
Scheduling Light-trails on WDM Paths and Rings : an
Application of Component Coloring of Graphs

Submitted in partial fulfillment of

the requirements of the degree of

Doctor of Philosophy

by

Soumitra Kumar Pal
(Roll No. 07405008)

Under the guidance of

Professor Abhiram G Ranade

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY – BOMBAY

2013

To my Master

Abstract

We consider the problem of scheduling communication on optical WDM (wavelength division

multiplexing) networks using the light-trails technology, an attractive solution to the problem of

bandwidth provisioning. We seek to design scheduling algorithms such that the given transmis-

sion requests can be scheduled using minimum number of wavelengths. We provide algorithms

and close lower bounds for two versions of the problem. In the stationary version, the pattern

of transmissions (given) is assumed to not change over time. In the online version, the trans-

missions arrive and depart dynamically, and must be scheduled without upsetting the previously

scheduled transmissions. We also consider two weighted versions in which transmissions have

an integer weight (bandwidth requirement). In the splittable weighted version, (the weight of)

each transmissions can be split into several parts which can be scheduled in different light-trails.

In the nonsplittable weighted version the transmissions cannot be split.

The light-trail scheduling problem can be abstracted as a generalization of the graph vertex

coloring problem which we call the graph component coloring problem. Here the objective is

to color the vertices of the given graph using the minimum number of colors. Unlike vertex

coloring, here adjacent vertices are allowed to have the same color. However, the size of a

connected component in the induced subgraph having the same color must not exceed some

parameter C. Vertex coloring is a special case of the problem for C � 1. In the context of the

applications in scheduling light-trails on path/ring networks, the graphs in component coloring

are interval/circular-arc graphs. We also consider the problem on proper interval graphs (PIGs)

which are known to admit polynomial time algorithms for many problems which are hard on

general graphs. Component coloring also has applications in scheduling communications in

reconfigurable bus architectures and in efficiently managing storage for evolving databases.

Our main contributions are as follows. Firstly, we study the stationary version of compo-

nent coloring on PIGs. We give a linear time exact algorithm for the unweighted problem. The

algorithm exploits a nice structure of PIGs for which the problem reduces to partitioning the

vii

vertex set such that the graph generated by contracting each part admits a vertex coloring with

the minimum number of colors. We extend this idea to give a quadratic time exact algorithm for

the splittable problem and a 2-approximation algorithm for the NP-hard nonsplittable problem.

Secondly, we study the stationary light-trail scheduling problem on optical path and ring

networks. On path networks, the nonsplittable problem is NP-hard and the complexity of the

unweighted problem and the splittable problem are not known. On ring networks, even the

unweighted problem is NP-hard. For the problem on a p processor path/ring network a simple

lower bound is ω, the congestion or the maximum total traffic required to pass through any

link. We give an algorithm that schedules the transmissions using Opω � log pq wavelengths,

and so our algorithm can be seen to use a number of wavelengths close to the optimal. We

show that there are input transmissions for which lower bound ω is small, but which yet require

Ωpω� log p{ log log pq wavelengths. In a weak sense, this justifies the additive log p term in the

number of wavelengths taken by our algorithm.

For the online problem, we use the notion of competitive analysis. In this, an algorithm

for the online problem does not know the input transmissions in advance and must schedule the

transmissions as and when they arrive. The algorithm is evaluated by comparing its performance

to that of an offline adversary, an algorithm which is given at the beginning all the transmissions

including their arrival and departure sequence. We give two online algorithms that work on

both path and ring networks. We establish that our first algorithm is Θplog pq-competitive, i.e.,

it requires Θplog pq times as many wavelengths as needed by the offline adversary. We also

prove that no online algorithm can do better by showing the lower bound on the competitive

ratio of any algorithm for the problem to be Ωplog pq. We also give a second algorithm for this

problem, it is in fact a simplified version of the first. It actually performs better than the first

algorithm in many situations; however, we can prove that its competitive ratio is worse, between

Ωplog2 p{ log log pq and Oplog2 pq.
Finally, we simulate our online algorithms for some traffic models of the light-trail based

optical ring networks and compare them to a baseline algorithm. We find that except for the

case of very low traffic, our algorithms are better than the baseline. For very local traffic, our

algorithms are in fact much superior.

Keywords: Graph, Proper, Interval, Component, WDM, Light-trail, Reconfigurable Bus

Architecture, Evolving Database, Weighted, Splittable, Fragmented, Generalized, Coloring,

Partition, Scheduling, Routing, Algorithm, Online, Approximation

viii

Contents

Abstract vii

List of Figures xiii

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Component Coloring . 4

1.3 Contribution . 7

1.4 Outline . 9

1.5 Credit . 10

2 Literature Review 11

2.1 Graph Coloring . 11

2.1.1 Generalized Coloring . 12

2.1.2 Component Coloring . 13

2.1.3 Remarks . 14

2.2 Storage Management in Evolving Databases 15

2.2.1 Remarks . 16

2.3 Light-trail Scheduling . 16

2.3.1 Hardware Models . 17

2.3.2 Stationary Problems . 17

2.3.3 Solution Techniques . 18

2.3.4 Online Problems . 19

2.3.5 Remarks . 19

ix

2.4 Scheduling in Reconfigurable Bus Architectures 20

2.4.1 Remarks . 21

3 Stationary Problems on Proper Interval Graphs 23

3.1 pλ,Cq-partition . 24

3.2 Coloring � Partition on Chordal Graphs . 25

3.3 Coloring � Block-partition on PIGs . 27

3.4 An LP Based Algorithm . 31

3.5 A Combinatorial Algorithm . 33

3.5.1 Lower Bound . 33

3.5.2 Upper Bound . 33

3.5.3 Forbidden Vertices . 35

3.5.4 Marking Forbidden Vertices . 36

3.5.5 Algorithm COMBPART . 38

3.6 Splittable Weighted Problem . 40

3.6.1 Marking Forbidden Blocks . 41

3.6.2 Algorithm SPLITPART . 45

3.7 Nonsplittable Weighted Problem . 46

3.8 Summary . 46

4 Stationary Problems on Interval and Circular-arc Graphs 47

4.1 Stationary Light-trail Scheduling . 47

4.2 Algorithm Overview . 50

4.3 Schedule Class i ¥ 2 . 51

4.4 Merge Schedules of All Classes . 54

4.5 On the Congestion Lower Bound . 55

4.6 Summary . 56

5 Online Problems on Interval and Circular-arc Graphs 57

5.1 Online Light-trail Scheduling . 57

5.2 Algorithm SEPARATECLASS . 58

5.3 Algorithm ALLCLASS . 60

5.4 Lower Bound for ALLCLASS . 61

x

5.4.1 Remarks . 63

5.5 Problem Lower Bound – Ωplog pq . 64

5.6 Simulations . 67

5.6.1 The Simulation Experiment . 67

5.6.2 Results . 68

5.7 Summary . 70

6 Conclusions and Future Work 71

6.1 Conclusions . 71

6.2 Future Work . 73

xi

List of Figures

1.1 Optical Transmission using Light-trails . 3

1.2 Stationary Component Coloring . 5

3.1 Sketch Showing Clique Intersection Remains Unchanged in Exchange 30

3.2 Example Showing Lemma 3.13 not Valid for General Interval Graphs 30

4.1 Solutions to the Stationary Problem Example 49

4.2 Anchor and trail-point of a transmission . 53

4.3 An Example Instance where Congestion Bound is Weak 55

5.1 An Instance for which ALLCLASS is Ωplog2 p{ log log pq-competitive 64

5.2 Simulation Results . 69

List of Tables

6.1 Current Status of Component Coloring . 72

xiii

Chapter 1

Introduction

Graph coloring is one of the most well studied fields in graph theory. In the simplest graph

coloring problem, commonly known as vertex coloring, we need to color the vertices of given

a graph using the minimum number of colors so that no two adjacent vertices are assigned the

same color. Because of many applications of graph coloring in mathematics, computer science

and other areas, vertex coloring has been generalized in many ways. In this thesis we study one

of such generalizations which we call the component coloring problem.

1.1 Motivation

Our formulation of the component coloring problem is motivated by a problem on scheduling

transmission requests on the light-trails based optical WDM (wavelength division multiplex-

ing) networks. Light-trails [18] are considered to be an attractive solution to the problem of

bandwidth provisioning. The key idea in the light-trails is the use of optical shutters which are

inserted into the optical fiber, and which can be configured to either block the optical signal

or let it pass through. By configuring some shutters ON (signal let through) and some OFF

(signal blocked), the network can be partitioned into subnetworks, called light-trails. Thus by

increasing the number of light-trails, more simultaneous transmissions are possible, albeit go-

ing a shorter distance. The optical shutters are controlled by an auxiliary network (“out-of-band

channel”) which is typically electronic, and the shutter switching time is of the order of mil-

liseconds as opposed to optical signals which have frequencies of several gigahertz. However,

the high bandwidth available per shutter configuration typically remains underutilized because

(i) typically the transmissions have comparatively very low bandwidth requirement, and (ii) at

1

Chapter 1. Introduction

any given time and using a given wavelength, there can be at most one transmission in progress

to avoid optical interference. The light-trails based networks circumvent this problem by using

time division multiplexing inside a single light-trail; in other words, a single light-trail is used to

serve several transmission requests even during the period when shutter configurations cannot

be changed, provided the communicating processors lie within the light-trail.

Figure 1.1 shows an example of scheduling transmissions on a light-trail based optical

path network of 14 processors. We need to schedule 7 transmissions r0, 4s, r1, 5s, r2, 6s, r3, 10s,
r7, 11s, r8, 12s, r9, 13s of unit bandwidth requirements. The capacity of an wavelength, i.e., the

maximum bandwidth served by a wavelength is C � 2 units. Thus at most 2 transmissions

can be in any light-trail. We use 3 wavelengths. On the first wavelength we create a single

light-trail spanning the whole network and assign transmissions r2, 6s and r3, 10s on it. Note

that transmissions r2, 6s, r3, 10s are time multiplexed and the whole span of light-trail r0, 13s is

dedicated to each of them during the time they are active. The dotted regions cannot be used for

any other transmission because light signal used for a transmission travels all the way till the

end and hence at any time instant only one transmission can be active in the light-trail. On the

second wavelength by switching off the shutters of that wavelength at processors 0, 7, 13 two

light-trails r0, 7s, r7, 13s are created. Transmissions r0, 4s, r1, 5s are assigned to light-trail r0, 7s
and transmissions r7, 11s, r8, 12s are assigned to light-trail r7, 13s. The transmission r9, 13s is

assigned to a single light-trail on the third wavelength.

In this thesis we consider the problem of scheduling transmissions on light-trail based op-

tical path and ring networks. It is customary to consider two problem variations: nonsplittable,

in which a transmission must be assigned to a single light-trail, and splittable, in which a trans-

mission can be split into two or more transmissions by dividing up the bandwidth requirement,

and each of them can be assigned to different light-trails. Note that when a transmission is

split into multiple transmissions, the source and destination remain the same, only the required

bandwidth is divided.

We examine the problem in the stationary setting, in which interprocessor transmission

demands are known and do not change, as well as the dynamic setting in which transmission

requests arrive and depart after being served, in an online manner. For both problems, our

objective is to minimize the number of wavelengths needed to accommodate the given traffic,

using the best possible partitioning of the network into light-trails (for each wavelength), and

the best possible assignment of requests to light-trails. Our approach is applicable to the setting

2

Section 1.1. Motivation

1

ON

2

ON

3

ON

4

ON

5

ON

6

ON

7

ON

8

ON

9

ON

10

ON

11

ON

12

ON

0

OFF

13

OFF

λ1

Space

Time

1 2 3 4 5 6 7 8 9 10 11 120 7 13

λ2

λ3

Figure 1.1: Optical Transmission using Light-trails

in which a fixed number of wavelengths is available as follows. If our analysis indicates that

some λ wavelengths are needed while only λ0 are available, then effectively the system will

have to be slowed down by a factor λ{λ0. This is of course only one formulation; there could

be other formulations which allow requests to be dropped and analyze what fraction of requests

are served.

Abstraction

The light-trail scheduling problem can be abstracted as the following problem on graphs. For

each transmission request, create a vertex with weight equal to the bandwidth requirement. Two

vertices are adjacent if the corresponding transmissions overlap, i.e., they use at least one com-

mon link. In the most efficient scheduling the transmissions served by a light-trail induce a

connected subgraph because otherwise we can divide the light-trail further into smaller light-

trails, each accommodating a connected component of the subgraph. Thus the transmissions

assigned to all the light-trails on a wavelength induce a subgraph having connected compo-

nents of weight at most the capacity of a wavelength, say C, and hence light-trail scheduling is

equivalent to getting a partition of smallest order of the vertex set such that each class induces

components of weight at most C. We call this graph partitioning problem as the component col-

3

Chapter 1. Introduction

oring problem. We give the formal definition of this abstract problem and several of its variants

in section 1.2.

Other Applications

The Reconfigurable Bus Architectures are similar to the light-trails based networks. Hence

scheduling communications on them is also an application of component coloring. We discuss

this in detail in Section 2.4 of Chapter 2 on the related work. Component coloring also has

applications in a seemingly unrelated field of evolving databases, the details which are discussed

in Section 2.2 of Chapter 2.

1.2 Component Coloring

The component coloring problem is a generalization of the vertex coloring problem. In this gen-

eralized problem two adjacent vertices can be assigned the same color but over all the number of

vertices in a monochromatic component must not exceed some given upper bound. Motivated

by the light-trail scheduling problem, we consider the component coloring problem in several

settings – (a) stationary, in which all the vertices are known in advance and online, in which

the vertices are revealed one at a time, (b) weighted, in which vertices have weights, as well

as unweighted, in which all vertices have weights equal to 1, and (c) in case of weighted, both

splittable, in which the weight of a vertex can be distributed among several of its copies which

can be colored separately and nonsplittable, in which splitting of weights is not allowed.

Before we formally define each of the problem variations, we define some useful terms.

A λ-assignment of a graph G � pV,Eq is a map from V to some set of λ colors such as

t1, 2, . . . , λu; this assignment may not be ‘proper’ in the standard notion that two adjacent

vertices must be assigned different colors. A color class i is the set of vertices assigned color i

under the λ-assignment. A monochromatic component or chromon ofG under a λ-assignment is

a connected component of the sub-graph induced by a single color class. The size of a chromon

is the number of vertices in it. For a weighted graph, the weight of a chromon is the sum of

weights of vertices in it.

4

Section 1.2. Component Coloring

Stationary Unweighted Problem

A graph G is pλ,Cq-colorable if it has a λ-assignment in which every chromon has size at

most C and such an assignment is called a pλ,Cq-coloring. The C-component chromatic num-

ber of G, denoted by χCpGq is the minimum λ for which G is pλ,Cq-colorable. The stationary

unweighted problem is defined as follows:

Problem Stationary unweighted component coloring

Given A simple graph G, and a constant C

Goal Find a pλ,Cq-coloring of G such that λ � χCpGq

Note that vertex coloring is a special case of component coloring where C � 1, i.e.,

each chromon is an individual vertex. Figure 1.2 shows the graph G corresponding to the

instance of the light-trail scheduling problem shown in Figure 1.1. There is a vertex for each

transmission and there is an edge between two vertices if the two corresponding transmissions

use a common link. Figure 1.2 also shows the solutions to the stationary unweighted problem

on G for C � 1, 2. For vertex coloring we need at least 4 colors because either clique has 4

mutually adjacent vertices. For C � 2 either clique requires at least 2 colors. Let the left clique

be assigned colors 1, 2. Since the middle vertex is in an already full chromon of color 1, no

more vertex of right clique can be assigned color 1. At most 2 of the remaining 3 vertices of

the right clique can be assigned color 2. So we need an additional color. Thus the colorings are

optimal for C � 1, 2, respectively.

[3, 10]

[2, 6]

[1, 5]

[0, 4]

[9, 13]

[8, 12]

[7, 11]

2

4

3

1

4

3

1

(a) Vertex Coloring

[3, 10]

[2, 6]

[1, 5]

[0, 4]

[9, 13]

[8, 12]

[7, 11]

1

1

2

2

3

2

2

(b) Component Coloring for C � 2

Figure 1.2: Stationary Component Coloring

5

Chapter 1. Introduction

Stationary Nonsplittable Weighted Problem

A graphGwith weightW on vertices is pλ,Cq-colorable if it has a λ-assignment in which every

chromon has weight at most C and such an assignment is called a pλ,Cq-coloring of G with

weight W . The C-component chromatic number of G with weight W , denoted by χCpG,W q
is the minimum λ for which G is pλ,Cq-colorable. The stationary (nonsplittable) weighted

problem is defined as follows:

Problem Stationary (nonsplittable) weighted component coloring

Given A simple graph G with integer weights W on vertices, and a constant C

Goal Find a pλ,Cq-coloring of G with W such that λ � χCpG,W q

Stationary Splittable Weighted Problem

For a graph G � pV,Eq with weight W on V , consider another graph G1 � pV 1, E 1q with

weight W 1 on V 1 such that (i) the weight W pviq of vi P V is divided among a separate set of

ni vertices vi1, vi2, . . . , vini
in V 1, i.e., W pviq �

°ni

k�1W
1pvikq, (ii) V 1 � Yi,ktviku, and (iii) for

each edge pvi, vjq P E there is an edge pvik, vjlq P E 1 for all k � 1, . . . , ni and l � 1, . . . , nj .

We call G1 with W 1 a weight-split graph of G with W . A graph G with weight W is pλ,Cq-
split colorable if it has a weight-split graph G1 which is pλ,Cq-colorable and such a coloring is

called a pλ,Cq-split coloring of G. The C-component splittable chromatic number of G with

weight W , denoted by χ̂CpG,W q is the minimum λ for which G is pλ,Cq-split colorable. The

stationary splittable weighted problem is defined as follows:

Problem Stationary splittable weighted component coloring

Given A simple graph G with integer weight W on vertices, and a constant C

Goal Find a pλ,Cq-split coloring of G with W such that λ � χ̂CpGq

Online Problems

In the online setting the vertices arrive and depart in stages. A vertex is said to be active between

its arrival and departure. An algorithm for the online problem must immediately assign a color

to a newly arrived vertex, must not change the color as long as the vertex is active and can reuse

the color assigned to a departed vertex for some other vertices that arrive in later stages. Here

6

Section 1.3. Contribution

we define the nonsplittable weighted version of the problem; the unweighted and the splittable

weighted cases can be similarly defined.

A graph G with weight W on vertices and the order σ of arrivals and departures of the

vertices is said to be pλ,C, σq-colorable if G has a λ-assignment such that at every stage in

σ every chromon of active vertices has weight at most C and such an assignment is called a

pλ,C, σq-coloring of G with W . The online C-component chromatic number of G with weight

W and order σ, denoted by χCpG,W, σq is the minimum λ for which G is pλ,C, σq-colorable.

The online weighted problem is defined as follows:

Problem Online weighted component coloring

Given A simple graph G with integer weights W on vertices, order σ of

arrivals and departures of vertices, and a constant C

Goal Find a pλ,C, σq-coloring of G with W such that λ � χCpG,W, σq

1.3 Contribution

In this thesis we focus on the light-trail scheduling problem on path and ring networks. Hence

we study and solve the component coloring problem on the classes of graphs that arise on

such networks, i.e., interval graphs and circular-arc graphs, respectively. We also consider the

problem on proper interval graphs (PIGs) which are known to admit polynomial time algorithms

for many problems which are hard on general graphs.

Our main contributions are as follows. Firstly, we study the stationary problems on the

PIGs. For the unweighted problem we give a linear time exact algorithm. Our algorithm first

solves the decision version of the problem for which the paper [52] gives a super quadratic time

algorithm in the context of an application in evolving databases. Though the graphs considered

in [52] are also PIGs, our algorithm achieves better performance by exploiting a nice structure

of the PIGs for which the problem reduces to partitioning the vertex set such that the new graph

generated by contracting each part admits a vertex coloring with the minimum number of colors.

We extend the algorithm for the unweighted problem to solve the splittable weighted problem

on PIG in time quadratic in number of vertices. However, the nonsplittable weighted version

of the problem is NP-hard even on PIGs as the bin-packing problem which is NP-hard [31],

is a special case of the problem where each item corresponds to a vertex with weight equal to

the size of the item, there is an edge between every pair of vertices and each bin corresponds

7

Chapter 1. Introduction

to a color. The graph in this special case is a complete graph which is also a PIG. We use

the algorithm for the splittable weighted problem to get a 2-approximation algorithm for the

nonsplittable weighted problem on PIGs. Note that the authors in [52] use a similar idea to

give a 2-approximation algorithm for the weighted storage problem by using the algorithm for

unweighted problem, but they optimize a different objective as discussed in Section 2.2.

Secondly, we study the stationary problems on general interval graphs and circular-arc

graphs. For these two classes of graphs the algorithms in the literature are based on heuris-

tics and no provable bounds are provided on their performances. The unweighted problem is

NP-hard on circular-arc graphs because in the special case of C � 1 the problem is same as

vertex coloring which is known to be NP-hard on circular-arc graphs. Though vertex coloring

has polynomial time algorithm on general interval graphs, we do not know the complexity of

the unweighted problem and the splittable weighted problem on general interval graphs. The

nonsplittable weighted problem on general interval graphs is NP-hard as we have seen it to be

NP-hard even for the PIGs.

For the weighted stationary problem we give an approximation algorithm which works on

both graph classes – interval graphs and circular-arc graphs and in both cases – splittable and

nonsplittable. We describe the algorithm using the terminologies from the light-trail scheduling

problem; it can be similarly described using equivalent coloring terminologies. For the light-

trail scheduling problem a simple lower bound can be computed as the congestion ω, the maxi-

mum bandwidth requirement across any link, divided by C, the maximum bandwidth served by

a wavelength. For a network of p nodes, our algorithm schedules all transmission requests using

Opω{C � log pq wavelengths and hence our algorithm can be seen to use a number of colors

close to the optimal. The reader may wonder why the additive log p term arises in the result.

We show that there are input transmissions for which lower bound ω{C is small, but which yet

require Ωpω{C � log p{ log log pq colors. In a weak sense, this justifies the additive log p term

in the number of wavelengths taken by our algorithm. In the graph coloring terminology, ω

represents the weight of a maximum clique in the graph and p denotes the number of distinct

endpoints of the corresponding interval/circular-arc representation of the input graph.

