 99.dd¢
GGT c9 T ou T ou 00L | €9 79 00079 orLddd
88T 89 T ou T ou 00L | 89 L9 000°L9 60Lddd
0G 6G I ou z ou 00L | 65 8¢ 666°LG ¢r9ddd
671 ¢l T ou I ou 00% | GL i?) 00072 079ddd
0S 79 8 ou i ou 00S | ¥9 €9 866°C9 09dd4
10¢) GT ou 8 ou T0TT | €4 @) 966°T. 196ddd
0¢ee | #8 T ou T ou 00S | ¥8 €8 000°€8 1e6ddd
18T zl 8 ou 9 ou 005 | ¢l L L66°0L a’¥ddd
086¢ | cL T ou I ou 008 | ¢ L 000°TL Lyddd
eet 18 ¢ ou T ou 005 | 18 08 666°6. 617ddd
96 09 z ou i ou 00S | 09 6S 666°8G 0vddd
7ee | €9 I ou T ou 008 | €9 29 00029 09¢ddd
89¢ 9 61 ou 01 |ou 000T | €9 79 966°€9 G6Tddd
67) 91 ou ¢ ou 009 | €L zl 666°T. 18Tddd
L€ 18 GT ou ¢r | ou 00¢ | 18 08 G666 8.1ddd
60T i I ou T ou 00L | ¥L) 000°€. P1ddd
L69T | 89 g ou ¢ | ou 008 | 89 L9 666°69 e1ddd
SI9N [OSNOH || S199] | JOSNOH || SI9I] | JOSNOH || SI9I] | [OSNoH

G 9sog ‘dNYIIN || 0T 3sg ‘dNYI || § ¥sod ‘dNYI DAS onfeA dI | onfeA JT | #ISL

DIISLINOY OINb 10§ Msol [eyuowLodxy :§ 9[qR],

Chapter 5

Conclusions and Future Works

In this chapter, we conclude our report. In section 5.1, we give a summary of the tasks we
were able to achieve. The future works that can be undertaken are described in section
5.2.

5.1 Conclusions

We studied some of the branch-and-price based algorithms existing in literature for solving
the one dimensional cutting stock problem. We came to the conclusion that a better
branch-and-price based algorithm, should have following properties:

1. It solves the LP relaxation at each node efficiently.
2. It solves the subproblem faster.
3. It obtains better and quick heuristic solutions.

4. Tt implements tighter LP relaxation, at least, for the non-IRUP instances.
With this finding, we worked on the following

1. An implementation of the generic branch-and-price algorithm in which the subprob-
lem was solved by a dynamic programming algorithm.

2. Worked on a scheme, named GoodPrice, to accelerate the solution of the LP relax-
ation using column generation method

3. A quick heuristic solution

The GoodPrice scheme was found to improve performance by 33%. However, the quick
heuristic approach did not improve solution and performance compared to the SVC
method.

61

5. CONCLUSIONS AND FUTURE WORKS 62

5.2 Future Works

Our implementation is a good starting point. However, this basic implementation is not
as fast as the implementation existing in the current literature. Hence, though our new
technique gives better performance over our base performance, it is not good overall.
Thus, a faster base implementation is urgently needed. Also, we have few more ideas
which are supposed to improve the overall performance but could not implement. Those
need to be implemented. There are few directions where further research may improve
the algorithms. In this section we mention all of them.

Depending on the difficulty we classify the future works into three categories. Short term
goals are the ones which are urgently needed and can be easily implemented. Medium
term goals are the ones which are not totally new but will require more research. Long
term goals are on using ideas which are comparatively new and there is a hope that they
may improve the performance further.

5.2.1 Short Term Goals

Improvement of the base implementation is the need of the hour. We found out that
the slow performance is mainly because of the dynamic programming solution to the
subproblem in the form of a Bounded Knapsack Problem with Forbidden Solution. We
have to make sure that there are no implementation issues. For that an analysis of the
implementation is needed. We have already thought of an improvement on the dynamic
programming solution. We tried the implementation of the bounded knapsack solver
of Pisinger [2000] for solving the subproblem on the root node where the forbidden set
is empty. We found out significant improvement on the performance. It makes the
subproblem solver around 800 times faster. The algorithm also solves the problem using
dynamic programming but significantly reduces the number of states explored by using
dominance relation on the states and an upper bound on the objective over a set of states.
We have also figured out that similar dominance relation and bounding is applicable even
when there are forbidden sets. We need to implement them.

We also have some reservations on the performance of solvers used in COIN-OR. We did
some experimentation and found out that the CPLEX LP solver is around 4 times faster
and the CPLEX IP solver is around 40 times faster on the problems generated on the CSP
instances we experimented. We should try to setup our implementation to work using
the CPLEX solvers. Also, we may have to come up with a branch-and-bound framework
specific for our need unlike the generic branch-and-bound framework of COIN-OR.