Thirdly, we study the online problem for which the performance of the algorithms in the

literature has been based on simulations. Here also we describe our algorithms using he termi-

nologies from the light-trail scheduling problem. For the online problem, we use the notion of

competitive analysis [1, 14]. In this, an online algorithm which must respond without the knowl-

8

Section 1.5. Outline

edge of the future is evaluated by comparing its performance to that of an offline adversary, an

algorithm which is given all the transmissions at the beginning. Clearly, the offline adversary

must perform at least as well as the best online algorithm. We establish that our first algorithm

is Θplog pq-competitive, i.e., it requires Θplog pq times as many wavelengths as needed by the

offline adversary. We also prove that no online algorithm can do better by showing the lower

bound on the competitive ratio of any algorithm for the problem to be Ωplog pq. A multiplica-

tive Θplog pq factor might be considered to be too large to be relevant for practice; however,

the experience with online algorithm design is that such algorithms often give good hints for

designing practical algorithms. We also give a second algorithm for this problem: it is in fact

a simplified version of the first. It actually performs better than the first algorithm in many sit-

uations; however, we can prove that its competitive ratio is worse, between Ωplog2 p{ log log pq
and Oplog2 pq.

Finally, we also simulate two algorithms based on our online algorithms for inputs arising

in some traffic models of the light-trail networks. We compare them to a baseline algorithm

which keeps the optical shutter switched OFF only in one processor for each wavelength. Note

that at least one processor should switch OFF its optical shutter, otherwise the light signal will

interfere with itself after traversing around the ring. We find that except for the case of very low

traffic, our algorithms are better than the baseline. For very local traffic, our algorithms are in

fact much superior.

1.4 Outline

The rest of the thesis is organized as follows. We begin in Chapter 2 by comparing our work

with previous related work. In Chapter 3 we describe our solutions to the stationary problems

on proper interval graphs. Chapter 4 discusses our algorithm for the stationary problem on

general interval graphs. The same algorithm also works on circular-arc graphs. For the same

classes of graphs we give our solutions to the online problem in Chapter 5. Finally we conclude

in Chapter 6.

9

Chapter 1. Introduction

1.5 Credit

The results in Chapter 3 are based on the paper [22] which is a joint work with Professor

Ajit Diwan, member of my Research Progress Committee, and Professor Abhiram Ranade, my

advisor. The results in Chapters 4 and 5 are based on the papers [73, 74], both are joint work

with my advisor.

10

Chapter 2

Literature Review

In this chapter we discuss previous work on the component coloring problem and other related

problems in the literature which can be categorized into the following four broad areas: (i)

graph coloring and its generalizations, (ii) applications in evolving databases, (iii) applications

in light-trails, and (iv) applications in reconfigurable bus architectures. We discuss the work

on these four areas in Sections 2.1, 2.2, 2.3 and 2.4, respectively. We conclude each of these

sections separately by contrasting with our work.

2.1 Graph Coloring

Graph coloring has been one of the most studied fields of graph theory [47, 53, 77]. In the

simplest graph coloring problem, commonly known as (proper) vertex coloring, given a graph

Gwith the set of vertices V and the set of edgesE, we need to assign a set of λ colors, generally

indexed by integers 1, 2, . . . , λ, to the vertices in V such that the two endpoints of any edge in

E are assigned different colors. Such a coloring of V is called a (proper) λ-coloring. The

minimum λ for which a there is a λ-coloring for G is called the chromatic number of G denoted

by χpGq. The objective of vertex coloring is to obtain a χpGq-coloring of a given G.

Karp [50] showed that it is NP-complete to decide if a graph has a vertex coloring using

3 colors. There have been attempts to get approximation algorithms for vertex coloring, i.e.,

polynomial time algorithms which take at most α � χpGq number of colors where α is called

the approximation factor. However, the approximate coloring also turns out to be hard. So far

the best known approximation factor for general graphs is Opnplog log nq2{ log3 nq [43]. Garey

and Johnson [30] proved that it is NP-hard to approximate the chromatic number within a factor

11

Chapter 2. Literature Review

of p2 � εq for any ε ¡ 0. Getting an approximation algorithm with a larger constant factor

also seems impossible. Lund and Yannakakis [62] showed that there is no polynomial time

algorithm that approximates χpGq of a graph G with n vertices with a factor n1�ε for some

particular small ε ¡ 0, unless P � NP .

There are also efforts in getting polynomial time algorithms for special classes of graphs.

Planar graphs have been of huge interest because of the applications to map coloring. Though

Stockmeyer [88] showed that it is NP-complete to decide if a planar graphG is 3-colorable, even

whenG has maximum degree at most four, it is folklore that four colors are enough for coloring

planar graphs. In the celebrated Four Color Theorem Appel, Haken and Koch [4] showed that

for every planar graph G on n vertices, χpGq ¤ 4 and there is an Opn2q time algorithm for 4-

coloringG. For interval graphs, the greedy algorithm applied on the vertices ordered by the left

endpoints of the corresponding interval representation, gives an exact solution. However, vertex

coloring on circular-arc graphs is NP-hard [32] and has a 2-approximation algorithm [91].

2.1.1 Generalized Coloring

There have also been attempts to generalize the vertex coloring problem in many ways [97]. A

λ-coloring of a graph G � pV,Eq can also be considered as a partition tV1, V2, . . . , Vλu of the

vertex set V such that the class Vi contains the vertices assigned to color i. In proper vertex

coloring each class is an independent set. In the generalized colorings this constraint is relaxed.

The generalized colorings are also known as improper colorings, relaxed colorings, conditional

colorings and so on.

In the most generalized coloring, each color class Vi ofGmust satisfy some graph property

P and in such case G is said to be pλ,Pq-colorable. A graph property P is a set of graphs and

a graph G is said to satisfy P if G P P . Several properties have been considered for P – graphs

of low diameters [58], graphs of small number of edges [86], graphs of smaller tree widths [21],

graphs without any cycle of a given length [20] and so on.

However a significant amount of work on P-colorings, which are more closely related to

the component coloring can be described using the notation of pλ,Cqγ-coloring introduced by

Frick [28]. Here P contains graphs G with the property γpGq ¤ C where γ is a graph invariant

andC is a given constant. The minimum λ for whichG has an pλ,Cqγ-coloring is called theCth

γ-chromatic number of G and will be denoted as χγCpGq. A graph G is called pλ,Cqγ-colorable

if χγCpGq ¤ λ and pλ,Cqγ-chromatic if χγCpGq � λ. The problem has been studied for several

12

Section 2.1. Graph Coloring

graph invariants γ – (i) clique number ω, the size of a largest complete subgraph [15, 27], (ii)

maximum degree ∆ [3, 29, 49, 70, 71], (iii) the degeneracy ρ � maxH�G δpGq where δpGq is

the minimum degree of a vertex in G [5, 12, 17, 81, 83], (iv) the path number τ , the length of

the longest path [16, 48, 97].

2.1.2 Component Coloring

Using Frick’s notation component coloring can be represented as pλ,Cqν-coloring where νpGq
denotes the number of vertices in the largest component in G. The only work [85] available in

the graph coloring literature on pλ,Cqν-coloring gives several graph theoretic results such as

bounds on the generalized chromatic number, extensions of some existential results on vertex

coloring and so on. There also exists a significant amount of work on fragmented coloring [52]

which is somewhat dual to component coloring: given a graph and a fixed set of λ colors, find

a pλ,Cq-coloring with minimum C. The minimum value of C is denoted by Dλ.

The paper [52] showed that for each C there exists a planar graph that has no p3, Cq-
coloring, thus establishing that the straightforward bound χC ¤ 4 on planar graphs due to Four

Color Theorem [4] is in fact tight. The authors [52] also proved that for sufficiently large ∆ there

are graphs of maximum degree ∆ and order n which have both χOpnq and DOp?∆q arbitrarily

large.

Most of the remaining work on fragmented coloring is on bounding D2 for graphs with

smaller ∆. For ∆ ¤ 3 any maximum edge-cut proves that D2 ¤ 2. For ∆ � 4, Haxell, Szabó,

and Tardos [45] showed that D2 ¤ 6 and for ∆ � 4, Berke [10] showed that D2 ¤ 1908. For

∆ � 6, Alon, Ding, Oporowski, and Vertigan [2] showed that for every k there is a graph Hk

with n vertices such that D2pHkq � Ωp?nq. For outer planar graphs Berke [10] showed that

D2 ¤ 2∆ � 1.

Matoušek, and Prı́vetivỳ [65] showed that for grid graphs t1, 2, . . . , nud with diagonals,

Ωpnd�1�d2nd�2q ¤ D2 ¤ nd�1 and for triangulated grid graphs, D2 � Ωpnd�1{?dq. Edwards

and Farr [23] showed that for a n-vertex graph with ∆ � 4, there exists a local optimal algorithm

that produces a p2, Op2p2 log2 nq1{2qq-coloring. For the family of minor-closed graphs, Linial,

Matoušek, Sheffet, and Tardos [59] showed that Ωpn2{p2λ�1qq ¤ Dλ ¤ Opn2{pλ�1qq for every

fixed λ. A minor of G is graph obtained by deleting or contracting edges in G.

Berman and Paul [11] worked on finding Dλ on k-trees. A k-tree is recursively defined as

follows: the complete graph Kk is a k-tree and if G is a k-tree of n � 1 vertices then the graph

13

Chapter 2. Literature Review

obtained by adding a new vertex to any of the inducedKk subgraphs ofG results in a new k-tree.

Normal trees are 1-trees. For k-trees [11] the authors showed that tn1{λu ¤ Dλ ¤ krn1{λs.

The Hadwiger’s conjecture is one of the long standing open problems in graph coloring

which says that for a graphGwithout anyKk minor, χpGq ¤ k�1 or in other words, χfpkqpGq ¤
hpkq where f, k are constant functions of k such that fpkq � 1 and hpkq � k � 1. The authors

in [59] linked the component coloring problem with the Hadwiger’s conjecture by mentioning

that a result by Kawarabayashi and Mohar [51] can be interpreted as the following relaxed form

of the conjecture. For any k ¡ 1 and any graph G having no Kk as a minor there exists a

function f of k such that χfpkq ¤ r15.5ks.

2.1.3 Remarks

There are a number of dimensions along which the work in the literature on graph coloring

can be classified: (a) property of each color class such as bounded clique size [15, 27], path

length [16, 48, 97], degeneracy [17, 81, 83], degree [3, 49, 70], component size [10, 23, 45, 51,

52, 59, 65, 85] and several others [20, 21, 58, 86], (b) results inspected varying from graph theo-

retic results such as relations between different chromatic numbers and graph invariants [17, 85],

bounds on chromatic numbers [17, 20], generalizations of results from proper coloring such

as existence results [85], and so on; complexity results such as hardness and approximibil-

ity [26]; algorithmic results such as polynomial time algorithms [5, 52, 83], approximations

algorithms [12, 29, 52], exact and heuristic algorithms [71], (c) type of graphs investigated such

as planar [17, 83], grid [65], interval and circular-arc [29, 49] etc. The stationary version as

well as the online version have also been considered.

Our results can be put in this full spectrum of results as follows. We seek polynomial time

exact (if possible), approximation and online algorithms with provable bounds on performance

for both weighted and unweighted, both stationary and online versions of the component col-

oring (ν-coloring) problem on interval graphs and circular-arc graphs. The only work that is

very close to our result is the work in [52] which is discussed separately in Section 2.2. Though

the authors in [52] also gave competitive algorithms for the online component coloring problem

on unit interval graphs, they optimize Dν
C whereas we optimize χνC . Moreover we also give

algorithms for general interval graphs and circular-arc graphs.

14

Section 2.2. Storage Management in Evolving Databases

2.2 Storage Management in Evolving Databases

Among the three applications of component coloring, the work closest to our work in terms

of the objectives of investigations and the solution techniques used, is the work on the storage

management in evolving databases.

In an evolving database system, large volume of data arriving continuously over time

makes it difficult for the database management system to efficiently store data as well as to

quickly serve queries on the stored data. One of the models that has been considered is to use

sliding window indices [52] for some parameter T , i.e., to maintain data for the last T days with

the reasonable assumption that most of the queries are on the most recent data.

The problem of storing data in a sliding window setting can be stated as follows. There

are λ compartments, b1, b2, . . . , bλ, each with a capacity B. Data items x1, x2, . . . with integer

weights arrive dynamically and expire after some fixed T days counting from the day of arrival.

An item xi is said to be active after it arrives and until it expires. At any given time a compart-

ment bj is said to be active if it contains at least one active item; its load is defined to be the

total weight of all items (live or expired) that were assigned to it since it was last inactive. We

need to efficiently assign the items to the compartments without violating the constraint that an

expired item from a compartment can be removed only when the compartment is inactive.

There are many ways to measure and optimize the quality of an assignment [52]. The

objective relevant to our work is to minimize the maximum load of any compartment, over all

time. The problem has been considered in both settings, (a) offline in which the data items are

known in advance and (b) online in which the data items arrive in some arbitrary odder and an

algorithm must assign a newly arrived item to some compartment without any knowledge about

the items that will arrive next.

To solve the offline optimization problem the authors of [52] solved the following decision

problem: given a set of n items x1, x2, . . . , xn does there exist an assignment of the items to λ

compartments such that the maximum load of any compartment is at most C? The authors gave

a polynomial time algorithm for this decision problem for the special case when all items have

weight equal to 1 and using that algorithm as a subroutine, gave a 2-approximation algorithm

for the optimization problem.

For the online problem, the paper [52] gave a p2λ� 1q{pλ� 1q-competitive algorithm and

an optimal 2-competitive algorithm for the special case of λ � 2, i.e., when there are only two

15

Chapter 2. Literature Review

compartments.

The authors [52] also treated the storage management problem to be an instance of a

generalized graph coloring problem which they called as fragmented coloring and gave some

graph theoretic results which we discussed in Section 2.1.2.

2.2.1 Remarks

The decision version of the offline storage management problem is related to the component

coloring problem as follows. Given an instance of the storage problem, create a graph G with a

vertex for each item. There is an edge between two vertices if there is a time instant when both

the corresponding items are live. Then there is an YES answer to the storage problem if and

only if there is a pλ,Cq-coloring of G. Note that since all items are active for exactly T days,

G is a proper interval graph.

However, fragmented coloring and hence the storage management problem seek to opti-

mize an objective which is somewhat dual to the objective of component coloring. Particularly,

fragmented coloring is to minimize the weight of the largest chromon given a fixed set of colors

whereas component coloring is to minimize the number of colors while making sure that the

weight of the largest chromon is at most C.

Thus the only thing that is common to both our work and the work of [52] is that both give

a polynomial time algorithm to decide if there is a pλ,Cq-coloring for given PIG G and fixed

λ,C. Both algorithms use a fact that solving this decision problem is equivalent to deciding

if the vertex set of G can be partitioned such that each part contains vertices consecutive in

the order of the left endpoints in the corresponding interval representation of G. However, the

difference is that the paper [52] solves this partition problem using a naive approach making the

overall algorithm take super quadratic time whereas we exploit a nice structure of PIGs to give

a linear time algorithm.

2.3 Light-trail Scheduling

We discussed about the light-trail scheduling problem in Section 1.1 of Chapter 1. Here we

discuss the previous work on the problem and other related problems available in the literature.

16

Section 2.3. Light-trail Scheduling

2.3.1 Hardware Models

After the light-trail technology was introduced by Chlamtac and Gumaste [18], a variety of

hardware implementations have emerged. Our model of the problem is based on the implemen-

tation in [37]. Chlamtac and Gumaste[36] also introduced a mesh implementation of light-trails

for general networks. Gumaste, Kuper, and Chlamtac [40] implemented a tree-shaped variant

of light-trails, called as clustered light-trail, for general networks. The paper [99] describes a

‘tunable light-trail’ in which the hardware at the beginning works just like a simple light-path

but can be tuned later to act as a light-trail. There is some preliminary work on multi-hop

light-trails [41] in which transmissions are allowed to go through a sequence of overlapping

light-trails. Survivability in the case of failures is considered in [7] by assigning each transmis-

sion request to two disjoint light-trails.

2.3.2 Stationary Problems

A variety of performance objectives have been proposed. Several objectives are mentioned in

the seminal paper [37] – to minimize the total number of light-trails used, to minimize queuing

delay, to maximize network utilization etc. Most of the work in the literature seems to solve

the problem by minimizing the total number of light-trails used [6, 25, 38, 98]. Though the

paper [38] suggests that minimizing the total number of light-trails also minimizes the total

number of wavelengths, it may not always be true. For example, consider an input instance in

which there are 3 transmissions – transmissions p1, 2q and p3, 4q each with bandwidth require-

ment 0.5 and transmission p2, 3q with bandwidth requirement 1. To minimize the total number

of light-trails used, we create two light-trails on two different wavelengths. Both light-trails ex-

tend all the way from 1 to 4. Transmission p2, 3q is put in one light-trail and transmissions p1, 2q
and p3, 4q are put in the other light-trail. On the other hand, to minimize the total number of

wavelengths, we put each of them in a separate light-trail, and the three light-trails are created

on a single wavelength. We believe that minimizing the number of light-trails is motivated by

the goal of minimizing the book-keeping and the scheduler overhead. However, we do not think

this can be more important than reducing the number of wavelengths needed (or reducing the

slowdown the system will face if the number of wavelengths is fixed). There are a few other

models as well, i.e., the paper [8] minimizes the total number of transmitters and receivers used

in all light-trails.

17

Chapter 2. Literature Review

2.3.3 Solution Techniques

ILP Based Solutions

The general approach followed in the literature to solve the stationary problem is to formulate

the problem as an integer linear program (ILP) and then to solve the ILP using standard solvers.

The papers [25, 38] give two different ILP formulations.

This ILP formulation assumes that a large number of wavelengths are available and hence

all transmission requests can be satisfied. The light-trails for different wavelengths are treated

as distinct light-trails and accordingly the set LT is determined.

However, solving these ILP formulations takes prohibitive time even with moderate prob-

lem size since the problem is NP-hard. To reduce the time to solve the ILP, the paper [6]

removed some redundant constraints from the formulation and added some valid-inequalities to

reduce the search space. However, the ILP formulation still remains difficult to solve.

Heuristic Solutions

Heuristics have also been used. The paper [6] solves the problem in a general network. It first

enumerates all possible light-trails of length not exceeding a given limit. Then it creates a list of

eligible light-trails for each transmission and a list of eligible transmissions for each light-trail.

Transmissions are allocated in an order combining descending order of bandwidth requirement

and ascending order of number of eligible light-trails. Among the eligible light-trails for a

transmission, the one with higher number of eligible transmissions and higher number of al-

ready allocated transmissions is given preference. The paper [98] used another heuristic for the

problem in a general network. For a ring network, [38] used three heuristics.

For the problem on a general network, [7] solves two sub-problems. The first sub-problem

considers all possible light-trails on all the available wavelengths as bins and packs the trans-

missions into compatible bins with the objective of minimising total number of light-trails used.

The second sub-problem assigns these light-trails to wavelengths. The first sub-problem is

solved using three heuristics and the second problem is solved by converting it to a graph col-

oring problem where each node corresponds to a light-trail and there is an edge between two

nodes if the corresponding light-trails conflict with each other.

The papers [34, 63] gave heuristics for the problem of integrated scheduling at the appli-

cations level for tasks running on light-trail based networks.

18

Section 2.3. Light-trail Scheduling

2.3.4 Online Problems

For the online problem, a number of models are possible. From the point of view of the light-

trail scheduler, it is best if transmissions are not moved from one light-trail to another during

execution, which is the model we use. It is also appropriate to allow transmissions to be moved,

with some penalty. This is the model considered in [38, 60], where the goal is to minimize the

penalty, measured as the number of light-trails constructed. The distributions of the transmis-

sions that arrive are also another interesting issue. It is appropriate to assume that the distri-

bution is fixed, as has been considered in many simulation studies including our own. For our

theoretical results, however, we assume that the transmission sequence can be arbitrary. The

work in [38] assumes that the traffic is an unknown but gradually changing distribution. It uses

a stochastic optimization based heuristic which is validated using simulations. The paper [6]

considers a model in which transmissions arrive but do not depart. Multi-hop problems have

also been considered [100]. An innovative idea to assign transmissions to light-trails using

online auctions has been considered in [39]. The paper [42] gives a two-stage scheduling algo-

rithm using heuristics based on the utility of each light-trail and estimates performance of the

algorithm in terms of average delay and number of required light-trails by modeling a Markov

chain.

2.3.5 Remarks

As may be seen, there are a number of dimensions along which the work in the literature may

be classified: the network configuration, the kind of problem attempted, and the solution ap-

proach. Network configurations starting from simple linear array/rings [38, 60] to full struc-

tured/unstructured networks [6, 7, 25, 89, 98, 100] have been considered in the optical commu-

nication literature. The stationary problem as well as the dynamic problem has been considered,

with additional minor variations in the models. Finally, three solution approaches can be iden-

tified. First is the approach in which scheduling is done using exact solutions of Integer Linear

Programs [6, 25, 38]. This is useful for very small problems. For larger problems, using the

second approach, a variety of heuristics have been used [6, 7, 38, 98]. The evaluation of the

scheduling algorithms has been done primarily using simulations. The third approach could

be theoretical. We see no theoretical analysis of the performance of the scheduling algorithms

available in the light-trail literature.

19

Chapter 2. Literature Review

In contrast, our main contribution is theoretical. We give algorithms with provable bounds

on performance, both for the stationary and the online case. Our work uses the competitive anal-

ysis approach [1, 14] for the online problem. We use techniques of approximation algorithms

to solve the stationary problem. To our knowledge, this competitive analysis and approxima-

tion algorithm approach to solve the light-trail scheduling problem has not been used in the

literature. We also give simulation results for the online algorithms.

2.4 Scheduling in Reconfigurable Bus Architectures

Our problem as formulated is also similar to the problem of scheduling communications on re-

configurable bus architectures [13, 24, 67, 94]. Many models of reconfigurable bus architectures

have been proposed and studied – Reconfigurable Networks (RN) [9], Bus Automation [82],

Configurable Highly Parallel Computer (CHiP) [87], Content Addressable Array Parallel Pro-

cessor (CAAPP) [95], Reconfigurable Mesh (RMESH) [44], Reconfigurable Buses with Shift

Switching (REBSIS) [57], Reconfigurable Multiple Bus Machine (RMBM) [90], Distributed

Memory Bus Computer (DMBC) [84], Mesh With Reconfigurable Bus (Mr) [79], Polymor-

phic Processor Array (PPA) [64], Processor Array with Reconfigurable Bus System (PARBS

or PARBUS) [46] and others. Models using optical buses have also been proposed – Opti-

cal Communication Parallel Computer (OCPC) [33], Array with Reconfigurable Optical Bus

(AROB) [78], Linear Array with Reconfigurable Pipelined Bus System (LARPBS) [76] and so

on. Though these models use optical signals instead of electrical signals for communication, at

an abstract level they are equivalent with PARBS and its variants. So we use the generic term

reconfigurable bus system to denote all the models mentioned above.

A reconfigurable bus system is modeled as a graph in which processors are vertices and

edges are communication links; however, a processor can choose to electrically connect (or keep

separate) the communication links incident to it. If links are connected together (like setting the

shutter ON), the communication goes through (as well as being read by the processor). In this

way the entire network can be made to behave like a few long or many short buses, as per the

needs of the application running on the network.

At an abstract level, the reconfigurable bus system is similar to our light-trail model, as

both models use controllable switches to dynamically reconfigure a bus into multiple subbuses.

In both models, changing the state of the switch takes very long as compared to the data rates

20

Section 2.4. Scheduling in Reconfigurable Bus Architectures

on the buses. However, typically, reconfigurable bus systems have only one bus, rather than

allowing multiple wavelengths like the light-trail model. A second difference is in the context

in which the two models have been studied. The light-trail model has been studied more by the

optical network community, and the focus has been how to schedule relatively long duration

communication requests (connection based) without having any graphical regularity. Recon-

figurable bus systems have been studied more in the context of parallel computing, and the

analyses have been more of entire algorithms running on them. These analyses typically con-

cern short messages and the communication patterns are often regular, such as those arising in

finding maximum/OR/XOR of numbers [54, 66], matrix multiplication [55], prefix computa-

tion [66, 68], problems on graphs [89, 93], sorting [75] and so on. PRAM simulation on re-

configurable bus [56, 92], particularly in the case of randomized assignment of shared memory

cells, generates random communication patterns. However, because these patterns are drawn

from a uniform distribution, they end up being quite regular (and much of the analysis is to find

regular patterns that are supersets of what is required). So even this work does not consider

truly arbitrary/irregular patterns which are our prime interest, for the online as well as off-line

(stationary) scenarios.

It is interesting to note that the communication patterns for PRAM simulation are uni-

formly random across the network because the PRAM address space is hashed, i.e., distributed

randomly. Hashing has the effect of converting possibly local communication going a short

distance to a random communication which most likely goes long distance. Such a strategy is

inherently wasteful in utilization of bandwidth. It seems much better to directly deal with the

arbitrary communication pattern which arises in PRAM simulation in the first place.

2.4.1 Remarks

While there is much work in the reconfigurable bus literature, it mostly concerns regular inter-

connection patterns, such as those arising in matrix multiplication, list ranking and so on [55,

75, 89, 93]. The only work we know of dealing with random communication patterns is in rela-

tion to the PARBUS architecture. Such patterns are handled using standard techniques such as

Chernoff bounds [80]. We do not know of any work which discusses how to schedule arbitrary

irregular communication patterns in this setting. This is probably understandable because re-

configurable bus architectures have mostly been motivated as special purpose computers, except

for the PRAM simulation motivation of PARBUS where the communication becomes random.

21

Chapter 2. Literature Review

However, if the network is used for general purpose computing, it does make sense to have

algorithms to provision bandwidth for arbitrary irregular patterns, as we do here.

22

Chapter 3

Stationary Problems on Proper Interval

Graphs

In this chapter we focus on solving the stationary component coloring problems on interval

graphs which arise in scheduling light-trails on path networks. A graph is an interval graph if

the vertices can be represented as intervals on the real-line such that two vertices are connected

by an edge if the corresponding intervals intersect. In fact, in this chapter we will solve the

stationary problems on a subclass of interval graphs known as proper interval graphs (PIGs).

An interval graph is also a PIG if in the corresponding set of intervals no interval is a proper

subset of another interval.

We assume that the input PIG, G � pV,Eq with n vertices and m edges is simple, finite.

We also assume that an interval representation of G is available where the intervals have integer

endpoints. In the corresponding light-trail scheduling problem each interval represents a set of

consecutive processors, each represented by an integer. We further assume that G is connected.

If G is not connected, the algorithms in this chapter can be applied separately to each connected

component of G to get an overall solution for G.

Our first solution is for the unweighted problem on PIGs. However, to build up the solution

we first show in Section 3.2 that component coloring on chordal graphs is equivalent to a vertex

partitioning problem which we formally define in Section 3.1. Note that interval graphs are

chordal. Later in Section 3.3 we show that for PIGs, it is enough to solve a simpler version of

the partitioning problem which we call the block-partitioning problem. For block-partitioning

we give an LP based algorithm in Section 3.4 and a direct combinatorial algorithm without the

need of LP scaffolding in Section 3.5, thus establishing the following result.

23

Chapter 3. Stationary Problems on Proper Interval Graphs

Theorem 3.1. There exists an algorithm to solve the stationary unweighted component coloring

problem on a PIG with n vertices and a given interval representation in Opnq time.

In Section 3.6 we extend the algorithm for the unweighted problem to solve the splittable

weighted problem on PIGs, thus establishing our second result of this chapter.

Theorem 3.2. There exists an algorithm to solve the stationary splittable weighted component

coloring problem on a PIG with n vertices and a given interval representation in Opn2M{Cq
time where M is the maximum weight of a vertex.

Considering the applications in scheduling light-trails on path networks, we may assume

that the bandwidth requirement of a transmission request is at most the capacity of wavelength,

i.e., weight of a vertex is at most C. In that case the algorithm mentioned in Theorem 3.2 takes

time Opn2q.
In the nonsplittable problem, however, by definition, a vertex has weight at most C. Using

the algorithm for the splittable problem as a subroutine we devise a two factor approximation

algorithm for the NP-hard nonsplittable problem PIGs in Section 3.7, thus establishing our final

result of this chapter.

Theorem 3.3. There exists a 2-approximation algorithm to solve the stationary nonsplittable

weighted component coloring problem on a PIG with n vertices and a given interval represen-

tation in Opn2q time.

3.1 pλ,Cq-partition

The component coloring problem can be seen as solving two problems simultaneously, (i) par-

titioning the vertex set into parts each of which will eventually form a monochromatic compo-

nent (chromon) after coloring, and (ii) assigning colors to these parts. The partitioning should

be such that if each part is contracted to a single vertex, the resulting graph can be colored us-

ing as few colors as possible. Before we formally define the partitioning problem, we give the

following definitions.

For a set S � V , the subgraph of G � pV,Eq induced by S, denotes by GrSs is the

graph GrSs � pS,EpSqq where EpSq � tpu, vq P E | u, v P Su. The contraction of an edge

e � pu, vq of a graph G � pV,Eq is to remove e from E and to replace u, v P V by a new

vertex w such that w is adjacent to all vertices that were adjacent to either u or v. For a graph

24

Section 3.2. Coloring � Partition on Chordal Graphs

G � pV,Eq and a partition Π � tP1, P2, . . . , Ptu of V , Pi � V , Pi X Pj � H for all i � j, the

partition chromatic number of Π is the chromatic number of the graph obtained by contracting

each class Pi into a single vertex.

Definition 3.4. A graph G � pV,Eq is said to have a pλ,Cq-partition if and only if there is a

partition Π � tP1, P2, . . . , Ptu of V such that the following constraints are satisfied:

• connectedness – the subgraph induced by each part Pi, i.e., GrPis is connected,

• size – each part Pi has at most C vertices, and

• partition chromatic number of Π is at most λ.

A C-component partition of a graph is a pλ,Cq-partition with the minimum λ. We will

refer to the problem of finding a C-component partition as the partition problem.

The size of the largest clique ωpGq in a graph G plays a major role in determining the

chromatic number χpGq, at least for some graphs classes such as perfect graphs. In fact, in a

perfect graph G each induced subgraph H � G satisfy χpHq � ωpGq. The clique intersection

of a partition Π of G is the maximum number of parts of Π intersected by any clique in G. Thus

for a perfect graph the partition chromatic number matches the clique intersection and hence an

equivalent definition of pλ,Cq-partition on perfect graphs is as follows.

Definition 3.5. A perfect graph G � pV,Eq has a pλ,Cq-partition if and only if there is a

partition Π � tP1, P2, . . . , Ptu of V that satisfies connectedness constraint, size constraint as

well as clique intersection constraint, i.e., the clique intersection of Π is at most λ.

We will use the above definition as the class of PIGs is a subclass of chordal graphs which

again is a subclass of perfect graphs. The stationary component coloring problem is equivalent

to the partition problem on chordal graphs which we discuss in the next section.

3.2 Coloring � Partition on Chordal Graphs

Before we prove the equivalence, let us recall the definition of pλ,Cq-coloring given in Sec-

tion 1.2 of Chapter 1. A pλ,Cq-coloring of a graph G is the assignment of λ colors to the

vertices of G such that every monochromatic component in the coloring has size at most C.

Lemma 3.6. If a graph G has a pλ,Cq-coloring then it has a pλ,Cq-partition.

25

Chapter 3. Stationary Problems on Proper Interval Graphs

Proof. Suppose G has a pλ,Cq-coloring C. Consider the partition Π induced by C where each

part is exactly a chromon. The connectedness constraint is immediately satisfied. The coloring

C itself shows that partition chromatic number of Π is at most λ. Since a chromon has size at

most C, the size constraint is also satisfied. Hence, Π is a pλ,Cq-partition.

Next we will show that for chordal graphs the converse is also true. A graph is chordal if

each of its cycles of four or more vertices has a chord, which is an edge joining two vertices that

are not adjacent in the cycle. There are many characterizations of chordal graphs (see [35] for

more details). We will use the characterization of a chordal graph based on perfect elimination

ordering or, in short, PEO. The open neighborhood Npvq of v is the set of vertices adjacent to

u, i.e., Npvq � tu | pu, vq P Eu, and the closed neighborhood N rvs of v includes v as well as

all vertices in Npvq. A vertex v of G is called simplicial if N rvs forms a clique. An ordering

σ � rv1, v2, . . . , vns of vertices is a PEO if each vertex vi is a simplicial vertex of the induced

subgraph Grvi, . . . , vns.

Proposition 3.7 ([35]). Let G � pV,Eq be an undirected graph. Then G is a chordal graph if

and only if G has a PEO. Moreover, any simplicial vertex can start a PEO.

To complete the proof of the equivalence of component coloring and partition on chordal

graphs we need to prove the following lemma. Since each chordal graph is also perfect, we use

the definition of a pλ,Cq-partition given by Lemma 3.5.

Lemma 3.8. If a chordal graph G has a pλ,Cq-partition then it has a pλ,Cq-coloring.

Proof. Suppose G has a pλ,Cq-partition Π � tP1, P2, . . . , Ptu. We prove that there exists a

pλ,Cq-coloring of G in which each Pi is a chromon. Let the colors be numbered 1, 2, We

prove by induction on number of vertices n. For n � 1, assigning color 1 to the single vertex

gives a pλ,Cq-coloring for any λ,C ¥ 1.

For n ¡ 1, let u be a simplicial vertex of G. Without loss of generality assume u P P1.

Consider the graph G1 obtained by removing u from G. Then Π1 � tP1ztuu, P2, . . . , Ptu is

a pλ,Cq-partition for G1. By induction, there is a pλ,Cq-coloring C 1 of G1 in which each part

of Π1 is a chromon. We obtain a coloring C of G as follows. If |P1| ¡ 1 we assign the color

of other vertices in P1 to u too. Otherwise we assign u the lowest numbered color that is not

assigned to Npuq in C 1. To show that C is a pλ,Cq-coloring, it is enough to show that at most

λ colors are used in C. For |P1| ¡ 1 it is obvious as no new color is used. For |P1| � 1 if it

26

Section 3.3. Coloring � Block-partition on PIGs

requires λ� 1 colors then it implies that the clique N rus associated with the simplicial vertex u

intersects λ� 1 parts which is not possible.

Thus, on chordal graphs, solving the component coloring problem is equivalent to solving

the partition problem. In the rest of this chapter we solve the partition problem only because the

solution can be converted to a solution to the coloring problem using the procedure described

in the proof of Lemma 3.8.

3.3 Coloring � Block-partition on PIGs

For PIGs, we introduce a more restricted way of partitioning the vertex set which we call block-

partitioning. Before we formally define block-partitioning we need to introduce an important

property of PIGs.

A graph G � pV,Eq is an interval graph if there exists a family I � tIv | v P V u
of intervals on a real line such that for distinct vertices u, v in G, pu, vq P E if and only if

IuXIv � H. Such a family I of intervals is commonly referred to as the interval representation

of G. Given an interval representation of G, consider a cycle of more than 3 vertices, and the

corresponding intervals in ascending left endpoints. Since the rightmost interval intersects the

leftmost interval, it also intersects the intervals in between them. Hence G is also chordal. It

will be convenient to let LeftpIvq and RightpIvq stand for the left and right endpoint of the

interval Iv, respectively. The family I is the interval representation of a proper interval graph

(PIG) if and only if no interval is properly contained in another.

We will see that our algorithms need an interval representation of the input graph. There

exists anOpm�nq time algorithm [72] to get an interval representation of a given interval graph.

Nevertheless, since the component coloring problem is motivated by the light-trail scheduling

problem, in this thesis, without loss of generality, we assume that an interval representation I �
tIv | v P V u is given for the input PIGG � pV,Eq. In that way we can ignore the additiveOpmq
factor and our algorithms only depend on n. Furthermore, we assume that the endpoints of the

intervals are integers as the intervals are supposed to represent a set of consecutive processors

in the light-trail scheduling problem where each processor is represented by an integer.

Now consider the linear order on V defined as follows. For u, v P V , u v if and

only if LeftpIuq LeftpIvq or ppLeftpIuq � LeftpIvqq and pRightpIuq ¤ RightpIvqqq. We

call this ordering v1 v2 � � � vn the canonical ordering. In the rest of this chapter, we

27

Chapter 3. Stationary Problems on Proper Interval Graphs

use numbers 1 to n to represent the vertices where i represents the ith vertex in the canonical

ordering. Hence, v will be interchangeably used to represent a vertex v P V as well as its

position in the canonical ordering. If u v then u is said to be on the left of v and v is said to

be on the right of u.

Proposition 3.9 ([72]). A graph G � pV,Eq is an interval graph if and only if there exists a

linear order on V such that for every choice of vertices u, v, w with u v w, pu,wq P E
implies pu, vq P E.

For PIGs the canonical ordering not only satisfies the conditions in Proposition 3.9 but, in

fact, satisfies a stronger property:

Proposition 3.10 (“The Umbrella Property” [61]). A graph G � pV,Eq is a PIG, if and only if,

there exists a linear order on V such that for every choice of vertices u, v, w, with u v w,

pu,wq P E implies both pu, vq P E and pv, wq P E.

An immediate corollary of Proposition 3.10 is that every edge pu, vq P E induces a clique

ru, vs. Also, any maximal clique of a PIG can be represented by a single edge between the two

end vertices, say pu, vq, or by the block ru, vs.

Corollary 3.11. Let S be a connected subgraph of a PIG and v1, v2, . . . , vt be the vertices of S

arranged in the canonical ordering. Then there must be edges pvi, vi�1q for all i � 1, . . . , t� 1.

Proof. Consider the two vertices vi and vi�1. Since S is connected there must be an edge pvj, vkq
where j ¤ i and i� 1 ¤ k. Then rvj, vks is a clique. Thus there is an edge pvi, vi�1q.

A block1 in a PIG a is a set of vertices which are consecutive in the canonical ordering.

We will represent a block starting at a vertex u and ending at a vertex v as the interval ru, vs.
Now we are all set to formally define block-partitioning on PIGs.

Definition 3.12. A PIG is said to have a pλ,Cq-block partition if it has a pλ,Cq-partition in

which each part also satisfy consecutiveness constraint, i.e., each part is also a block.

Lemma 3.13. A PIG G has a pλ,Cq-partition if and only if G has a pλ,Cq-block partition.

Proof. A pλ,Cq-block partition is also a pλ,Cq-partition. Now supposeG has a pλ,Cq-partition

Π. If the parts in Π also satisfy the consecutiveness constraint, we are done. Otherwise we

1Some authors use the term block to represent what we call a clique.

28

Section 3.3. Coloring � Block-partition on PIGs

convert Π to a new partition Π1 that also satisfies the consecutiveness constraint. The conversion

is done by exchanging vertices among the parts in Π, step-by-step, as follows.

We call a vertex u to be terminal if u and some v ¡ u � 1 belong to one part but u � 1

belongs to a different part, non-terminal otherwise. Let P1 be the leftmost part whose vertices

are not consecutive. Let i P P1 be smallest terminal vertex such that i � 1 is in some P2 � P1,

and there exists i� k P P1 for some k ¡ 1. We will show how to repartition P � P1 Y P2 into

parts P 1
1 and P 1

2 such that in the new partition, each vertex in the range r1, is is non-terminal.

Then by repeating this process all vertices can be made non-terminal and hence consecutiveness

constraint will be satisfied. Note that P is connected as both P1, P2 are connected and P2 has a

vertex in between two vertices of P1. There are two cases.

Case 1: There are at most C vertices in P to the right of i. In this case we set P 1
2 to be

the vertices in P to the right of i, and the P 1
1 to be the vertices in P to the left of and including

i. Clearly, i is no more a terminal vertex. Since P is connected, the vertices of P considered

in the canonical ordering form a path. P 1
1, P

1
2 are formed by breaking this path in the middle,

so P 1
1, P

1
2 are both connected. Let Q be any maximal clique which intersects P 1

1, P
1
2. Since we

know that the vertices of Q are consecutive, and i is the rightmost vertex in P 1
1 and i � 1 the

leftmost vertex in P 1
2, the vertices i, i � 1 must be in Q. Thus Q intersects P1, P2 as well. All

other parts intersecting Q remain unchanged, so the number of parts intersected by Q is the

same in the new partition as the old.

Case 2: There are more than C vertices in P to the right of i. In this case we set P 1
2 to be

the C rightmost vertices in P , and the remaining go to P 1
1. As before we see that i is no more

a terminal vertex and P 1
1, P

1
2 satisfy the connectedness property. Consider a maximal clique

Q that intersects P 1
1, P

1
2. We show that it must intersect the same number of parts in the new

partition as the old. Q must contain the rightmost vertex u of P 1
1 and leftmost vertex v of P 1

2.

Note first that P 1
1 contains both i, i � 1, i.e., it has at least one vertex from P1 and one

vertex from P2. But P 1
2 has C vertices, so they cannot all be from P1, or all from P2 because

both P1, P2 had at most C vertices each. Thus P 1
2 also contains at least one vertex j from P1 and

one vertex k from P2. Since i, j P P1, there must be a path in P1 from i to j. There must exist

an edge pu1, v1q in this path such that u1 ¤ u, and v ¤ v1 (see Figure 3.1). Since Q is maximal, it

must contain u1, v1. Thus Q intersects P1. In a similar manner, we see that it must intersect P2.

Thus it follows that Q intersects the same number of parts in the old and new partitions.

Figure 3.2 shows a simple example of a general (non-proper) interval graph where Lemma 3.13

29

Chapter 3. Stationary Problems on Proper Interval Graphs

i � u1 i� 1 u v v1k j

P 1
1 P 1

2

Figure 3.1: Sketch Showing Clique Intersection Remains Unchanged in Exchange

does not work. The graph is given by the intervals in canonical ordering: a � r1, 9s, b �
r2, 5s, c � r3, 6s, d � r4, 12s, e � r7, 10s, f � r8, 11s. It has two maximal cliques Q1 �
ta, b, c, du, Q2 � ta, d, e, fu. For C � 2, the optimal partition tta, du, tb, cu, te, fuu has clique

intersection 2 but the part ta, du is not a block as a, d are not consecutive according to canonical

ordering. All block partitions have clique intersection 3 or more. The reason is as follows. If a

is the only vertex in a part then to cover the remaining 3 vertices of Q1 we need at least 2 more

parts. On the other hand if a is paired with b or c then to cover the remaining 3 vertices of Q2

we need at least 2 more parts.

1 2 3 4 5 6 7 8 9 10 11 12

a

b

c

d

e

f

Figure 3.2: Example Showing Lemma 3.13 not Valid for General Interval Graphs

Since for a PIG, the notions of partition and block partition are equivalent, in the rest of

this chapter we will abuse the notation pλ,Cq-partition to actually mean a pλ,Cq-block partition

in the context of PIGs. The following three lemmas will be useful for our algorithms for the

partition problem given in subsequent sections.

Proposition 3.14. If an interval representation with integer endpoints is given for a PIG G,

then the vertices of G can be arranged in canonical ordering in Opnq time.

Proof. Sort the vertices in ascending left endpoints of the intervals using bucket sort. Since

there are n integer endpoints, bucket sort takes Opnq time. We claim that after sorting the

vertices are already in canonical ordering. The proof is as follows.

Consider three vertices u, v, w in the sorted order, and the corresponding intervals ru1, u2s,
rv1, v2s, rw1, w2s. We have u1 ¤ v1 ¤ w1. Since intervals for u, v are not proper subset of each

30

Section 3.4. An LP Based Algorithm

other, it follows that u2 ¤ v2. Similarly v2 ¤ w2.

Now if there is an edge pu,wq then w1 ¤ u2. Since v1 ¤ w1 and u2 ¤ v2 we have v1 ¤ u2

and w1 ¤ v2. Thus there are edges pu, vq and pv, wq.

Lemma 3.15. Given a PIG G with an interval representation with integer endpoints, if there is

an Opfpnqq algorithm to solve the (block) partition problem on G, then there is an Opn�fpnqq
algorithm to solve the coloring problem on G.

Proof. We first get the canonical ordering of by sorting the left endpoints of the intervals as

mentioned in Proposition 3.14. Suppose the partition algorithm returns a partition with clique

intersection λ and the parts sorted in canonical ordering are P1, P2, . . . , Pt. For each 1 ¤ i ¤ t,

we assign color pi� 1q mod λ� 1 to Pi. This is a valid coloring because otherwise, there is an

edge pu, vq between two parts of the same color implying that the clique ru, vs in G intersects

more that λ parts; this is not possible in a pλ,Cq-partition.

Proposition 3.16. If an interval representation is given for a PIG G, then the maximal cliques

of G can be found in Opnq time.

Proof. Let I � tIv | v P V u be an interval representation of G. Without loss of generality we

assume that the endpoints of all intervals are unique. Otherwise we can suitably extend some of

the intervals on either side so that all endpoints become distinct without altering the maximal

cliques. We construct the sorted array Ap1, . . . , 2nq of all endpoints in Opnq time using bucket

sort. The maximal cliques are identified as follows. Traverse A left to right and whenever Apiq
is LeftpIvq and Api � 1q is RightpIuq for some u, v in V then output ru, vs. Clearly u and v

are adjacent and hence ru, vs is a clique. Since u is the leftmost possible and v is the rightmost

possible for such a clique, ru, vs is a maximal clique. The traversal takes Opnq time.