One of the few things that we wanted to do is to have a clear idea about the exact impact
of different tricks or choices used by the implementations existing in the literature on the
overall performance. Some of them is easy to figure out. However, some are not. For
example, Degraeve and Peeters [2003] with branching on single variables claims to have

63 5.2 FUTURE WORKS

performance similar to that of Vanderbeck [1999] which implements branching using a
set of columns. From this we can not conclude whether one branching scheme is better
than the other. The best thing should be to implement both the approaches and make
the comparison. For that, we need to have an experimental setup where we can generate
random instances of varying difficulty as followed in many of the existing literature.

5.2.2 Medium Term Goals

We have seen that using cutting planes to tighten the LP relaxation at a node in the
branch-and-bound tree is one of the most recent ideas for improvement. We thought
about strengthening cutting planes used in Belov and Scheithauer [2006]. We thought
that we should first form an integer solution, say v using the current columns. Then
add cut a by lower bounding the current solution by v. This is a tight constraint on
the restricted master. We also thought of correspondingly modifying the subproblem.
However, we found that the integer solution to the restricted master (an instance of the
set cover problem) is hard to find.

Our experimentation on ‘GoodPrice’ and on the quick approach showed that one of the
most challenging problem in branch-and-price algorithms is to devise mechanisms so that
after we solve the restricted master problem, the dual variables get assigned sensibly, i.e.
the pseudo-costs gets assigned sensibly to the various items. Cutting planes also help
in reassigning the dual variables. Thus, thinking about this directly might be useful in
general for developing cutting plane like ideas.

5.2.3 Long Term Goals

It seems that the solution to the Gilmore-Gomory formulation depends on the structure
of the corresponding knapsack problem. Even we can totally omit the master problem
and restate the cutting stock problem as finding minimum £ such that the demand vector
b; can be expressed as sum of k integer points in the knapsack polytope. The dependence
on the knapsack polytope is evident from the following fact stated in Baum and Trotter Jr
[1981].

Proposition 5.2.1 (Baum and Trotter Jr [1981]) A CSP instance satisfies IRUP iff
the corresponding knapsack polyhedron has integral decomposition property. A polyhedron
P C R% has integral decomposition property if for every integer k, any integral vector in
the polyhedron {kx | x € kP} can be expressed as sum of k integral vector in P.

Thus, one possible direction of research would be to get a proof of the conjecture on
MIRUP of CSP instances so that the insight gained will help in improving the branch-
and-price algorithms we described in this report. However, this may require significant
effort.

References

S. Baum and L. E. Trotter Jr. Integer Rounding for Polymatroid and Branching Opti-
mization Problems. STAM Journal on Algebraic and DiscreteMethods, 2:416-425, 1981.

G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional
stock cutting and two-dimensional two-stage cutting. Furopean journal of operational
research, 171(1):85-106, 2006.

Z. Degraeve and M. Peeters. Optimal Integer Solutions to Industrial Cutting-Stock Prob-
lems: Part 2, Benchmark Results. INFORMS Journal on Computing, 15(1):58-81,
2003.

Zeger Degraeve and Linus Schrage. Optimal integer solutions to industrial cutting stock
problems. INFORMS J. on Computing, 11(4):406-419, 1999. ISSN 1526-5528.

A. A. Farley. A note on bounding a class of linear programming problems, including
cutting stock problems. Operations Research, 38(5):922-923, 1990.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9:849-859, 1961.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem - part ii. Operations Research, 11:863-888, 1963.

E. Horowitz and S. Sahni. Computing Partitions with Applications to the Knapsack
Problem. Journal of the ACM (JACM), 21(2):277-292, 1974.

E. Johnson and M. W. Padberg. A note on the knapsack problem with special ordered
sets. Operations Research Letters, 1:18-22, 1981.

D. Pisinger. A Minimal Algorithm for the Bounded Knapsack Problem. INFORMS
Journal on Computing, 12(1):75-82, 2000.

D.M. Ryan and BA Foster. An integer programming approach to scheduling. Computer
Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pages
269-280, 1981.

65

REFERENCES 66

P.H. Vance. Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Prob-
lem. Computational Optimization and Applications, 9(3):211-228, 1998.

P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser. Solving binary cutting stock
problems by column generation and branch-and-bound. Computational Optimization
and Applications, 3(2):111-130, 1994.

F. Vanderbeck. Computational study of a column generation algorithm for bin packing
and cutting stock problems. Mathematical Programming, 86(3):565-594, 1999.

F. Vanderbeck and LA Wolsey. An exact algorithm for IP column generation. Operations
Research Letters, 19(4):151-159, 1996.