3.4 An LP Based Algorithm

Let G � pV,Eq be a PIG with vertices already sorted in canonical ordering and Q be the set of

maximal cliques. Let LeftpQq denote the leftmost vertex of Q. Then the partition problem on

31

Chapter 3. Stationary Problems on Proper Interval Graphs

G can be formulated as the following Integer Linear Program:

ILPPART: min λ

s.t. xn � 1 (3.1)
i�C�1¸
j�i

xj ¥ 1 1 ¤ i ¤ n� C � 1 (3.2)

LeftpQq�|Q|�2¸
j�LeftpQq

xj ¤ λ� 1 @ Q P Q (3.3)

xj P t0, 1u 1 ¤ j ¤ n (3.4)

λ integer (3.5)

where xj is a binary variable to denote if vertex j is the rightmost vertex of a block and λ

denotes the maximum clique intersection. Constraint (3.1) ensures that some block must end at

n. Constraints (3.2) ensure that among C consecutive vertices there must be at least one vertex

which is the rightmost vertex of a block because a block has size at most C. Since a clique Q

intersects at most λ blocks, constraints (3.3) ensure that the vertices in Q, except the rightmost,

can include the rightmost vertices of at most λ � 1 blocks. The objective is to minimize the

maximum clique intersection λ.

Let LPPART be the LP relaxation of ILPPART obtained by making xj a real variable in

r0, 1s and making λ unconstrained. LPPART can be written in the standard form: min cT z such

that Az ¥ b, z ¥ 0. All rows of the 0, 1 matrix A has consecutive 1s. Hence A is totally

unimodular and it implies that LPPART has an integer optimal solution [69, Chapter III.1].

However, we give an alternative proof using rounding.

Lemma 3.17. If x, λ is a fractional solution to LPPART then it can be rounded to an integer

feasible solution x̄, λ̄ in polynomial time where λ̄ ¤ λ.

Proof. Consider the following rounding scheme which takes Opnq time. We use a set of inter-

mediate variables y0, y1, . . . , yn. We set

y0 � 0, yj �
j̧

i�1

xi, λ̄ � tλu and x̄j �
$&
%

1 if ryj�1s � ryjs

0 otherwise
for all 1 ¤ j ¤ n.

Note that each x̄j is a 0-1 variable and λ̄ is an integer. Since xn � 1 and ryn�1s � ryns, by

construction x̄n � 1. Hence x̄ satisfies constraint (3.1).

32

Section 3.5. A Combinatorial Algorithm

Now we prove that x̄ satisfies the constraints in (3.2). Since x satisfies jth of such con-

straints, xj � xj�1 � . . . � xj�C�1 ¥ 1, i.e., yj�C�1 � yj�1 ¥ 1. So there must be at least one

index k in rj, j �C � 1s such that ryk�1s � ryks implying that x̄k � 1. Thus x̄ also satisfies the

jth constraint in (3.2).

Finally we prove that x̄, λ̄ satisfy constraints in (3.3) too. Consider the constraint for clique

Q and let j � LeftpQq. Since x satisfies this constraint, xj � xj�1 � . . . � xj�|Q|�2 ¤ λ � 1,

i.e., yj�|Q|�1 � yj ¤ λ� 1. So there can be at most λ� 1 indices k in rj � 1, j � |Q| � 1s such

that ryk�1s � ryks implying that at most tλu� 1 of the corresponding x̄ks are set to 1. Thus x̄, λ̄

also satisfy the constraint for clique Q.

Clearly λ̄ ¤ λ. Since the integer objective value λ̄ cannot be strictly less than the fractional

value λ, λ̄ � λ and hence px̄, λ̄q is an optimal solution to ILPPART. Thus solving LPPART and

rounding the solution using the procedure given in the proof of Lemma 3.17 gives a polynomial

time algorithm for the partition problem.

3.5 A Combinatorial Algorithm

We now give a combinatorial algorithm for the partition problem on PIGs. The algorithm does

not use LP scaffolding and hence is more efficient.

3.5.1 Lower Bound

Lemma 3.18. If a PIG G has a pλ,Cq-partition then λ ¥ tpωpGq � C � 1q{Cu.

Proof. Let Q be a maximum clique of G, i.e., |Q| � ωpGq. To cover all vertices of Q by parts

of size at most C, we need at least rωpGq{Cs parts. Hence, clique intersection λ ¥ rωpGq{Cs �
tpωpGq � C � 1q{Cu.

There are examples where λ � rω{Cs is not enough to have a pλ,Cq-partition. Consider

the graph given by the intervals tr1, 3s, r2, 5s, r4, 6su. Here ω � 2. For C � 2, lower bound

rω{Cs � 1. But a single part common to both cliques cannot contain 3 connected vertices.

3.5.2 Upper Bound

Lemma 3.19. If an interval representation is given for a connected PIG G then there exists an

algorithm that produces a rrpωpGq � C � 1q{Cs, Cs-partition.

33

Chapter 3. Stationary Problems on Proper Interval Graphs

Proof. Consider the following algorithm which we call SIMPLEPART. We first arrange the

vertices of G in the canonical ordering time using Proposition 3.14. Then we assign the block

of vertices rpi� 1qC � 1,mintn, iCus to part Pi for each 1 ¤ i ¤ rn{Cs.

Each part Pi produced by SIMPLEPART clearly has consecutive vertices and has size at

most C. Since G is connected, by Corollary 3.11, there is an edge between vj and vj�1 for all

j � 1, 2, . . . , n� 1. Hence Pi is also connected. Thus it will be enough to show that any clique

intersects at most λ � rpω � C � 1q{Cs parts.

If a clique Q intersects λ parts Pi, . . . , Pi�λ�1, then Q must contain at least one vertex of

each of Pi and Pi�λ�1 and all vertices of remaining parts P2, . . . , Pi�λ�2. So the minimum size

of Q is 1�pλ�2qC�1 � λC�2C�2. Thus ω ¥ λC�2C�2. Hence λ ¤ pω�2C�2q{C.

This implies λ ¤ tpω � 2C � 2q{Cu � rpω � C � 1q{Cs.

There are examples where SIMPLEPART does not give the optimal partition. Consider the

graph given by the intervals a � r1, 6s, b � r2, 7s, c � r3, 10s, d � r4, 11s, e � r5, 12s, f �
r8, 13s, g � r9, 14s. It has two maximal cliques ta, b, c, d, eu, tc, d, e, f, gu and ω � 5. For C �
3, SIMPLEPART produces the partition tta, b, cu, td, e, fu, tguu which has clique intersection 3.

But there exists a better partition tta, bu, tc, d, eu, tf, guu with clique intersection 2.

However, a close analysis reveals that SIMPLEPART is not that bad. In fact, when ωpGq �
kC � 1 for some integer k, the two bounds match and hence SIMPLEPART gives the optimal

solution. For other values of ωpGq, which can be represented as kC � r for integer k, r such

that 2 ¤ r ¤ C, the two bounds are k � 1 and k � 2 respectively, hence differ by 1 and one of

the two bounds is optimum. Thus it will be enough to solve the following special case of the

problem.

Problem Partition subproblem

Given PIG G with ωpGq � kC � r, k integer and 2 ¤ r ¤ C

Goal Does G have a pk � 1, Cq-partition? If yes, generate the partition

If there is an algorithm ALG for the partition subproblem then we apply ALG to G to

check if there is a pk� 1, Cq-partition. If yes, ALG also gives the required partition. Otherwise,

SIMPLEPART gives an optimal solution.

In the rest of this chapter we will let kpGq, or in short k, denote tpωpGq � 1q{Cu.

34

Section 3.5. A Combinatorial Algorithm

3.5.3 Forbidden Vertices

The key idea in our algorithm is to first identify those vertices that cannot be right endpoints of

a block in a possible pk � 1, Cq-partition.

Definition 3.20. A vertex v in a PIG is said to be primarily forbidden if the block rv�kC, v�1s
is a clique.

Lemma 3.21. If the vertex v in a PIG is primarily forbidden then no block in a pk � 1, Cq-
partition can end at v.

Proof. Suppose a block in a pk � 1, Cq-partition ends at the vertex v. Consider the clique

rv � kC, v � 1s which must be covered by at most k � 1 blocks. To cover the vertex v � 1 we

need one block. Then the remaining kC � 1 vertices rv � kC, vs must be covered by at most k

blocks. This is not possible as the size of a block is at most C.

Definition 3.22. A vertex in a PIG is forbidden if it is primarily forbidden or secondarily for-

bidden, where secondarily forbidden vertices are defined recursively as follows. Suppose there

exist v, F,Q such that (a) Q is clique, (b) F is a consecutive sequence of forbidden vertices

starting at the rightmost vertex of Q and ending with v, (c) |Q| � |F | � 1 � kC � 1, (d)

1 � |F | � C � 1. Then vertices P pvq � tv � qC | 1 ¤ q ¤ ku are secondarily forbidden.

Further, we will say that v is the leader of all secondarily forbidden vertices in P pvq and v itself.

Similarly each secondarily forbidden vertex in P pvq is a follower of v.

Note that a primarily forbidden vertex is the leader of itself. Furthermore, any (primarily

or secondarily) forbidden vertex, v has a leader v � qC where q is an integer and 0 ¤ q ¤ k.

Lemma 3.23. If the vertex v in a PIG is secondarily forbidden then no block in a pk � 1, Cq-
partition can end at v.

Proof. Suppose a block ends at the vertex v. By Definition 3.22 the leader of v is v � qC for

some 1 ¤ q ¤ k and there exists a forbidden block F ending at v � qC and a clique Q of size

kC � 2� |F | ending at the leftmost vertex of F and starting at v� qC � kC. It will be enough

to show that Q intersects at least k � 2 blocks.

All forbidden vertices in F must be covered by a single block, say B, and B must end on

the right of v� qC. In the best case B ends at v� qC� 1 and covers rightmost C�|F | vertices

of Q including the leftmost vertex of F . Among the pk � 1qC � 2 remaining vertices of Q, the

35

Chapter 3. Stationary Problems on Proper Interval Graphs

leftmost pk�qqC�1 vertices rv�qC�kC, vs require at least k�q�1 blocks and pq�1qC�1

middle vertices require at least q blocks. Thus overall Q requires at least k � 2 blocks.

Our algorithm is as follows. We mark all forbidden vertices, and then try to form blocks

by a greedy left to right strategy.

3.5.4 Marking Forbidden Vertices

The algorithm for marking forbidden vertices is given in Algorithm 1. The algorithm assumes

that we are given an array Lmn, where Lmnpvq denotes the leftmost neighbor of v. It is easily

seen that Lmn can be computed in Opnq time given an interval representation of the input graph.

The algorithm constructs the array F , where F pvq � 1 if and only if v is forbidden.

Algorithm 1: MARKFORBIDDEN

Input : Lmnp1, . . . , nq for a PIG G � pV,Eq
Output: F p1, . . . , nq

1 foreach v � 1 to n do F pvq � Ldistpvq � 0;

2 foreach v � n downto 1 do /* phase 1 */

3 if Lmnpvq ¤ v � kC � 1 then

4 F pv � 1q � 1;

5 Rnfpnq � n; /* Rnfpvq is rightmost non-forbidden vertex ¤ v */

6 foreach v � n� 1 downto 1 do /* phase 2 */

7 Rnfpvq � mintv, Rnfpv � 1qu;
8 while F pRnfpvqq��1 do Rnfpvq � Rnfpvq � 1; /* now Rnfpvq is proper */

9 if pF pvq��1q and pLdistpvq ¤ pk � 1qCq then /* v is a follower */

10 F pv � Cq � 1; Ldistpv � Cq � Ldistpvq � C;

11 if LmnpRnfpvq � 1q ¤ v � kC then /* v is a leader */

12 F pv � Cq � 1; Ldistpv � Cq � C;

The algorithm marks primarily forbidden vertex v � 1 by checking if v is the rightmost

vertex of a clique of size kC � 2, that is, if Lmnpvq ¤ v � kC � 1.

The algorithm marks secondarily forbidden vertices by checking if a given vertex v is a

leader as per Definition 3.22. For this it needs to know whether the forbidden vertex set F and

36

Section 3.5. A Combinatorial Algorithm

the clique Q exist as per Definition 3.22. Suppose F,Q exist satisfying Definition 3.22. Then

suppose that F 1 is another set of forbidden vertices ending at v, but |F 1| ¡ |F |. Then we know

that v, F 1, Q � F 1 will also satisfy Definition 3.22. Thus it suffices to only consider the largest

sequence F ending at v. This is what the algorithm does. If the largest sequence F ending at v

starts at u then a Q satisfying Definition 3.22 must start at v� kC. The algorithm uses this fact.

For marking secondarily forbidden vertices the algorithm maintains the following invari-

ants at the beginning of each iteration in phase 2:

1. All the leaders in the set rv � 1, ns have been marked.

2. All the followers in rv � 1 � C, ns have also been marked.

3. For each follower j in rv � 1 � C, ns its distance from the leader is Ldistrjs.

4. Rnfpv � 1q equals the rightmost vertex in the range r1, v � 1s that is neither primarily

forbidden nor secondarily forbidden due to the leaders in rv � 2, ns.

In each iteration the invariants are extended for the next smaller value of v. We show that the

algorithm maintains the invariants by using induction on v.

Since the rightmost vertex n is never forbidden and the algorithm sets Rnfpnq � n, all the

invariants are maintained at the beginning of the iteration v � n� 1.

Suppose the invariants are maintained at the beginning of an iteration. Since Rnfpvq either

equals to or is on the left of both v and Rnfpv � 1q the algorithm sets Rnfpvq to the mini-

mum of them in step 7. In step 8 the algorithm moves Rnfpvq further to the left until it gets

a non-forbidden vertex. This step is valid because all forbidden vertices, both primarily and

secondarily, in the range rv � C � 1, vs are already marked. For the invariants the only things

remaining to show are the following: (i) v is correctly marked if it is a leader; the algorithm

does that in step 12 by checking the existence of Q for v and F � rRnfpvq � 1, vs as per Def-

inition 3.22 using the array Lmn (note that by Proposition 3.10 rLmnpvq, vs is a clique), and (ii)

v � C is correctly marked if it is a follower of a previously discovered leader l; in that case v

is also a follower of l, or a follower of the newly discovered leader v; in that case v is also the

leader of itself. In both cases the algorithm correctly sets the distance Ldistrv � Cs by adding

C to the distance of v from the leader.

The pseudocode of Algorithm 1 clearly shows that MARKFORBIDDEN takes overall Opnq
time. Thus we have proved the following result.

37

Chapter 3. Stationary Problems on Proper Interval Graphs

Lemma 3.24. If the array Lmn for a PIGG is given, the algorithm MARKFORBIDDEN correctly

marks the forbidden vertices of G in Opnq time.

3.5.5 Algorithm COMBPART

We now give our algorithm COMBPART, shown in Algorithm 2, to solve the partition subprob-

lem. The algorithm first marks all forbidden vertices and then forms blocks greedily such that

no block ends at a forbidden vertex.

Algorithm 2: COMBPART

Input : A PIG G � pV,Eq
Output: If G has a pk � 1, Cq-partition; if YES also output such a partition

1 F p1, . . . , nq � array returned by MARKFORBIDDEN on G; u � 1;

2 while u ¤ n do

3 v � mintu� C � 1, nu;
4 while pv ¥ uq and pF pvq �� 1q do v � v � 1;

5 if v u then return NO else create part ru, vs; u � v � 1;

6 return YES;

Lemma 3.25. Let B be any block, except the rightmost, created by COMBPART. Let u be the

leftmost vertex of B. Then the block of vertices ru� jC � |B|, u� jC �pC � 1qs are forbidden

for 0 ¤ j ¤ k � 1.

Proof. If |B| � C then the block ru � jC � |B|, u � jC � pC � 1qs is empty and hence the

lemma is vacuously true. So we assume |B| C. Note that u � |B|, . . . , u � C � 1 are all

forbidden because otherwise COMBPART would have created the block B of bigger size. Also

note that either B is the leftmost block or u � 1 is the rightmost vertex of a block. So without

loss of generality we assume that u� 1 is not forbidden.

It will be enough if we prove that for each |B| ¤ t ¤ C � 1 the vertex u � kC � t is a

leader because then its followers P pu�kC�tq, i.e., u�jC�t, 0 ¤ j ¤ k�1 are all forbidden.

We prove by induction on t.

Base case: t � C�1. Since u�C�1 is forbidden, its leader is the vertex v � u�C�1�qC
for some 0 ¤ q ¤ k and the followers of v, the vertices in P pvq, are forbidden. The vertex

38

Section 3.5. A Combinatorial Algorithm

u � 1 is at a distance multiple of C from v but is not forbidden, i.e., u � 1 R P pvq. Hence

u� 1 v � kC, implying q ¡ k � 1. Thus q � k, which implies our claim.

Induction case: suppose the claim is true for t � t1 where |B| t1 ¤ C�1, i.e., the vertex

u� kC � t1 is a leader. We need to prove that u� kC � t1 � 1 is also a leader.

Since u�t1�1 is forbidden, its leader is the vertex v � u�t1�1�qC for some 0 ¤ q ¤ k.

Thus, if q � k then we are done. So assume that q k, i.e., q � 1 ¤ k. We will show that this

leads to a contradiction.

Since v is a leader, by Definition 3.22, there exist block of forbidden vertices F1 � rx, vs
a clique Q � rv � kC, xs for some vertex x. Again, by induction hypothesis, each of the

vertices ru� kC � t1, u� pk � 1qC � 1s is a leader. Thus, the set of vertices F2 � ru� qC �
t1, u� pq � 1qC � 1s is forbidden. But F2 can be rewritten as rv � 1, u� pq � 1qC � 1s. Thus

F � F1YF2 � rx, u�pq� 1qC � 1s is a forbidden block ending at u�pq� 1qC � 1. Because

of Q,F the vertex u � pq � 1qC � 1 is a leader by Definition 3.22. Among its followers, i.e.,

P pu�pq� 1qC� 1q, the pq� 1qth from the right is u� 1. This is a contradiction because u� 1

is not forbidden.

Lemma 3.26. Suppose COMBPART creates consecutive blocks B1, . . . , Bk, where Bk is not the

rightmost block. Then the kC �°k
i�1 |Bi| consecutive vertices following Bk are all forbidden.

Proof. Let ui be the leftmost vertex of Bi. Apply Lemma 3.25 to Bi and consider the block

of forbidden vertices Fi corresponding to j � k � i only. Then Fi � rxi, yis where xi �
ui � pk � iqC � |Bi| and yi � ui � pk � iqC � C � 1. For i k, since ui�1 � ui � |Bi|, we

have yi�1 � ui�1 � pk � iqC � 1 � ui � |Bi| � pk � iqC � 1 � xi � 1. Hence the blocks

Fi in the order i � k, . . . , 1 are consecutive and their union F � Y1
i�kFi � rxk, y1s. Since

yi � xi � pC � |Bi|q � 1 � yi�1 � pC � |Bi|q, we have y1 � yk �
°k�1
i�1 pC � |B1|q � 1 �

xk � kC �°k
i�1 |Bi| � 1. But xk � uk � |Bk| is the first vertex following Bk. Hence F is a set

of kC �°k
i�1 |Bi| forbidden vertices following Bk.

Lemma 3.27. If an interval representation for a PIG G is given then COMBPART correctly

solves the partition subproblem on G in Opnq time.

Proof. If COMBPART outputs NO, then there is a set of C consecutive forbidden vertices. To

cover these vertices we need a block of size at leastC�1. So there cannot be any valid partition.

Hence COMBPART is correct.

39

Chapter 3. Stationary Problems on Proper Interval Graphs

Now we prove that if COMBPART outputs YES then the partition generated is a valid

partition. Since the algorithm generates blocks of size at most C, the size constraint is satisfied.

We only need to prove that no clique intersects more than k�1 blocks generated by COMBPART.

We prove this by contradiction.

Suppose there is a clique Q that intersects k� 2 blocks B0, B1, . . . , Bk�1. Without loss of

generality, we assume that only the leftmost vertex ofQ is covered byB0 and only the rightmost

vertex of Q is covered by Bk�1. Because, otherwise we can take a sub-clique Q1 � Q with this

property.

Let F denote kC�°k
i�1 |Bi| vertices followingBk and v be the rightmost vertex of F . By

Lemma 3.26 the vertices F are forbidden. Also the leftmost vertex of F is the leftmost vertex of

Bk�1, i.e., the rightmost vertex ofQ and |Q|�|F |�1 � p1�°k
i |Bi|�1q�pkC�°k

i�1 |Bi|q�1 �
kC � 1. By definition 3.22 the vertex v� kC is forbidden. But v� kC is the leftmost vertex of

Q, i.e., the rightmost vertex of B0 which can not be forbidden. It is a contradiction.

If an interval representation is given then by Proposition 3.16 we can find the maximal

cliques and hence can compute the array Lmn in Opnq time. By Lemma 3.24 the marking of

forbidden vertices takes time Opnq. The greedy procedure for generating the parts also takes

Opnq time. Overall time taken is Opnq.

Combining Lemma 3.15, Lemma 3.27 and the discussions at the end of the subsection 3.5.2

we get a proof of Theorem 3.1.

For the example in Figure 1.2 with the interval representation in Figure 1.1, the vertices are

numbered as follows: 1 : r0, 4s, 2 : r1, 5s, 3 : r2, 6s, 4 : r3, 10s, 5 : r7, 11s, 6 : r8, 12s, 7 : r9, 13s.
Here, C � 2, ω � 4, k � 1 and the forbidden vertices are 1, 3, 4, 6. Hence there is no rk�1, Cs-
partition. Using SIMPLEPART we get the following coloring: color 1 for vertices 1, 2, 7, color

2 for vertices 3, 4 and color 3 for vertices 5, 6.

3.6 Splittable Weighted Problem

In Section 1.2 we introduced the notion of weight-splitted graph to formally define the splittable

weighted problem. The weight-expanded graph of a graph G � pV,Eq with weight W , in short

WXP pG,W q, is the graph G1 � pV 1, E 1q such that G1 with weight 1 to all vertices is a weight-

split graph of G with W . It can be seen that a graph G with weight W on vertices is pλ,Cq-split

colorable if and only if G1 � WXP pG,W q is pλ,Cq-colorable. If G is a PIG then an interval

40

Section 3.6. Splittable Weighted Problem

representation for G1 can be obtained from the interval representation of G by creating W pvq
copies of the corresponding interval for each v in G. No two of these new set of intervals are

proper subset of each other. Hence G1 is also a PIG.

Thus to solve the splittable weighted problem on a PIG G � pV,Eq with weight W it

is enough to solve the unweighted problem on WXP pG,W q. In what follows we will denote

G1 � pV 1, E 1q � WXP pG,W q, n1 � |V 1| and m1 � |E 1|. Applying the algorithm described in

Section 3.5 on G1 gives correct result but it makes the algorithm pseudo-polynomial as it takes

Opn1q time, proportional to the sum of weights. This is mainly because the algorithm iterates

over each vertex in G1.

However, it turns out that iterating over each vertex in G1 is not necessary. The forbidden

vertices in G1 can be divided into blocks such that if the vertices u, v both are in some block b

then the leaders of u, v are both in some block l. We call such forbidden blocks FBs. Analogous

to the vertices, we say that FB l is the leader of FB b and b is the follower of l. It can be seen

that all vertices in an FB can be marked together.

3.6.1 Marking Forbidden Blocks

We now modify the algorithm presented in Section 3.5 to let it work with FBs instead of for-

bidden vertices. The modified algorithm to mark all the FBs, which we call SPLITMARK, is

shown in Algorithm 3.

We use the following correspondence between a vertex v P V and a vertex v1 P V 1. The

vertex v1 � hpv, qq if v1 is the qth copy of v where 1 ¤ q ¤ W pvq and v � h̄pv1q if v1 is a copy

of v. The set thpv, 1q, . . . , hpv,W pvqqu of copies of v is represented by Hpvq. As usual, we

will interchangeably use 1 ¤ v1 ¤ n1 (1 ¤ v ¤ n) to denote a vertex v1 P V 1 (v P V) as well as

its position in the canonical ordering of vertices in G1 (G).

The algorithm uses an auxiliary array Zp0, . . . , nq such that Zp0q � 0 and for all v ¡ 0,

the entry Zpvq P G1 denotes the rightmost copy of v, i.e., hpv,W pvqq. Since all the copies

Hpvq � V 1 of v P V appear consecutively in the canonical ordering of G1, we have Zpvq �
°v
i�1W piq. If Z is given then the values of the function h̄puq for all u belonging to a subset of

vertices S � V 1 can be computed in right to left order, in overall Op|S| � nq time.

The algorithm stores the FBs sorted in canonical ordering in a doubly linked list F . The

information stored in auxiliary arrays Ldist and Rnf earlier, is also kept in the list F itself. Thus

each entry b of F has the following fields: (i) left denotes the leftmost vertex of the FB b, (ii)

41

Chapter 3. Stationary Problems on Proper Interval Graphs

Algorithm 3: SPLITMARK

Input : Maximal cliques of a PIG G with W , Lmnp1, . . . , nq, Zp0, . . . , nq
Output: Doubly linked list of FBs F in G1 � WXP pG,W q

1 foreach maximal clique ru, vs in G do /* phase 1 */

2 u1 � Zpu�1q�1; v1 � Zpvq; /* ru1, v1s is a maximal clique in G1
*/

3 if v1 � u1 � 1 ¥ kC � 2 then

4 F.Inlaypu1 � kC, v1 � 1, 0q;

5 i � F.end�prev; /* F.end�prev is the rightmost non-sentinel FB */

6 while i � F.begin do /* phase 2 */

7 v � i�right;

8 j � i�rnf � i�next�rnf; if v i�rnf�right then j � i�rnf � i;

9 while j�prev�right �� j�left� 1 do i�rnf � j; j � j�prev;

10 if i�ldist ¤ pk � 1qC then /* i is a follower block */

11 F.Inlaypi�left� C, v � C, i�ldist� Cq;

12 t � Lmnph̄pi�rnf�leftqq; /* function h̄ is computed using Z */

13 if t ¤ v � kC then /* new leader block ending at v */

14 F.Inlaypt� kC � C, v � C,Cq;

15 i � i�prev;

right denotes the rightmost vertex of b, and (iii) ldist denotes the distance of b.right from its

leader, (iv) rnf points to the leftmost FB such that all FBs between b.rnf and b are consecutive,

i.e., all vertices in rb.rnf�left, b.rights are forbidden, (v) prev points to the FB on the left

of b, and (vi) next points to the FB on the right of b. Here p�q represents the field q of the

FB pointed by the pointer p. The algorithm also keeps two sentinel FBs in F , (i) the leftmost

FB F.begin and (ii) the rightmost FB F.end, containing two imaginary primarily forbidden

vertices numbered �1, n1 � 1 respectively. Each sentinel has ldist � 0. By default rnf of

each FB points to itself.

In addition to the standard operations of insert, delete and both way traversals, F supports

a new operation F.Inlayps, t, dq which inserts into F a new FB b with b.left � s, b.right �
t, b.ldist � d, and makes sure that the FBs in F remain non-intersecting and sorted. Let

b1, . . . , bs be the FBs in F which intersect b. The operation Inlay does the following: (i)

42

Section 3.6. Splittable Weighted Problem

deletes all the FBs in F which are subsets of b, (ii) if b partly intersects b1 then truncates b1 to

rb1.left, b.left� 1s, (iii) if b partly intersects bs then truncates bs to rb.right� 1, bs.rights,
and (iv) inserts b at its proper position in F .

For each v P V the algorithm stores in Lmnpvq the leftmost neighbor of Zpvq in G1. If the

maximal cliques of G are given, then the elements of Lmn can be computed in Opnq time.

For a maximal clique Q � ru1, v1s in G1 of size at least kC � 2, each subclique of size

kC�2 creates a primarily forbidden vertex. These primarily forbidden vertices are consecutive;

the leftmost is u1 � kC due to the subclique starting at u1 and the rightmost is v1 � 1 due to the

subclique ending at v1. The algorithm uses this fact to create an FB ru1, v1 � kCs in such case.

Note that each maximal clique ru, vs in G has one-to-one mapping with the maximal clique

rZpu� 1q � 1, Zpvqs in G1.

We have seen that v is a leader if for the largest forbidden sequence F � ru, vs there exists

a clique Q � rt, us such that t ¤ v � kC. In fact if Q is sufficiently large then for any j the

vertex v � j is a leader as long as t ¤ v � j � kC or v � j ¥ t� kC. Thus if Q � rt, us is the

maximal clique ending at u and t ¤ v� kC then the sequence of vertices rt� kC, vs is a leader

FB. The algorithm uses this fact to mark the secondarily forbidden vertices.

For marking blocks of secondarily forbidden vertices the algorithm maintains the follow-

ing invariants at the beginning of each iteration in phase 2 where i points to the FB ru, vs and

j � i�next points to the FB rx, ys:

1. F contains all the leader FBs in the range rv � 1, n1s.

2. F contains all the follower FBs in rv � 1 � C, n1s.

3. For each follower FB b in rv � 1 � C, n1s its distance from the leader FB is b.ldist.

4. j�rnf points to the leftmost FB in the range r1, ys such that all vertices in rj�rnf�left, ys
are either primarily forbidden or secondarily forbidden due to the leaders in ry�1, n1�1s.

In each iteration the invariants are extended for i�prev which we assume to point to the FB

rs, ts. We show that the algorithm maintains the invariants by using induction on i.

At the beginning of phase 2, i points to the rightmost FB created due to the primarily

forbidden vertices of the rightmost maximal clique. Hence there cannot be any forbidden vertex

in the range rv � 1, n1s. Thus the invariants 1-3 are maintained. The right sentinel F.end is set

with imaginary forbidden vertex n1 � 1 such that invariant 4 is also satisfied.

43

Chapter 3. Stationary Problems on Proper Interval Graphs

Suppose the invariants are maintained at the beginning of an iteration. Since i�rnf points

to a block which either equals to or is on the left of the blocks pointed by i and j�rnf, the

algorithm sets i�rnf to the left one of them in step 8 and in step 9 moves i�rnf further to the

left until there is a gap in the FBs implying existence of a non-forbidden vertex. This step is

valid because all FBs in the range rv � C � 1, vs are already marked.

If ru, vs is a follower of a previously discovered FB l, at step 11 the algorithm inserts FB

b � ru � C, v � Cs into F if b, too, is a follower of l. Otherwise there cannot be any new

follower in the range ru � C, v � Cs. In either case, at the end of step 11, the list F contains

all FBs in the range ru � C, v � Cs except the rightmost follower of a possible new leader FB

ending at v, which is inserted into F at step 14. Thus at the end of the iteration, F contains

all FBs in the range ru � C, n1s. If u � t � 1 we are done. Otherwise there is no forbidden

vertex in the range rt � 1, u � 1s and hence there cannot be any new follower FB in the range

rt� C � 1, u� C � 1s. Thus we are done in that case too.

For each FB SPLITMARK takes Op1q time except for the operation Inlay. Since Inlay

is invoked on FBs in a right to left order, it can be implemented by maintaining an extra pointer

that traverses from right to left through the FBs, in overall Op|F |q time. Suppose the maximum

weight of v P V is M . Then the set of vertices Hpvq � V 1 contains at most rM{Cs followers

of each leader FB. There can be as many leader FBs as the number of maximal cliques in G1,

i.e., at most n. Hence |F | � Opn2M{Cq. Thus, SPLITMARK takes Opn2M{Cq time.

Now we show that there are weighted PIGs on which SPLITMARK creates Ωpn2M{Cq
FBs. For some parameters t, α consider a PIG G with n � 3t� 1 vertices given by the intervals

I1, . . . , I3t�1 where for 1 ¤ j ¤ t � 1 interval Ij � rj, 2t � 2js has weight 2, for 1 ¤ j ¤ t

interval It�1�j � rt � 1 � j, 4t � 2 � js has weight 2αt, and again for 1 ¤ j ¤ t interval

I2t�1�j � r2t�1�2j, 5t�2�js has weight 2. Thus inG each of the t�1 maximal cliques has

t�1 vertices of weight 2 and t vertices of weight 2αt. ClearlyG1 has pt�1q�2�t�2αt�t�2 �
2pαt2 � 2t � 1q vertices and each of the t � 1 maximal cliques r2j � 1, 2j � 2αt2 � 2ts,
1 ¤ j ¤ t � 1, has size 2αt2 � 2t � 2. For C � 2t, we have kpG1q � αt � 1. Phase 1 of our

algorithm creates t�1 FBs each having a single vertex 2j�2αt2�2t�1 where 1 ¤ j ¤ t�1.

Phase 2 creates a FB from each of the remaining odd numbered vertices in G1. Thus |F | � the

number of odd vertices in G1, i.e., αt2 � 2t� 2 � Ωpαn2q � Ωpn2M{Cq.
Thus we have proved the following result.

Lemma 3.28. If the arrays Z, Lmn and the maximal cliques of a PIG G � pV,Eq with weights

44

Section 3.7. Splittable Weighted Problem

W on vertices are given and M is maximum weight of a vertex v P V then SPLITMARK

correctly marks the FBs of G1 � WXP pG,W q in Θpn2M{Cq time.

3.6.2 Algorithm SPLITPART

We now give the modifications to COMBPART to use the FBs. We call this modified algorithm

SPLITPART, which is shown in Algorithm 4.

Algorithm 4: SPLITPART

Input : A PIG G � pV,E,W q
Output: If G1�WXP pGq has a pk�1, Cq-partition; if YES also output the partition

1 F � list of FBs returned by SPLITMARK on G; u � 1; i � F.begin�next;

2 while u ¤ n1 do

3 v � mintu� C � 1, n1u;
4 while i�right v do i � i�next;

5 v � i�left� 1;

6 if v u then return NO else create part ru, vs; u � v � 1;

7 return YES;

Lemma 3.29. If an interval representation for a PIG G with weight W is given M is the

maximum weight of a vertex in G then SPLITPART correctly solves the partition subproblem on

WXP pG,W q in Opn2M{Cq time.

Proof. Given that SPLITMARK correctly marks the forbidden blocks of G1 � WXP pG,W q,
it is easy to see that SPLITPART generates the same partition that COMBPART would have

generated on G1. Given an interval representation of G, arrays Z, Lmn and maximal cliques of

G can be computed in Opnq time. Thus by Lemma 3.28, computing F takes Opn2M{Cq time.

The block generation step also takes Op|F |q � Opn2M{Cq time.

SIMPLEPART in Lemma 3.19 can be slightly modified to use vertices in G1 but still taking

Opnq time. Thus combining Lemmas 3.15, 3.29 and the discussions at the end of Subsec-

tion 3.5.2, we get a proof of Theorem 3.2.

45

Chapter 3. Stationary Problems on Proper Interval Graphs

3.7 Nonsplittable Weighted Problem

For the nonsplittable weighted problem, by definition, the weight of a vertex cannot exceed C.

Using the algorithm for the splittable weighted problem we can get aOpn2q time 2-approximation

algorithm for the NP-hard nonsplittable weighted problem.

Lemma 3.30. There exists a Opn2q time algorithm for the nonsplittable weighted partition

problem that generates a pλ,Cq-partition on a PIG G with weight W such that λ is at most 2

times the clique intersection of the partition generated by an optimal algorithm on G.

Proof. We first solve the corresponding splittable weighted problem on G using the algorithm

described in Section 3.6. As the maximum weight of a vertex is at most C, this takes Opn2q
time. Let the blocks in the pλ1, Cq-partition created by the algorithm be P 1 � tP 1

1, P
1
2, . . . , P

1
tu.

Then λ1 is a lower bound on the clique intersection λ� of the partition generated by any optimal

algorithm on G.

We convert the partition P 1 in which a vertex might be splitted into multiple blocks, to a

partitionP in which each vertex is completely within a block, inOpnq time as follows. Consider

each vertex v left to right and assign it to a block inP . If the weight of v is at most the remaining

unassigned capacity of the current block b in P then assign v to b. Otherwise, create a new

block b1 in P and assign v to b1.

Since the weight of a vertex in a nonsplittable problem is at most C, and the vertices hpvq
in G1 corresponding to a vertex v in G appear in consecutive blocks in P 1, the above process

creates at most one extra block in P for each block in P 1, hence P is a pλ,Cq-partition with

clique intersection λ ¤ 2λ1 ¤ 2λ�.

Combining Lemma 3.15 and Lemma 3.30 we get a proof of Theorem 3.3.

3.8 Summary

We gave polynomial time exact algorithms for unweighted and splittable weighted versions

and a 2-approximation algorithm for the nonsplittable weighted version of component coloring

on PIGs. The ideas of the algorithms for PIG do not apply directly for general interval graphs

because there are general interval graphs (see Figure 3.2) where Lemma 3.13 on the equivalence

of coloring and block-partition does not hold. We use different ideas in Chapter 4 to solve the

problem on general interval graphs.

46

Chapter 4

Stationary Problems on Interval and

Circular-arc Graphs

In this chapter we discuss our algorithm for the stationary problem on general interval and

circular-arc graphs. For simplicity we describe the algorithm on the light-trail scheduling prob-

lem. The analogous algorithm for stationary component coloring problem can be similarly

described.

We start with the description of the stationary light-trail scheduling problem in Section 4.1.

In Section 4.2 we give an overview of our algorithm which classifies the transmissions based on

their lengths, schedules the transmissions of each class separately and finally merges the sched-

ule. Scheduling small transmissions, i.e., of classes 0, 1 is easy. We describe how to schedule

classes ¥ 2 in Section 4.3 and how to merge schedules of all classes for better performance in

Section 4.4. We use the congestion, i.e., maximum total bandwidth requirement at a link over

all links as a lower bound to prove the performance of our algorithm. Finally, in Section 4.5 we

give an example instance of the stationary problem where the congestion lower bound is weak

somewhat justifying our result.

4.1 Stationary Light-trail Scheduling

We consider an optical path network of of p processors, numbered 0 to p� 1. The link between

the two consecutive processors i and i � 1 is numbered i. Communication is considered undi-

rected. This simplifies the discussion; it should be immediately obvious that all results directly

carry over to directed communications and also to ring networks.

47

Chapter 4. Stationary Problems on Interval and Circular-arc Graphs

In WDM, the physical optic fiber carrying signals of w different wavelengths is logically

thought of as w independent parallel fibers each carrying signals of a single wavelength. Each

processor can be thought of as having a separate shutter on each of the w fibers. Each shutter

can be set ON, meaning it allows the optical signal to pass, or OFF, meaning it does not. The

segment between two OFF shutters is a light-trail. A transmission request from processor i to

processor j can be assigned to a light-trail if the following conditions are met:

1. u ¤ i j ¤ v where u, v are the OFF processors of the light-trail.

2. The sum of the bandwidth requirements of all requests assigned to any single light-trail

does not exceed the capacity of a wavelength, i.e., the maximum bandwidth that can be

served using a wavelength.

The requests assigned to a light-trail are served by time division multiplexing, with service

duration proportional to the bandwidth requirement. Thus at any time instant the light-trail is

used by at most one request.

The input for the stationary problem is a matrix B with Bpi, jq denoting the bandwidth

requirement for the transmission request from processor i to processor j, as a fraction of the

bandwidth capacity of a single wavelength which we define to be 1 without loss of generality.

The goal is to schedule these in a minimum number of wavelengths w. The output must give w

as well as the light-trails used on each wavelength and the mapping of each transmission to a

light-trail that serves it.

It will be convenient to represent/visualize schedules geometrically. We will use the x axis

to represent our processor array, with processors at integer points and the y axis to represent the

wavelengths numbered 0, 1, 2, and so on. The region bordered by y � ȳ and y � ȳ � 1 will

be used to depict the transmissions assigned to the wavelength numbered k. The region will be

partitioned with vertical lines at the processors where the shutters are OFF. Each of the rectan-

gular parts in the partition represents a light-trail created on the corresponding wavelength. A

transmission from processor i to processor j having bandwidth requirement b will be denoted

as ri, js and represented as a rectangle of height b located horizontally in the region between

x � i and x � j and vertically within the region corresponding to the light-trail in which it is

scheduled. We will also use the terms length, extent, and height of transmission ri, js to mean

j� i, the interval ri, js, and b respectively. Unless there is ambiguity in the context we will also

use ri, js to denote a light-trail with end processors i and j. Similarly we will also use the terms

48

Section 4.1. Stationary Light-trail Scheduling

length, and extent of light-trail ri, js to mean j � i and the interval ri, js respectively.

As an example consider a network with 3 processors, 0,1,2 and a transmission matrix B

in which Bp0, 1q � Bp1, 2q � 0.6 and Bp0, 2q � 0.4 are the only non-zero entries. In order to

enable the transmission [0,2], we must have a wavelength with a light-trail which goes all the

way from 0 to 2. In this light-trail, we cannot put both the remaining communications, because

then the bandwidth would become 0.6 � 0.6 � 0.4 � 1.6, i.e., larger than 1. Say we put the

transmission [0,1] in this light-trail. Then the remaining communication, [1,2] would require

its own light-trail, and for that we will need another wavelength. This is shown in Figure 4.1(a).

Another way is as follows. We put transmission [0,2] in a single light-trail extending from 0

to 2. Then on another wavelength, we create two light-trails, with the shutter at 1 in the OFF

position. The transmissions [0,1] and [1,2] can now be placed in these respective light-trails.

This solution is given in Figure 4.1(b). Both the solutions require 2 wavelengths, and they are

optimal because the required communication cannot be implemented using just 1 wavelength.

0 1 2

0.4
0.6

0.6

(a)

0 1 2

0.6 0.6

0.4

(b)

Figure 4.1: Solutions to the Stationary Problem Example

It is customary to consider two problem variations: nonsplittable, in which a transmission

must be assigned to a single light-trail, and splittable, in which a transmission can be split

into two or more transmissions by dividing up the bandwidth requirement, and each of them

can be assigned to a different light-trail. Note that when a transmission is split into multiple

transmissions, the length and extent remain the same, only the height is divided. Our results

hold for both variations.

Note that the bin-packing problem which is NP-hard, is a special case of the stationary

problem where each item corresponds to a transmission from processor 0 to processor p�1 and

each bin corresponds to a light-trail (and to a wavelength too because each light-trail completely

occupies a wavelength). Thus the nonsplittable stationary problem is NP-hard. We do not know

whether the splittable problem is also NP-hard.

49

Chapter 4. Stationary Problems on Interval and Circular-arc Graphs

We will use ωlpSq to denote the congestion induced on a link l by a set S of transmissions.

This is simply the total bandwidth requirement of those transmissions from S requiring to cross

link l. Clearly ωpSq � maxl ωlpSq, the maximum congestion over all links, is a lower bound

on the number of wavelengths needed. Finally if t is a transmission, then we abuse notation to

write ωlptq, ωptq, instead of ωlpttuq, ωpttuq, for the congestion contributed by t only, which is

equal to the bandwidth requirement of t. Let R be the set of all transmissions of an instance of

the stationary problem. Let n be the size of R. We will use ω to denote the overall congestion

ωpRq.

4.2 Algorithm Overview

Getting an algorithm which requires only Opω log pq wavelengths is easy. If ωp{2 denotes the

congestion of the link between processor p{2 and processor p{2 � 1, then the transmissions

crossing this link can be scheduled in rωs ¥ rωp{2s wavelengths for the splittable case, and

twice that many for the nonsplittable case (using ideas from bin-packing [19]). The remaining

transmissions do not cross the middle link, and hence can be scheduled by separately solving

two subproblems, one for the transmissions on each half of the array. The two subproblems

can share the wavelengths. If λpp, ωq denotes the number of wavelengths used for scheduling

transmissions of congestion at most ω in a linear array of p processors, we have the recurrence

λpp, ωq � Oprωsq � λpp{2, ωq. This solves to Opω log pq. But we can do better.

Note that it is relatively easy to get a good schedule if all the transmissions have the same

length (see Section 4.3). So we divide the transmissions into classes based on their lengths,

then schedule each class separately and finally merge the schedules. The merging step is also

somewhat sophisticated. This is the outline of our algorithm.

1. Partition into classes. Say a transmission belongs to class i if its length is between 2i�1

(exclusive) and 2i (inclusive). Let Ri denote the set of transmissions of class i, for i � 0

to rlog2pp� 1qs. Let ni denote the size of Ri.

2. Schedule transmissions of each class separately. It will be seen that each class can be

scheduled efficiently, i.e., using Op1 � ωpRiqq wavelengths.

3. Merge the schedules of different classes. We do not simply collect together the schedules

constructed for the different classes, but do need to mix them together, and repartition.

50

Section 4.3. Schedule Class i ¥ 2

Scheduling classes R0, R1 is easy. Note that each transmission in R0 has length 1. So they

can be assigned to light-trails created by simply putting shutters OFF at every processor on all

the wavelengths that are to be used. Now for a fixed l consider the light-trails rl, l � 1s on all

the wavelengths. Each of these light-trails can be thought of as a bin in which the transmissions

rl, l� 1s are to be assigned. Clearly, rωlpR0qs light-trails will suffice for the splittable case, and

twice that many for the nonsplittable case (using ideas from bin-packing [19]). Since the light-

trails for different l do not overlap, they can be on the same wavelength. So maxlOprωlpR0qsq �
OprωpR0qsq wavelengths will suffice. Transmissions in R1 have length 2. So they can be

assigned to light-trails created on two sets of wavelengths – one having shutters OFF at even

processors and the other having shutters OFF at odd processors. Transmissions starting at an

even (odd) processor are assigned to a light-trail on a wavelength of the first (second) set. Using

an argument similar for the transmissions in R0, we can show that each of these sets requires

OprωpR1qsq wavelengths. So for the rest of this thesis we only consider classes 2 and larger.

4.3 Schedule Class i ¥ 2

It seems reasonable that if the class Ri is further split into subclasses each of which has Op1q
congestion, then each subclass could be scheduled using Op1q wavelengths. This intuition is

incorrect for an arbitrary collection of transmissions with congestion Op1q, as will be seen in

Section 4.5. However, the intuition is correct when the transmissions have nearly the same

length, as they do when taken from any single Ri.

Lemma 4.1. There exists an Opnmiωq time procedure to partition Ri into sets S1, S2, . . . , Sk

where k ¤ rωpRiqs such that (i) ωpSjq 4 for all j, and (ii) if a transmission in Sj uses link l

then rωlpRiqs ¥ j.

Proof. We start with T1 � Ri, and in general given Tj we pick a subset of transmission Sj

from Tj using a procedure described below and repeat with the remaining transmissions Tj�1 �
TjzSj until Tj�1 becomes empty for some value k of j.

For each link l from left to right, we pick transmissions one by one from the set of trans-

missions crossing link l into Sj until we have removed at least unit congestion from ωlpTjq or

reduced ωlpTjq to 0. Note that if the transmissions already picked while considering the links

on the left of l also have congestion at least 1 at link l then we do not add any more transmission

51

Chapter 4. Stationary Problems on Interval and Circular-arc Graphs

while considering link l. So at the end the following condition holds:

@l, ωlpSjq
$&
%

� ωlpTjq if ωlpTjq ¤ 1, and

¥ 1 otherwise.
(4.1)

However, to make sure that ωpSjq is not large, we move back transmissions from Sj , in the

reverse order as they were added, into Tj so long as condition (4.1) remains satisfied. It can

be seen that the construction of a single Sj takes at most Opp|Tj|q � Opnmiq time in both the

pick-up step and the move-back step. For all Sj it takes Opnmiωq time.

Now we show that condition (i) of the lemma is satisfied, i.e., ωpSjq 4 for all j. At

the end of the move-back step, for any transmission t P Sj there must exist a link l such that

ωlpSjq 1�ωptq, otherwise t would have been removed. We call l as a sweet spot for t. Since

ωptq ¤ 1 we have ωlpSjq 2 for any sweet spot l.

Now consider any link x. Of the transmissions through x, let L1 (L2) denote transmissions

having their sweet spot on the left (right) of x. Consider y, the rightmost of these sweet spots

of some transmission t P L1. Note first that ωypSjq 2. Also all transmissions in L1 pass

through both x, y. Thus ωxpL1q � ωypL1q ¤ ωypSjq 2. Similarly, ωxpL2q 2. Thus

ωxpSjq � ωxpL1q � ωxpL2q 4. But since this applies to all links x, ωpSjq 4.

To show that condition (ii) is also satisfied, suppose Sj contains a transmission that uses

some link l. The construction process above must have removed at least unit congestion from l

in every previous step 1 through j � 1. Thus ωlpRiq ¡ j � 1. That implies rωlpRiqs ¥ j. This

also implies that k ¤ maxlrωlpRiqs � rωpRiqs.

A transmission t is said to cross a processor u if t starts at a processor on the left of u and

ends at a processor on the right of u. Since every transmission t in Sj has length at least 2i�1�1,

t must cross some processor whose number is a multiple of 2i�1. The smallest such numbered

processor is called the anchor of t. The trail-point of a transmission t is the rightmost processor

numbered with a multiple of 2i�1 that is on the left of the anchor of t. If the transmission has

trail-point at processor q2i�1 for some q, then we define q mod 4 as its phase. These definitions

are illustrated in Figure 4.2 with an example transmission from node 7 to node 14. Length = 7.

Class = 3. Anchor = 8. Trail-point = 4. Phase = 1.

Lemma 4.2. The set Sj can be scheduled using Op1q wavelengths in Opp|Sj|q time.

Proof. We partition Sj further into sets Sδj containing transmissions of phase δ. This takes time

Op|Sj|q. Note that the transmissions in any Sδj either overlap at their anchors, or do not overlap

52

Section 4.3. Schedule Class i ¥ 2

4

trail-point

8

anchor

12 167 14

Figure 4.2: Anchor and trail-point of a transmission

at all. This is because if two transmissions in Sδj have different anchors, then these two anchors

are at least 2i�1 distance apart. Since the length of each transmission is at most 2i, the two

transmissions cannot intersect.

Now we show that for each δ the set Sδj can be scheduled using Op1q wavelengths. For

the splittable case consider 4 wavelengths, each having shutters OFF at processors numbered

p4q � δq2i�1. Let x � p4q � δq2i�1 and y � p4pq � 1q � δq2i�1 � x � 2i�1 be two nearest

processors having shutters OFF. Among the Opp{2iq light-trails thus created, for a fixed q, each

of the 4 light-trails rx, ys can be thought of as a bin in which the transmissions having extent

totally within rx, ys and total bandwidth requirement at most 1 are to be assigned. This is an

instance of the bin-packing problem. Clearly, for a fixed q, these 4 light-trails will suffice for

the splittable case, because ωpSδj q 4. This takes time proportional to the number of requests

considered. Since the light-trails for different q do not overlap, the instances of the bin-packing

problem can share wavelengths and hence these 4 wavelengths will suffice. For the nonsplittable

case, 8 wavelengths will suffice, using standard bin-packing ideas, e.g., First-Fit [19]. Overall

it takes at most Op|Sj|p{2iq � Opp|Sj|q time.

Thus all of Sj can be accommodated in at most 16 wavelengths for the splittable case, and

at most 32 wavelengths for the nonsplittable case.

Lemma 4.3. The entire set Ri can be scheduled in time Opnmiωq such that at each link l there

are OpωlpRiq � 1q light-trails.

Proof. We first consider the light-trails as constructed in Lemma 4.2. For all Sj the con-

struction takes time Opnmiωq. In this construction, uniformly at all links there are at most

rωpRiqs ¤ ωpRiq � 1 sets of light-trails such that each set corresponds to Op1q light-trails

created to schedule the transmissions of an Sj . Note that ωpRiq � maxl ωlpRiq. So, in this

construction the condition of the lemma is surely satisfied for the link where the congestion is

maximum. For other links the condition of the lemma may not be satisfied because (1) there

may be empty light-trails and (2) some light-trails may contain links that are not used by any

of the transmissions associated with the light-trail. So we remove empty light-trails and in case

53

Chapter 4. Stationary Problems on Interval and Circular-arc Graphs

(2) we shrink the light-trails by removing the unused links (which can only be near either end

of the light-trail because all transmissions assigned to a light-trail overlap at their anchor). This

modification takes time proportional to the number of light-trails which is Opnq. We prove next

that with this modification, the condition of the lemma is satisfied.

Let j be the largest such that a transmission from Sj uses link l. After the modification the

light-trails that carries transmissions from Sj1 for j1 ¡ j do not use link l. So now there are j

sets of light-trails using link l such that each set has Op1q light-trails. However we know from

Lemma 4.1 that j ¤ rωlpRiqs ¤ ωlpRiq � 1. Thus there are a total of Opjq � OpωlpRiq � 1q
light-trails at link l.

4.4 Merge Schedules of All Classes

If we simply collect together the wavelengths as allocated above, we would get a boundOpω log pq.
Note, however, that if two light-trails, one for transmissions in class i and the other for trans-

missions in class j, are spatially disjoint, then they could possibly share the same wavelength.

Given below is a systematic way of doing this, which gets us a sharper bound.

Theorem 4.4. The entire set R can be scheduled using Opω � log pq wavelengths in time

Opnpω � n log nq.

Proof. We know that after the modification in Lemma 4.3, at each link l there are a total of

OpωlpRiq � 1q light-trails for each class i. Thus summing over all classes, the total number of

light-trails at l are OpωlpRq � log pq, and total time taken is Opnpωq.
Think of each light-trail as an interval, giving us a collection of, say k, intervals such that

any link l has at most OpωlpRq � log pq � Opω � log pq intervals. Now this collection of k

intervals can be colored using Opω � log pq colors [72] in time Opk log kq. Now for each color

w, we use a separate wavelength and configure the light-trails corresponding to the intervals

of color w by setting the shutters OFF at the processors corresponding to the endpoints of the

intervals. Hence Opω� log pq wavelengths suffice. Overall it takes time Opnpω� n log nq as k

can be at most n.

For the example in Figure 1.1, our algorithm creates two classes – one containing r3, 10s
and the other containing remaining transmissions. The first class uses a single wavelength on

54

Section 4.5. On the Congestion Lower Bound

which light-trail r3, 10s contains transmission r3, 10s and the second class uses 2 more wave-

lengths. One wavelength contains light-trails r0, 5s and r7, 12s where light-trail r0, 5s contains

transmissions r0, 4s and r1, 5s and light-trail r7, 12s contains transmissions r7, 11s and r8, 12s.
The other wavelength contains two light-trails r2, 6s and r9, 13s with transmissions r2, 6s and

r9, 13s respectively.

4.5 On the Congestion Lower Bound

We show an instance of the stationary problem for which the congestion lower bound is weak.

For convenience, we assume there are p � 1 processors numbered 0, . . . , p where p � 2k for

some k and all logarithms are with base 2. All the transmissions have the same bandwidth

requirement b � 1{plog p� 1q.
First, we have a transmission going from 0 to p. Then a transmission from 0 to p{2

and a transmission from p{2 to p. Then four transmissions spanning one-fourth the distance,

and so on. In class i P t0, 1, . . . , log pu there are p{2i transmissions Bpsij, dijq � b where

sij � j2i, dij � pj � 1q2i for all j � 0, 1, . . . , pp{2iq � 1. All other entries of B are 0. This is

illustrated in Figure 4.3(a) for p � 16. Clearly the congestion of this pattern is uniformly 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i = 0
i = 1
i = 2
i = 3
i = 4

(a) An example instance with congestion 1 at all links

(b) An optimal solution for the above example using 3 wavelengths

Figure 4.3: An Example Instance where Congestion Bound is Weak

Consider an optimal solution for the splittable case. There has to be a wavelength with a

light-trail in which the transmission r0, ps is scheduled. This light-trail might have additional

transmissions besides r0, ps. Clearly, we can assume without loss of generality that the light-

trail contains the longest transmissions. Suppose the transmissions from the longest l classes

are completely contained in this light-trail. Thus we have a total of at most 1 � 2 � 4 � � � � �

55

Chapter 4. Stationary Problems on Interval and Circular-arc Graphs

2l � 2l�1 � 1 transmissions assigned to this light-trail. Total bandwidth requirement of these

transmissions should be at most 1. This gives us p2l�1 � 1qp1{plog p � 1qq ¤ 1 implying

l ¤ logplog p� 2q � 1 � Oplog log pq.
The remaining transmissions do not cross processors with numbers qp{2l�1, for all in-

tegers q. Thus, we have 2l�1 separate parallel problems, each having p{2l�1 � Ωpp{ log pq
processors. Thus the total number of wavelengths W ppq needed must satisfy the recurrence

W ppq � 1 �W pp{ log pq. This solves to W ppq � Ωplog p{ log log pq.
Suppose we add ω � 1 transmissions of extent r0, ps and bandwidth requirement 1 to this

pattern of transmissions of congestion 1 uniformly at all links. We can similarly show that

an optimal solution will require ω � 1 � Ωplog p{ log log pq wavelengths. Thus we will get

an instance of congestion ω uniformly at all links but which requires Ωpω � log p{ log log pq
wavelengths, for any ω.

4.6 Summary

It can be shown that the nonsplittable stationary problem is NP-hard on general interval graphs,

using a simple reduction from bin-packing. We do not know if the splittable problem is also

NP-hard. We gave an algorithm for both variations of the stationary problem which takesOpω�
log pq wavelengths.

For the example in Figure 1.1 we have seen that the algorithm in Chapter 3 and the algo-

rithm in this chapter use the same number of wavelengths though the light-trail configurations

differ. However, there are examples where the algorithm in this chapter takes significantly more

wavelengths. Let us consider the following example. For some parameters k L, let there be

k � 1 transmissions ri, i � Lis where 0 ¤ i ¤ k and each transmission has bandwidth require-

ment 1{pk� 1q. These intervals are proper intervals. The optimal algorithm in Chapter 3 uses a

single wavelength. However, the algorithm in this chapter will require k � 1 wavelengths each

containing a single transmission in a single light-trail.

It will be useful to improve the lower bound arguments; as Section 4.5 shows, congestion

is not always a good lower bound. This may lead to a constant factor approximation algorithm

for the problem.

56

Chapter 5

Online Problems on Interval and

Circular-arc Graphs

In this chapter we discuss our algorithms for the online problem on general interval and circular-

arc graphs. For simplicity, here also we describe the algorithm on the light-trail scheduling

problem. The analogous algorithm for online component coloring problem can be similarly

described.

We start with the description of the online light-trail scheduling problem in Section 5.1.

For the online problem, we present two algorithms – (1) SEPARATECLASS having competitive

ratio Θplog pq in Section 5.2 and (2) ALLCLASS, a simplification of SEPARATECLASS in Sec-

tions 5.3. We show in Section 5.4 that this simplified algorithm, ALLCLASS has a competitive

ratio in between Ωplog2 p{ log log pq and Oplog2 pq. In Section 5.5 we show that every online

algorithm must have competitive ratio Ωplog pq. In Section 5.6 we give results of simulation of

our online algorithms.

5.1 Online Light-trail Scheduling

In the online case, the transmissions arrive dynamically. An arrival event has parameters

psi, di, riq respectively giving the origin, destination, and bandwidth requirement of an arriv-

ing transmission request. The algorithm must assign such a transmission to a light-trail L such

that si, di belongs to the light-trail, and at any time the total bandwidth requirement of trans-

missions assigned to any light-trail is at most 1. A departure event marks the completion of

a previously scheduled transmission. The corresponding bandwidth is released and becomes

57

Chapter 5. Online Problems on Interval and Circular-arc Graphs

available for future transmissions. The algorithm must make assignments without knowing

about subsequent events.

Unlike the stationary problem, congestion at any link may change over time. Let ωltpSq
denote the congestion induced on a link l at time t by a set of transmissions S. This is simply

the total bandwidth requirement of those transmissions from S requiring to cross link l at time

t. The congestion lower bound ωpSq is maxl maxt ωltpSq, the maximum congestion over all

links over all time instants.

In both of our online algorithms, when a transmission request t arrives, we first determine

its class i and trail-point x. Recall that the class of t is i if t has length in the range p2i�1, 2is and

the trail-point (defined in Section 4.3) of t is the smallest processor q2i�1 such that t crosses

processor pq � 1q2i�1. In both algorithms, transmission t is allocated to some light-trail rx, x�
2i�1s. However, the algorithms differ in the way a light-trail is configured on some candidate

wavelength.

5.2 Algorithm SEPARATECLASS

In this algorithm, every allocated wavelength is assigned a class label i and a phase label δ,

and has shutters OFF at processors p4q � δq2i�1 for all q, i.e., is configured to serve only

transmissions of class i and phase δ. Whenever a transmission t of class i and phase δ is to

be served, it is only served by a wavelength with the same labels. If such a wavelength w is

found, and a light-trail L on w starting at the trail-point of t has space, then t is assigned to the

light-trail L. If no such wavelength is found, then a new wavelength w1 is allocated, it is labeled

and configured for class i and phase δ as above and t is assigned to the light-trail on w1 that

starts at the trail-point of t.

When a transmission finishes, it is removed from its associated light-trail. When all trans-

missions in a wavelength finish, then its labels are removed, and it can subsequently be used for

other classes or phases.

Time complexity: for a class i and phase δ there are p{2i possible light-trails. For each of

these light-trails, we can maintain a list of wavelengths on which the light-trail is present. So

on an arrival, searching for a candidate light-trail takes Opwq time where w is the number of

wavelengths used. On departure also, it takes Opwq time.

Lemma 5.1. Suppose, at some instant of time, among the wavelengths allocated by SEPARATE-

58

Section 5.2. Algorithm SEPARATECLASS

CLASS, x wavelengths had non-empty light-trails of the same class and phase across a link l1.

Then there must be a link l having congestion Ωpxq at some instant of time.

Proof. Suppose at some instant of time, wavelengths w1, w2, . . . , wx, ordered according to the

time of allocation, had non-empty light-trails L1, L2, . . . , Lx, respectively, of same class and

phase across link l1. Let u be the anchor (defined in Section 4.3) of the transmissions assigned

on these light-trails and l be the link between processor u and processor u� 1.

Now suppose wavelengthwx was allocated due to a transmission t. This could only happen

because t could not fit in the wavelengths wj for all j ¤ x� 1.

For the splittable case this can only happen if light-trails L1 through Lx�1 together contain

transmissions of congestion at least x � 1 � ωptq � Ωpxq crossing the anchor u of t, when t

arrived. Thus at that time l had congestion Ωpxq, giving us the result.

For the nonsplittable case, suppose that ωptq ¤ 0.5. Then the transmissions in each of the

light-trails Lj, 1 ¤ j ¤ x � 1, must have congestion of at least 0.5 at l when t arrived, giving

congestion Ωpxq. So suppose ωptq ¡ 0.5. Let k be the largest such that light-trail Lk contains a

transmission t1 with ωpt1q ¤ 0.5 when t arrived. If no such k exists, then clearly the congestion

at l when t arrived is Ωpxq. If k exists, then all the light-trails Lj , j ¡ k have transmissions of

congestion at least 0.5 at l when t arrived. And the light-trails Lj , j ¤ k had transmissions of

congestion at least 0.5 at l when t1 arrived. So at one of the two time instants the congestion at

l must have been Ωpxq.

Theorem 5.2. SEPARATECLASS is Θplog pq competitive.

Proof. Suppose that SEPARATECLASS usesw wavelengths. We will show that the best possible

algorithm (including off-line algorithms) must use at least Ωpw{ log pq wavelengths. That will

prove that SEPARATECLASS is Oplog pq competitive.

Consider the time at which the wth wavelength was allocated by SEPARATECLASS. At

this time w � 1 wavelengths are already in use, and of these at least w1 � pw � 1q{p4 log pq
must have the same class and phase. Among these w1 wavelengths consider the one which was

allocated last to accommodate some light-trail L serving some newly arrived transmission. At

that time, each of the previously allocated w1� 1 wavelengths was nonempty in the extent of L.

By Lemma 5.1, there is a link that had congestion Ωpw1 � 1q � Ωpppw � 1q{p4 log pqq � 1q �
Ωpw{ log pq at some time instant. This is a lower bound on any algorithm, even off-line. Thus

the competitive ratio of SEPARATECLASS is Oplog pq.

59

Chapter 5. Online Problems on Interval and Circular-arc Graphs

We show the lower bound Ωplog pq using the following example. Let p � 2k � 1. At

each time t � 0, 1, . . . , k, a transmission r0, 2ts arrives. All transmissions have bandwidth

requirement 1{pk� 1q. At time k� 1 all transmissions depart together. SEPARATECLASS takes

k wavelengths because each transmission is of a different class. The optimal off-line algorithm

assigns all of them to a single light-trail spanning the entire network and hence takes only one

wavelength.

5.3 Algorithm ALLCLASS

This is a simplification of SEPARATECLASS in that the allocated wavelengths are not labeled.

When a transmission t of class i and trail-point x arrives, we search the wavelengths in the order

they were allocated for a light-trail L of extent rx, x � 2i�1s such that L has enough space to

serve t. If such a light-trail L is found, then t is assigned to L. If no such light-trail is found,

then an attempt is made to create a light-trail rx, x�2i�1s from the unused portions of one of the

existing wavelengths in a first-fit manner in the order they were allocated. If such a light-trail

L can be created, then L is created and t is assigned to L. Otherwise a new wavelength w is

allocated, the required light-trail L of extent rx, x � 2i�1s is created on w, and t is assigned to

L. The portion of the wavelength w outside the extent of L is marked unused.

When a transmission finishes, it is removed from its associated light-trail. If this makes

the light-trail empty then we mark its extent on the corresponding wavelength as unused.

Time complexity: using a binary search tree based data structure for the light-trails and the

transmissions, the algorithm can be implemented in Oplog n � wq time on each arrival and in

time Oplog nq on each departure where n is the number of active requests and w is the number

of wavelengths used.

Theorem 5.3. ALLCLASS is Oplog2 pq competitive.

Proof. Suppose ALLCLASS uses w wavelengths. Since the optimal must use at least one, we

only need consider the case w � Ωplog2 pq.
The key idea is to argue that at some time during the execution of ALLCLASS there will be

least w{p4 log pq non-empty light-trails (not necessarily of the same class and phase) crossing

the same link. If this holds, then of these light-trails, at least w{p16 log2 pq must have the same

class and phase. But it can be shown that Lemma 5.1 is also true for ALLCLASS, and hence there

is a link having congestion Ωpw{p16 log2 pqq at some time instant. But this is a lower bound on

60

Section 5.4. Lower Bound for ALLCLASS

the number of wavelengths required by any algorithm, including an off-line algorithm. Thus

the competitive ratio of ALLCLASS is at most Oplog2 pq.
Number the wavelengths in the order of allocation. Consider the transmission t for which

the wth wavelength was allocated for the first time. Let L be the light-trail used for t. Clearly,

the wth wavelength had to be allocated because at that time the w � 1 previously allocated

wavelengths contained light-trails overlapping with L. Let S 1 denote this set of light-trails, each

from a different wavelength, but overlapping with L.

If S 1 contains at least w{p4 log pq light-trails which cross the leftmost link in L or the

rightmost link, we are done. So assume the contrary. Thus there must be at least w1 � w � 1�
2w{p4 log pq � w� 1�w{p2 log pq in S 1 whose extent is completely contained in the extent of

L. Among these light-trails, let L1 be the largest numbered. Note that L1 is strictly smaller than

L. Thus we can repeat the above argument by using L1 and w1 in place of L and w respectively,

only log p times, and if we fail each time to find at least w{p4 log pq light-trails crossing a link,

we will end up with a light-trail L2 such that there are at least w2 wavelengths having light-trails

conflicting with L2, where w2 � w � log p � log ppw{p2 log pqq � w{2 � log p ¥ w{p4 log pq
for w � Ωplog2 pq. But L2 is a single link and so we are done.

5.4 Lower Bound for ALLCLASS

We give a sequence of transmissions for which ALLCLASS takes Ωplog2 p{ log log pq wave-

lengths but an optimal off-line algorithm, OPT, requires only one wavelength.

Theorem 5.4. ALLCLASS is Ωplog2 p{ log log pq competitive.

Our transmission sequence consists of several (the exact count will be shown later) sub-

sequences, which we call stages. In all stages, all transmissions have a height (i.e., bandwidth

requirement) of 1{p2. Our transmission sequence is such that, at any point of time, there are

less than p2 active transmissions. OPT will put all transmissions in a single light-trail using

the full length of a wavelength. On the other hand, it will be seen that ALLCLASS will allocate

Ωplog2 p{ log log pqwavelengths in total for all stages. We describe the first stage only; the other

stages are scaled versions of the first stage. The goal of the first stage is to force ALLCLASS to

allocate wavelengths with light-trail patterns given in the following lemma.

Lemma 5.5. Let the network have q�1 processors numbered 0, . . . , q. Then there is a transmis-

sion sequence for which ALLCLASS allocates k � tlog qu wavelengths numbered 0, . . . , k � 1,

61

Chapter 5. Online Problems on Interval and Circular-arc Graphs

with the following staircase pattern: each wavelength i has tp{ku unit-length light-trails rjk �
i, jk � i� 1s, each containing a single transmission, for all j � 0, . . . , tp{ku� 1.

Proof. For simplicity we assume q � 2k, i.e., k is exactly equal to log q. The general case can

be similarly proved.

We first describe how to create a unit-length light-trail rx, x � 1s on any wavelength h.

We will repeatedly use this procedure to create our pattern. Define Hillph, xq to be an ordered

sequence of h transmissions as follows. For each i � 0, 1, . . . , h � 1, Hillph, xq contains a

transmission that uses the link rx, x � 1s and has class k � 1 � i, and some suitable phase.

The key point is that all the transmissions in a hill overlap but have different classes, and hence

ALLCLASS must assign them in distinct light-trails on different wavelengths. Thus starting

from scratch, the arrival of the transmissions in a hill will cause h wavelengths to be allocated.

For example, we show Hillph � 4, 31q on right half of Figure 5.1(a). Further, if a new trans-

mission rx, x� 1s arrives, it will cause one more wavelength to be allocated. From now on, by

creating (deleting) a hill we mean the arrival (departure) of transmissions in a hill.

Now we describe how to generate the staircase using several hills. The idea is to build

the staircase one wavelength at a time from top to bottom, i.e., first create all light-trails of the

staircase on wavelength k � 1, then all light-trails on wavelength k � 2 and so on. Each unit-

length light-trail rx, x � 1s on an wavelength is created by temporarily creating an appropriate

hill underneath it, then creating the transmission rx, x � 1s and finally deleting the temporary

hill. The left half set of staircases is created first, and then the right half set.

Before creating the left half, we first create hill H � Hillpk � 1, q � 1q. This hill will

survive until the left half is completely created. Its sole purpose is to ensure that the numbering

of its k � 1 wavelengths does not change as the left half is created. The left half is created

top to bottom as given in Algorithm 5. Consider the first execution of the insertion marked as

belonging to the staircase. Because of the hill H 1, this transmission will clearly be assigned to a

light-trail on wavelength i. Note further that when transmissions in H 1 depart, the wavelengths

0, . . . , i � 1 do not become empty because of the presence of hill H in the right half. Thus the

subsequent iterations also force the transmissions to be assigned in wavelength i, and so on.

At the end of the above, we will have created a pattern as shown in Figure 5.1(a). Since

each light-trail contains only one transmission, we just show the transmissions instead of the

light-trails.

Next we remove H , and execute the same code to create the right half of the staircase on

62

Section 5.4. Lower Bound for ALLCLASS

Algorithm 5: Create left half of the staircase
for i � k � 1 downto 0 do

for j � 0 to q{2k do

Create a hill H 1 � Hillpi, jk � iq
Insert an arrival event for transmission rjk � i, jk � i� 1s {belongs to staircase}
Remove hill H 1

end for

end for

the k wavelengths already allocated. Note that the light-trails created in the left half now serve

the purpose that H did earlier. At this point we will have the complete staircase.

The first stage is created by using Lemma 5.5 with q � p. In the second stage, we can

treat every k � tlog pu processors as a single processor, and think of the network as having p1 �
tp{ku processors. We create a staircase of height tlog p1u but with light-trails of length k using

Lemma 5.5 with q � p1. Since these light-trails are longer than the light-trails in the previous

stage, we can stack up the new pattern on top of the previous pattern. We can keep doing this

until p1 becomes less than 2. Thus the number of stages is Ωploglog p pq � Ωplog p{ log log pq.
Let T ppq denote the total height of the patterns thus created for p�1 processors, then T ppq

is computed using the following recurrence:

T ppq � tlog pu� T ptp{tlog puuq or simply T ppq � log p� T pp{ log pq (5.1)

with the base condition T ppq � 0 for p ¤ 1. It can be seen that the recurrence has solution

T ppq � Ωplog2 p{ log log pq.
Thus ALLCLASS will use Ωplog2 p{ log log pq wavelengths for the patterns created. Fig-

ure 5.1(b) shows all the transmissions active at the end of all stages, for the example considered

in Figure 5.1(a).

5.4.1 Remarks

It is interesting to note that ALLCLASS is more flexible than SEPARATECLASS, and it is this

flexibility that is exploited in the lower bound argument to show a worse ratio for ALLCLASS

than SEPARATECLASS.

63

Chapter 5. Online Problems on Interval and Circular-arc Graphs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Left half of P H = Hill(4, 31)

W
av
el
en
gt
h
s
→

(a) Pattern Created Midway of the First Stage

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(b) Final Pattern

Figure 5.1: An Instance for which ALLCLASS is Ωplog2 p{ log log pq-competitive

Indeed, the more flexibility we give, the worse it seems the ratio will become. In ALL-

CLASS, if we have a transmission of length L � 2k we assign it to a light-trail of length 2L.

This seems wasteful. But this is done to accommodate transmissions that do not start at a multi-

ple of L{4, using only 4 phases. Suppose we decide to be more flexible, and allow light-trails to

start anywhere (so long as their length is 2k for some k) using 2k phases. Although this strategy

will handle the above transmission better, in general it is worse in that its competitive ratio can

be shown to be Ωplog2 pq.

5.5 Problem Lower Bound – Ωplog pq

Theorem 5.6. Every online algorithm has competitive ratio Ωplog pq.

Let ALG be any algorithm for the online problem and OPT be an optimal off-line algo-

rithm. By observing the behavior of ALG we can create a sequence of transmissions for which

ALG takes Ωplog pq times as many wavelengths as OPT. This will prove the theorem.

For convenience we assume that the network has p � 1 processors numbered 0, 1, . . . , p

and p � 2k for some k. Our transmission sequence will have k � log p stages. For stage

i � 0, 1, . . . , k � 1, consider the network broken up into p1 � p{2i intervals of length 2i.

Let this set of intervals be Qi � trq2i, pq � 1q2isup1�1
q�0 . At the beginning of the ith stage, for

each interval I P Qi, k2 transmissions having extent I arrive. We will denote this set of p1k2

transmissions by Ai. All transmissions have a height (i.e., bandwidth requirement) of 1{k. At

the end of the ith stage, all but a subset Si of Ai depart. The set Si is determined by observing

the behavior of ALG.

64

Section 5.5. Problem Lower Bound – Ωplog pq

Lemma 5.7. Among the p1k2 transmissions arriving at the beginning of stage i, we can find a

set Si of p1k transmissions such that (1) Exactly k transmissions from Si are for a single interval

I P Qi, (2) ALG assigns each transmission in Si to a distinct light-trail.

Proof. We have k2 transmissions for each interval I P Qi. Partition these k2 transmissions

arbitrarily into k groups of k transmissions each. So overall we have p1k groups each containing

k transmissions. Now form a bipartite graph pU, V,Eq as follows.

1. U has p1k vertices, each vertex corresponding to a group of k transmissions as formed

above. Note that there are k groups for each interval, and hence we can consider a distinct

group of k vertices of U to be associated with each I P Qi.

2. V has a vertex corresponding to each light-trail used by ALG for serving the transmissions

of this stage.

3. E has following edges. Suppose a transmission t from the group associated with a vertex

u P U is placed by ALG in the light-trail L associated with a vertex v P V . Then for

each such t there will be an edge pu, vq in E. Note that this may produce parallel edges if

several transmissions in the group of u are placed in L.

The degree of each vertex in U is exactly k, one edge for each transmission in the associated

group. Consider any vertex v P V . Since its associated light-trail can accommodate at most k

transmissions of height 1{k, its degree must be at most k.

Now consider any subset S of vertices from U and its neighborhood T in V . Because

vertices in U have degree exactly k there must be exactly |S|k edges leaving S. These must be

a subset of the edges entering T . But vertices in V have degree at most k. So there can be at

most |T |k edges entering T . Thus we have |S|k ¤ |T |k, i.e., |T | ¥ |S|, i.e., S has at least as

many neighbors as its own cardinality. But this is true for any S. Thus by Hall’s theorem [96,

pp-110], there must be a matching M that includes an edge from every vertex of U to a distinct

vertex in V .

Consider the set Si of transmissions associated with each edge ofM . Since there is exactly

one edge in M for each processor in U , Si has one transmission per group of transmissions for

each interval. Hence Si has exactly k transmissions for each interval. Since M has exactly one

edge per vertex in V , we know that each transmission in Si is assigned to a distinct light-trail

by ALG.

65

Chapter 5. Online Problems on Interval and Circular-arc Graphs

We have now completely described the transmission sequence. At the end all transmis-

sions have departed except those in some Si. We will use Di to denote the transmissions which

depart in stage i. Clearly Ai � Si YDi.

Lemma 5.8. OPT uses overall 2k� 1 wavelengths while processing the transmission sequence

for all stages.

Proof. Consider stage i. The set Ai has k2 transmissions for each interval I P Qi. To serve

these transmissions Ai, OPT uses k wavelengths configured as follows. Each wavelength is

configured into light-trails as per Qi, i.e., each interval I P Qi forms one light-trail. Now the

key point is that OPT places all transmissions in Si into light-trails on a single wavelength. This

can be done because the set Si indeed has k transmissions for each I P Qi. The remaining

transmissions Di can be accommodated into k � 1 additional wavelengths. Note now that at

the end of the stage, the transmissions Di depart. Hence although the stage used k wavelengths

transiently, at the end k � 1 of these are released.

Thus, at the end of stage i, there will be i � 1 wavelengths in use, one for transmissions

in each Sj , j � 0, . . . , i. When Ai�1 arrives, OPT will allocate k new wavelengths. So while

processing Ai�1 there will be i� 1� k wavelengths in use. These will drop down to i� 2 at the

end of stage i� 1. Thus, over all the stages the maximum number of wavelengths used will be

at most maxi�0,...,k�1pi� kq, i.e., 2k � 1.

Lemma 5.9. ALG uses at least k2{2 wavelengths while processing the transmission sequence.

Proof. Consider the light-trails used by ALG which are active at the end of the stage k�1. Each

of these light-trails may contain several transmissions but only one transmission from each Si.

Since transmissions from each Si have different lengths, each light-trail must hold transmissions

of different lengths. Thus, each light-trail can have at most one transmission of length 1, one of

length 2, and so on. The sum of the lengths of the transmissions assigned to a single light-trail

of length l is thus at most 1� 2� 4� � � � � l � 2l� 1 ¤ 2l. But this applies to all light-trails in

any wavelength, and hence the total length of the transmissions assigned to a single wavelength

is at most 2p. However, the transmissions that survive at the end consist of nk transmissions of

length 1, nk{2 transmissions of length 2, and so on to 2k transmissions of length p{2. Thus the

total length is nk2. Thus ALG needs at least pnk2q{p2pq � k2{2 wavelengths at the end.

But OPT requires at most 2k�1 2k wavelengths. Hence the competitive ratio is at least

pk2{2q{2k � k{4 � Ωplog pq. This completes the proof of Theorem 5.6.

66

Section 5.6. Simulations

5.6 Simulations

We simulate our two online algorithms and a baseline algorithm on a pair of oppositely directed

rings, with processors numbered 0 through p� 1 clockwise.

We use slightly simplified versions of the algorithms described in Sections 5.2 and 5.3 (but

easily seen to have the same bounds): basically we only use phases 0 and 2. Any transmissions

that would go into class i phase 1 (or phase 3) light-trail are contained in some class i � 1

light-trail (of phase 0 or 2 only), and are put there. We define a class i and phase 0 light-trail

to be one that is created by putting OFF shutters at processors jp{2i for different j, suitably

rounding when p is not a power of 2. A light-trail with class i and phase 2 is created by putting

OFF shutters at processors pjp{2i � p{2i�1q, again rounding suitably. The class and phase of

a transmission is determined by the light-trail of maximum class (note that now larger classes

have shorter light-trails) and minimum phase that can completely accommodate it. For ALL-

CLASS, there is a similar simplification. Basically, we use light-trails having end processors at

jp{2i and pj � 1qp{2i or at jp{2i � p{2i�1 and pj � 1qp{2i � p{2i�1. As before, in SEPARATE-

CLASS, we require any wavelength to contain light-trails of only one class and phase, whereas

in ALLCLASS, a wavelength may contain light-trails of different classes and phases.

For the baseline algorithm in each ring we use a single OFF shutter at processor 0. Trans-

missions from lower numbered processors to higher numbered processors use the clockwise

ring, and the others, the counterclockwise ring.

5.6.1 The Simulation Experiment

A single simulation experiment consists of running the algorithms on a certain load, character-

ized by parameters λ,D, rmin and α for 100 time steps. In our results, each data-point reported

is the average of 150 simulation experiments with the same load parameters.

In each time step, all processors j that are not busy transmitting, generate a transmission

pj, dj, rjq active for tj time units. After that the processor is busy for tj steps. After that it

generates another transmission as before. The transmission duration tj is drawn from a Poisson

distribution with parameter λ. The destination dj of a transmission is picked using the distribu-

tion D discussed later. The bandwidth is drawn from a modified Pareto distribution with scale

parameter � 100 � rmin and shape parameter � α. The modification is that if the generated

bandwidth requirement exceeds the wavelength capacity 1, it is capped at 1.

67

Chapter 5. Online Problems on Interval and Circular-arc Graphs

We experimented with α � t1.5, 2, 3u and λ � t0.01, 0.1u but report results for only

α � 1.5 and λ � 0.01; results for other values are similar. We tried four values 0.01, 0.1, 0.25

and 0.5 for rmin. We considered four different distributions D for selecting the destination

processor of a transmission.

1. Uniform: we select a destination uniformly randomly from the p�1 processors other than

the source processor.

2. UniformClass: we first choose a class uniformly from the rlog p{2s � 1 possible classes

and then choose a destination uniformly from the processors possible for that class. It

should be noted that there can be a destination at a distance at most p{2 in any direction

since we schedule along the direction requiring the shortest path.

3. Bimodal: first we randomly choose one of two possible modes. In mode 1, a destination

from the two immediate neighbors is selected and in mode 2, a destination from the

processors other than the two immediate processors is chosen uniformly. For applications

where transmissions are generated by structured algorithms, local traffic, i.e., unit or short

distances (e.g.
?
p for mesh-like communications) would dominate. Here, for simplicity,

we create a bimodal traffic which is a mixture of completely local and completely global.

4. ShortPreferred: we select destinations at shorter distance with higher probability. In fact,

we first choose a class i in the range 0, . . . , rlog p{2s with probability 1
2i�1 and then select

a destination uniformly from the possible destinations in that class.

We report the results only for the distributions Uniform and Bimodal and for rmin �
0.01, 0.5, i.e., a total of 4 load scenarios. Results for other scenarios follow a similar pattern.

5.6.2 Results

Figure 5.2 shows the results for the 4 load scenarios. For each scenario, we report the number

of wavelengths required by the 3 algorithms and the measured congestion as defined in Sec-

tion 5.1. Each data-point is the average of 150 simulations (each of 100 time steps) for the

same parameters on rings having p � 5, 6, . . . , 20 processors. We say that the two scenarios

corresponding to rmin � 0.01 have low load and the remaining two scenarios (rmin � 0.5) have

high load.

68

Section 5.6. Simulations

0

1

2

3

4

5

6

7

8

9

10

6 8 10 12 14 16 18 20

AllClass
SeparateClass

Baseline
Congestion

Uniform

0

1

2

3

4

5

6

7

8

6 8 10 12 14 16 18 20

AllClass
SeparateClass

Baseline
Congestion

Bimodal

N
u
m
b
er

of
w
av
el
en

g
th
s
W

Number of nodes p

(a) Low Load

0

2

4

6

8

10

12

14

6 8 10 12 14 16 18 20

AllClass
SeparateClass

Baseline
Congestion

Uniform

0

2

4

6

8

10

12

14

6 8 10 12 14 16 18 20

AllClass
SeparateClass

Baseline
Congestion

Bimodal

N
u
m
b
er

of
w
av
el
en
g
th
s
W

Number of nodes p

(b) High Load

Figure 5.2: Simulation Results

For low load, the baseline algorithm outperforms our algorithms. At this level of traffic,

it does not make sense to reserve different light-trails for different classes. However, as load

increases our algorithms outperform the baseline algorithm.

For the same load, it is also seen that our algorithms become more effective as we change

from the completely global Uniform distribution to the more local Bimodal distribution. This

trend was also seen with the other distributions we experimented with.

It is also to be noted that ALLCLASS performs better than SEPARATECLASS in our sim-

ulations. This is perhaps surprising because in Section 5.4 we showed that SEPARATECLASS

has a better competitive ratio. Indeed, in that section we presented an input instance on which

ALLCLASS performs substantially worse than SEPARATECLASS. But there is no contradiction

here. The simulation results merely indicate that instances like the one we presented do not

69

Chapter 5. Online Problems on Interval and Circular-arc Graphs

appear in our workload. For our workload, perhaps the extra flexibility of ALLCLASS is very

useful. So we feel that in practice the algorithm ALLCLASS is an important candidate.

5.7 Summary

For the online problem we proved that the lower bound on the competitive ratio of any algorithm

is Ωplog pq and gave a matching algorithm which we proved to have competitive ratio Θplog pq.
We also gave a second algorithm which seems to work better in practice but can be as bad

as Ωplog2 p{ log log pq factor worse than an optimal off-line algorithm on some pathological

examples as we have shown. We also proved an upper bound of Oplog2 pq for the algorithm but

it will be an interesting problem to close the gap between the two bounds.

70

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Our work on the component coloring problem is summarized in Table 6.1. Except for the sta-

tionary unweighted and nonsplittable weighted problem on PIGs, to the best of our knowledge,

all our results are the first theoretical results in the respective category. For PIGs our results are

superior than the existing results.

The simplest case of the component coloring problem that we considered is the unweighted

stationary version on PIGs. We showed that this problem is equivalent to solving a vertex

partitioning problem which turned out to be simpler to solve. We gave an Opnq time algo-

rithm for this partitioning problem. A slight modification of the partitioning procedure gave an

Opn2q time algorithm for the splittable weighted problem on PIGs, assuming that the weights

are at most C. This algorithm for splittable weighted problem was later extended to give a

2-approximation algorithm for the nonsplittable weighted problem which is NP-hard even on

PIGs.

Unfortunately, on general interval graphs, solving the simpler vertex partitioning problem

is not enough to solve the component coloring problem and hence we needed to devise a new

technique. Here we first classified the vertices according to the length of the transmissions in

the corresponding light-trail scheduling problem where class i contained all transmissions of

length in the range p2i�1, 2is and solved each class separately using at most a constant times

the optimal number of wavelengths. As there are log p classes where p denotes the number of

processors in the light-trail scheduling problem, this gave a Oplog pq approximation algorithm.

However, a clever technique of merging schedules from different classes gave a constant factor

71

Chapter 6. Conclusions and Future Work

Table 6.1: Current Status of Component Coloring. Here n, ω are the number of vertices and

the clique number, respectively, of the input graph, p is the number of distinct

endpoints in an interval or circular-arc representation of the input graph, and in

general, p is independent of n.

Input Graph Unweighted Splittable Nonsplittable

stationary

PIG • Opnq time

algorithm

• Opn2q time

algorithm

• NP-hard

• 2-approximation algorithm

interval

• complexity unknown

• approximation algorithm with

bound Opω � log pq

• NP-hard

• approximation algorithm with

bound Opω � log pq

circular-

arc

• NP-hard

• approximation algorithm with bound Opω � log pq

online all three

classes

• algorithm SEPARATECLASS with competitive ratio Θplog pq

• algorithm ALLCLASS with competitive ratio in between

Ωplog2 p{ log log pq and Oplog2 pq

• problem lower bound Ωplog pq proving optimality of

SEPARATECLASS

algorithm up to an additive term of Oplog pq. However, we do not know if there is a way to

do away with this additive factor or if there is a polynomial time algorithm for the unweighted

stationary problem on interval graphs.

In our first algorithm SEPARATECLASS for the online problem we used the same strategy

of dividing the transmissions into classes according to their lengths and scheduling each class

separately in a simple first-fit order. It turned out that this strategy is efficient enough to give an

72

Section 6.2. Future Work

optimal algorithm as we showed that SEPARATECLASS is Θplog pq competitive and no online

algorithm can have better competitive ratio than Ωplog pq.
Inspired by our stationary algorithm where merging schedules from different classes gave

better performance, we also considered a second algorithm ALLCLASS, a variation of SEPA-

RATECLASS, where light-trails of different classes are created from the same pool of wave-

lengths. Though ALLCLASS performs better in the traffic loads that we simulated, in general,

ALLCLASS performs worse than SEPARATECLASS. We proved that the competitive ratio of

ALLCLASS is between Ωplog2 p{ log log pq and Oplog2 pq.

6.2 Future Work

The most important open problem is finding an algorithm for the unweighted component color-

ing problem for general interval graphs, or showing that this is NP-hard. Also, we have given

an approximation algorithm which has an additive log term; it would be good to remove this

term and get a constant factor approximation algorithm.

Our online model is very conservative: once a transmission is allocated on a light-trail, it

cannot be moved to another light-trail, nor can the light-trail grow or shrink. However, there

are models [37] which allow light-trails to shrink/grow dynamically, and those in which it is

possible to transfer active transmissions from one light-trail to another [38]. It will be useful to

incorporate these (with some suitable penalty, perhaps) into our model.

In the online case it would be interesting to devise special algorithms that work well given

the distribution of arrivals.

It would be interesting to get similar results for more complicated topologies such as trees,

mesh networks etc.

Consider the following variation of the basic light-trail scheduling problem, some sort of

a dual. We have a light-trail based WDM network with p processors, as usual on a ring. For

a processor to be able to transmit on k wavelengths, it must have a separate optical transpon-

der for each wavelength. To receive it must have one transponder, which can receive on any

wavelength. Suppose that there are λ wavelengths available overall. We are given a matrix R

in which Rri, js gives the bandwidth needed from i to j. We need to solve the following:

1. Is it possible to assign the required bandwidth to each processor (for its different trans-

missions) satisfying all constraints of a light-trail based network?

73

Chapter 6. Conclusions and Future Work

2. Given feasibility as above, what is the minimum number of transponders needed, and

which processors should have them? This is sort of a network design question.

The light-trail problem is similar to the following simplified problem of vehicle routing

problem. We call this as Bus Planning Problem. We have the real line on which we are given

the starting points si and destinations di of the ith among some p passengers. We are to plan the

movement of these passengers using buses. Each bus has a certain starting point and destination

of our design, and may carry at most B passengers at any time. A passenger cannot be asked to

change buses, i.e. starting point of the bus carrying him must be smaller than the starting point

of the passenger, and the destination larger (assume all movement is left to right). The cost

function is the sum of the distances traveled by buses. Note that a certain bus might carry fewer

than B passengers, but its distance fully counts in the cost. We need to see if our algorithms can

be used in this problem too.

74

Bibliography

[1] S. Albers. Online Algorithms: A Survey. Mathematical Programming, 97(1):3–26,

2003. 8, 20

[2] N. Alon, G. Ding, B. Oporowski, and D. Vertigan. Partitioning into Graphs with Only

Small Components. Journal of Combinatorial Theory, Series B, 87(2):231–243, 2003.

13

[3] J.A. Andrews and M.S. Jacobson. On a Generalization of Chromatic Number and two

Kinds of Ramsey Numbers. Ars Combinatoria, 23:97–102, 1987. 13, 14

[4] K. Appel, W. Haken, and J. Koch. Every Planar Map is Four Colorable. Part II: Re-

ducibility. Illinois Journal of Mathematics, 21(3):491–567, 1977. 12, 13

[5] J. Araujo, J.C. Bermond, F. Giroire, F. Havet, D. Mazauric, and R. Modrzejewski.

Weighted Improper Colouring. Journal of Discrete Algorithms, 2012. 13, 14

[6] A.S. Ayad, K.M.F. Elsayed, and S.H. Ahmed. Enhanced Optimal and Heuristic Solu-

tions of the Routing Problem in Light-trail Networks. Workshop on High Performance

Switching and Routing (HPSR), pages 1–6, 2007. 17, 18, 19

[7] S. Balasubramanian, W. He, and A.K. Somani. Light-Trail Networks: Design and Sur-

vivability. Thirtieth IEEE Conference on Local Computer Networks, pages 174–181,

2005. 17, 18, 19

[8] S. Balasubramanian, A.E. Kamal, and A.K. Somani. Network design in IP-centric Light-

trail networks. In Second International Conference on Broadband Networks (Broadnets),

pages 41–50, 2005. 17

75

Bibliography

[9] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster. The Power of Reconfiguration.

Journal of parallel and distributed computing, 13(2):139–153, 1991. ISSN 0743-7315.

20

[10] R. Berke and T. Szabó. Relaxed Two-coloring of Cubic Graphs. Journal of Combinato-

rial Theory, Series B, 97(4):652–668, 2007. 13, 14

[11] K.A. Berman and J.L. Paul. Large Monochromatic Components in Vertex Colored k-

trees. Congressus numerantium, 53:161–166, 1986. 13, 14

[12] J.C. Bermond, F. Havet, F. Huc, and C.L. Sales. Improper Coloring of Weighted Grid and

Hexagonal Graphs. Discrete Mathematics, Algorithms and Applications, 2(03):395–411,

2010. 13, 14

[13] K. Bondalapati and V.K. Prasanna. Reconfigurable Meshes: Theory and Practice. In

Fourth Workshop on Reconfigurable Architectures (IPPS), 1997. 20

[14] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, New York, NY, USA, 1998. 8, 20

[15] I. Broere and M. Frick. On the Order of Color Critical Graphs. In Congressus Numeran-

tium, volume 47, pages 125–130, 1985. 13, 14

[16] G. Chartrand, D.P. Geller, and S. Hedetniemi. A Generalization of the Chromatic Num-

ber. In Proceedings of the Cambridge Philosophical Society, volume 64, pages 265–271.

Cambridge University Press, 1968. 13, 14

[17] G. Chartrand, H.V. Kronk, and C.E. Wall. The Point-arboricity of a Graph. Israel Journal

of Mathematics, 6(2):169–175, 1968. 13, 14

[18] I. Chlamtac and A. Gumaste. Light-trails: A Solution to IP Centric Communication in

the Optical Domain. Lecture Notes in Computer Science, pages 634–644, 2003. 1, 17

[19] E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson. Approximation algorithms for bin

packing: a survey. Approximation algorithms for NP-hard problems, pages 46–93, 1997.

50, 51, 53

[20] K.C. Dargen and K. Fraughnaugh. Conditional Chromatic Numbers with Forbidden

Cycles. Linear Algebra and its Applications, 217:53–66, 1995. 12, 14

76

Bibliography

[21] G. Ding, B. Oporowski, D.P. Sanders, and D. Vertigan. Partitioning Graphs of Bounded

Tree-width. Combinatorica, 18(1):1–12, 1998. 12, 14

[22] Ajit Diwan, Soumitra Pal, and Abhiram Ranade. Component Coloring of Proper Interval

and Split Graphs. Submitted. 10, 85

[23] K. Edwards and G. Farr. On Monochromatic Component Size for Improper Colourings.

Discrete Applied Mathematics, 148(1):89–105, 2005. 13, 14

[24] H. ElGindy, H. Schroder, A. Spray, A.K. Somani, and H. Schmeck. RMB – A Reconfig-

urable Multiple Bus Network. In Second International Symposium on High-Performance

Computer Architecture, pages 108–117. IEEE, 1996. 20

[25] Jing Fang, Wensheng He, and A.K. Somani. Optimal Light-trail Design in WDM Opti-

cal Networks. In IEEE International Conference on Communications, volume 3, pages

1699–1703, June 2004. 17, 18, 19

[26] A. Farrugia. Vertex-partitioning into Fixed Additive Induced-hereditary Properties is

NP-hard. Electronic Journal of Combinatorics, 11(R46):1–9, 2004. 14

[27] Marietjie Frick. Generalised Colourings of Graphs. PhD thesis, Randse Afrikaanse

Universiteit, 1986. 13, 14

[28] Marietjie Frick. A Survey of pm, kq-colorings. 55:45–58, 1993. 12

[29] R. Gandhi, B. Greening, Jr, S. Pemmaraju, and R. Raman. Sub-coloring and Hypo-

coloring Interval Graphs. Discrete Mathematics, Algorithms and Applications, 2(03):

331–345, 2010. 13, 14

[30] M.R. Garey and D.S. Johnson. The Complexity of Near-optimal Graph Coloring. Journal

of the ACM (JACM), 23(1):43–49, 1976. 11

[31] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the The-

ory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. ISBN

0716710447. 7

[32] M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou. The Complexity of

Coloring Circular Arcs and Chords. SIAM Journal on Algebraic and Discrete Methods,

1:216, 1980. 12

77

Bibliography

[33] M. Geréb-Graus and T. Tsantilas. Efficient Optical Communication in Parallel Comput-

ers. In Fourth annual ACM symposium on Parallel algorithms and architectures, pages

41–48. ACM, 1992. ISBN 089791483X. 20

[34] P. Gokhale, R. Kumar, T. Das, and A. Gumaste. Cloud Computing over Metropolitan

Area WDM networks: The Light-trails Approach. In IEEE Global Telecommunications

Conference (GLOBECOM), pages 1–6. IEEE, 2010. 18

[35] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of

Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Nether-

lands, 2004. ISBN 0444515305. 26

[36] A. Gumaste and I. Chlamtac. Mesh Implementation of Light-trails: A Solution to IP

Centric Communication. Twelfth International Conference on Computer Communica-

tions and Networks (ICCCN), pages 178–183, 2003. 17

[37] A. Gumaste and I. Chlamtac. Light-trails: An Optical Solution for IP Transport. Journal

of Optical Networking, 3(5):261–281, 2004. 17, 73

[38] A. Gumaste and P. Palacharla. Heuristic and Optimal Techniques for Light-trail As-

signment in Optical Ring WDM Networks. Computer Communications, 30(5):990–998,

2007. 17, 18, 19, 73

[39] A. Gumaste and S.Q. Zheng. Dual Auction (and Recourse) Opportunistic Protocol for

Light-trail Network Design. In IFIP International Conference on Wireless and Optical

Communications Networks, page 6, 2006. 19

[40] A. Gumaste, G. Kuper, and I. Chlamtac. Optimizing Light-trail Assignment to WDM

Networks for Dynamic IP Centric Traffic. In Thirteenth Workshop on Local and

Metropolitan Area Networks (LANMAN), pages 113–118. IEEE, 2004. 17

[41] A. Gumaste, J. Wang, A. Karandikar, and N. Ghani. Multihop Light-trails (MLT): A

Solution to Extended Metro Networks. In International Conference on Communications

(ICC), pages 1–6. IEEE, 2009. 17

[42] A. Gumaste, T. Das, A. Mathew, and A. Somani. An Autonomic Virtual Topology Design

and Two-stage Scheduling Algorithm for Light-trail WDM Networks. Journal of Optical

Communications and Networking, 3(4):372–389, 2011. 19

78

Bibliography

[43] M.M. Halldórsson. A Still Better Performance Guarantee for Approximate Graph Col-

oring. Information Processing Letters, 45(1):19–23, 1993. 11

[44] E. Hao, P.D. MacKenzie, and Q.F. Stout. Selection on the Reconfigurable Mesh. In

Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 38–45.

IEEE, 1992. ISBN 0818627727. 20

[45] P. Haxell, T. Szabó, and G. Tardos. Bounded Size Components– Partitions and Transver-

sals. Journal of Combinatorial Theory, Series B, 88(2):281–297, 2003. 13, 14

[46] J.W. Jang and V.K. Prasanna. An Optimal Sorting Algorithm on Reconfigurable Mesh.

Journal of Parallel and Distributed Computing, 25(1):31–41, 1995. ISSN 0743-7315.

20

[47] T.R. Jensen and B. Toft. Graph Coloring Problems. Wiley-Interscience Series in Discrete

Mathematics and Optimization, 1995. 11

[48] G. Johns and F. Saba. On the Path-chromatic Number of a Graph. Annals of the New

York Academy of Sciences, 576(1):275–280, 1989. 13, 14

[49] R.J. Kang. Improper Colourings of Graphs. PhD thesis, University of Oxford, 2007. 13,

14

[50] R.M. Karp. Reducibility Among Combinatorial Problems. In JW Thatcher RE Miller,

editor, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972. 11

[51] K. Kawarabayashi and B. Mohar. A Relaxed Hadwiger’s Conjecture for List Colorings.

Journal of Combinatorial Theory, Series B, 97(4):647–651, 2007. 14

[52] J. Kleinberg, R. Motwani, P. Raghavan, and S. Venkatasubramanian. Storage Manage-

ment for Evolving Databases. In Proceedings of 38th Annual Symposium on Foundations

of Computer Science, pages 353 –362. IEEE, October 1997. doi: 10.1109/SFCS.1997.

646124. 7, 8, 13, 14, 15, 16

[53] M. Kubale. Graph Colorings, volume 352. American Mathematical Society, 2004. 11

[54] H. Li and M. Maresca. Polymorphic-Torus Network. IEEE Transactions on Computers,

38(9):1345–1351, 1989. ISSN 0018-9340. 21

79

Bibliography

[55] K. Li, Y. Pan, and S.Q. Zheng. Parallel Matrix Computations using a Reconfigurable

Pipelined Optical Bus. Journal of Parallel and Distributed Computing, 59(1):13–30,

1999. 21

[56] K. Li, Y. Pan, and S.Q. Zheng. Efficient Deterministic and Probabilistic Simulations of

PRAMs on Linear Arrays with Reconfigurable Pipelined Bus Systems. The Journal of

Supercomputing, 15(2):163–181, 2000. ISSN 0920-8542. 21

[57] R. Lin and S. Olariu. Reconfigurable Buses with Shift Switching: Concepts and Applica-

tions. IEEE Transactions on Parallel and Distributed Systems, 6(1):93–102, 1995. ISSN

1045-9219. 20

[58] N. Linial and M. Saks. Low Diameter Graph Decompositions. Combinatorica, 13(4):

441–454, 1993. 12, 14

[59] N. Linial, J.Ř.Í. Matoušek, O. Sheffet, and G. Tardos. Graph Colouring with no Large

Monochromatic Components. Combinatorics, Probability and Computing, 17(04):577–

589, 2008. 13, 14

[60] A. Lodha, A. Gumaste, P. Bafna, and N. Ghani. Stochastic Optimization of Light-trail

WDM Ring Networks using Bender’s Decomposition. In Workshop on High Perfor-

mance Switching and Routing (HPSR), pages 1–7, 2007. 19

[61] P.J. Looges and S. Olariu. Optimal Greedy Algorithms for Indifference Graphs. Com-

puters & Mathematics with Applications, 25(7):15–25, 1993. 28

[62] C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization Problems.

Journal of the ACM (JACM), 41(5):960–981, 1994. 12

[63] X. Luo and B. Wang. Integrated Scheduling of Grid Applications in WDM Optical

Light-trail Networks. Journal of Lightwave Technology, 27(12):1785–1795, 2009. 18

[64] M. Maresca. Polymorphic Processor Arrays. IEEE Transactions on Parallel and Dis-

tributed Systems, 4(5):490–506, 1993. ISSN 1045-9219. 20

[65] J.Í. Matoušek and A. Prı́vetivỳ. Large Monochromatic Components in Two-colored

Grids. SIAM Journal on Discrete Mathematics, 22(1):295–311, 2008. 13, 14

80

Bibliography

[66] R. Miller, V.K. Prasanna, D.I. Reisis, and Q.F. Stout. Parallel Computations on Re-

configurable Meshes. IEEE Transactions on Computers, 42(6):678–692, 1993. ISSN

0018-9340. 21

[67] K. Nakano. A Bibliography of Published Papers on Dynamically Reconfigurable Archi-

tectures. Parallel Processing Letters, 5(1):111–124, 1995. 20

[68] K. Nakano. Prefix-sums Algorithms on Reconfigurable Meshes. Parallel processing

letters, 5(1):23–35, 1995. ISSN 0129-6264. 21

[69] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Wiley-

Interscience New York, NY, USA, 1988. 32

[70] I. Nieuwoudt. On the Maximum Degree Chromatic Number of a Graph. PhD thesis,

University of Stellenbosch, 2007. 13, 14

[71] I. Nieuwoudt and J.H. van Vuuren. Algorithms for a Shared Resource Scheduling Prob-

lem in which Some Level of Conflict is Tolerable. Journal of Scheduling, pages 1–22,

2012. 13, 14

[72] S. Olariu. An Optimal Greedy Heuristic to Color Interval Graphs. Information Process-

ing Letters, 37(1):21–25, 1991. 27, 28, 54

[73] Soumitra Pal and Abhiram Ranade. Scheduling Light-trails on WDM Rings. In Proceed-

ings of the 17th International Conference on Advanced Computing and Communications

(ADCOM), pages 227–234. Advanced Computing and Communications Society, Decem-

ber 2009. 10, 85

[74] Soumitra Pal and Abhiram Ranade. Scheduling Light-trails on WDM Rings. Journal of

Parallel and Distributed Computing, 72(10):1226 – 1236, 2012. ISSN 0743-7315. doi:

10.1016/j.jpdc.2012.05.010. 10, 85

[75] Y. Pan, M. Hamdi, and K. Li. Efficient and Scalable Quicksort on a Linear Array with

a Reconfigurable Pipelined Bus System. Future Generation Computer Systems, 13(6):

501–513, 1998. 21

81

Bibliography

[76] Yi Pan and Keqin Li. Linear Array with a Reconfigurable Pipelined Bus System –

Concepts and Applications. Information Science, 106(3-4):237–258, 1998. ISSN 0020-

0255. doi: http://dx.doi.org/10.1016/S0020-0255(97)10013-5. 20

[77] P.M. Pardalos, T. Mavridou, and J. Xue. The Graph Coloring Problem: A Bibliographic

Survey. In Ding-Zhu Du and M. Pardalos, editors, Handbook of combinatorial optimiza-

tion, volume 2, pages 331–395. Kluwer Academic Publishers, 1998. 11

[78] S. Pavel and S.G. Akl. Matrix Operations using Arrays with Reconfigurable Optical

Buses. International Journal of Parallel, Emergent and Distributed Systems, 8(3):223–

242, 1996. ISSN 1744-5760. 20

[79] S. Rajasekaran. Mesh Connected Computers with Fixed and Reconfigurable Buses:

Packet Routing, Sorting, and Selection. In First Annual European Symposium on Al-

gorithms, pages 309–320. Springer-Verlag, 1993. ISBN 3540572732. 20

[80] S. Rajasekaran and S. Sahni. Sorting, Selection, and Routing on the Array with Recon-

figurable Optical Buses. IEEE Transactions on Parallel and Distributed Systems, 8(11):

1123–1132, 1997. 21

[81] A. Raspaud and W. Wang. On the Vertex Arboricity of Planar Graphs. European Journal

of Combinatorics, 29(4):1064–1075, 2008. 13, 14

[82] J. Rothstein. Bus Automata, Brains, and Mental Models. IEEE Transactions on Systems,

Man, and Cybernetics, 18(4):522–531, 1988. ISSN 0018-9472. 20

[83] A. Roychoudhury and S. Sur-Kolay. Efficient Algorithms for Vertex Arboricity of Pla-

nar Graphs. In Foundations of Software Technology and Theoretical Computer Science,

pages 37–51. Springer, 1995. 13, 14

[84] S. Sahni. Data Manipulation on the Distributed Memory Bus Computer. Parallel Pro-

cessing Letters, 5(1):3–14, 1995. ISSN 0129-6264. 20

[85] E. Sampathkumar. Generalizations of Independence and Chromatic Numbers of a Graph.

Discrete mathematics, 115(1):245–251, 1993. 13, 14

[86] E. Sampathkumar and G.D. Kamath. k-Size Chromatic Number of a Graph. The Indian

Journal of Statistics, pages 393–397, 1992. 12, 14

82

Bibliography

[87] L. Snyder. Introduction to the Configurable, Highly Parallel Computer. Computer, 15

(1):47–64, 1982. ISSN 0018-9162. 20

[88] L. Stockmeyer. Planar 3-colorability is Polynomial Complete. ACM Sigact News, 5(3):

19–25, 1973. 12

[89] C.P. Subbaraman, J.L. Trahan, and R. Vaidyanathan. List Ranking and Graph Algorithms

on the Reconfigurable Multiple Bus Machine. In International Conference on Parallel

Processing (ICPP), volume 3, 1993. 19, 21

[90] J.L. Trahan, R. Vaidyanathan, and R.K. Thiruchelvan. On the Power of Segmenting and

Fusing Buses. Journal of Parallel and Distributed Computing, 34(1):82–94, 1996. ISSN

0743-7315. 20

[91] A. Tucker. Coloring a Family of Circular Arcs. SIAM Journal on Applied Mathematics,

29(3):493–502, 1975. 12

[92] B.F. Wang and G.H. Chen. Two-dimensional Processor Array with a Reconfigurable Bus

System is at least as Powerful as CRCW Model. Information Processing Letters, 36(1):

31–36, 1990. ISSN 0020-0190. 21

[93] Y.R. Wang. An Efficient Op1q Time 3D All Nearest Neighbor Algorithm from Image

Processing Perspective. Journal of Parallel and Distributed Computing, 67(10):1082–

1091, 2007. 21

[94] R. Wankar and R. Akerkar. Reconfigurable Architectures and Algorithms: A Research

Survey. International Journal of Computer Science & Applications, 6(1):108–123, 2009.

20

[95] C.C. Weems, S.P. Levitan, A.R. Hanson, E.M. Riseman, D.B. Shu, and J.G. Nash. The

Image Understanding Architecture. International Journal of Computer Vision, 2(3):251–

282, 1989. ISSN 0920-5691. 20

[96] Douglas B. West. Introduction to Graph Theory (2nd Edition). Prentice Hall, August

2000. 65

83

Bibliography

[97] D. Woodall. Improper Colourings of Graphs. In P. Degano and E. Sandewall, editors,

Graph Colourings, volume 218, pages 45–63. Longman Scientific and Technical, 1990.

12, 13, 14

[98] B. Wu and K.L. Yeung. OPN03-5: Light-trail Assignment in WDM Optical Networks.

In IEEE Global Telecommunications Conference (GLOBECOM), pages 1–5, 2006. 17,

18, 19

[99] Y. Ye, H. Woesner, R. Grasso, T. Chen, and I. Chlamtac. Traffic Grooming in Light-trail

Networks. In IEEE Global Telecommunications Conference (GLOBECOM), 2005. 17

[100] W. Zhang, G. Xue, J. Tang, and K. Thulasiraman. Dynamic Light-trail Routing and

Protection Issues in WDM Optical Networks. In IEEE Global Telecommunications Con-

ference (GLOBECOM), pages 1963–1967, 2005. 19

84

Publications from this Thesis

[73] Soumitra Pal and Abhiram Ranade. Scheduling Light-trails on WDM Rings. In Proceed-

ings of the 17th International Conference on Advanced Computing and Communications

(ADCOM), pages 227–234. Advanced Computing and Communications Society, Decem-

ber 2009

[74] Soumitra Pal and Abhiram Ranade. Scheduling Light-trails on WDM Rings. Journal of

Parallel and Distributed Computing, 72(10):1226–1236, 2012. ISSN 0743-7315.

[22] Ajit Diwan, Soumitra Pal, and Abhiram Ranade. Component Coloring of Proper Interval

and Split Graphs. Submitted.

85

Acknowledgments

I would like to express my sincere gratitude to my guide, Prof. Abhiram Ranade for his consis-

tent motivation, guidance and support throughout this work. Without his generous and prompt

help this work would not have been done.

I would like to thank my Research Progress Committee, Prof. Ajit Diwan for introducing

the component colouring problem and providing me the ideas used in the thesis for solving

the same and Prof. Ashwin Gumaste for encouragement, insightful discussions and patient

clearing of our doubts related to light-trails. I am also thankful to other members of my RPC,

Prof. Ganjendra K. Adil and Prof. Vishnu Narayan, who reviewed my research progress on a

regular basis and gave valuable comments and encouragement.

I also want to thank the reviewers of my thesis, Prof. Geppino Pucci and particularly Prof.

Sandeep Sen, who reviewed this thesis thoroughly and gave thoughtful comments on improving

the writing.

I am ever grateful to the institute for supporting me by scholarship. Many thanks to the

helpful staff at CSE office, specially Mrs. Athvankar and Vijay Ambre.

My stay in the institute was enriched due to many friends and seniors. I want to thank them

all, especially Vishal Sevani, Jagadish M, Jinesh Machchhar, Abhisekh Shankaran, Ruta Mehta,

Jugal Garg, Zahir Koradia, Ayush Choure, Uma Sawant, Prasanna K, Karthik Ramachandra,

Srinivas Karthik, Sreyash Kenkre, Sandeep Deshmukh, Sobhan Babu and so on.

Many friends and well wishers from Shri Ram chandra Mission have encouraged me

throughout, more importantly Dr. Sadhasivam K. I want to thank them whole heartedly.

I am also grateful to my parents, sisters, brother and other family members for being with

me and providing me all that I need in my life. And above all, special thanks to Sunayna, my

wife who came in my life around the end of my PhD and inspired me to finish it quickly.

Date: 6 August 2013 Soumitra Kumar Pal

