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Abstract

Video can be summarized in many forms. One natu-
ral possibility that has been well explored is extracting key
frames in shots or scenes, and then creating thumbnails.
Another natural alternative that has been surprisingly ill-
explored is to locate “lead stars” around whom the action
revolves. Though scarce and far between, available tech-
niques for detecting lead stars is usually video specific.

In this paper, we highlight the importance of lead star
detection, and present a generalized method for detecting
snippets around lead actors in entertainment videos. Ap-
plications that naturally make use of this method include
locating action around the ‘player of the match’ in sports
videos, lead actors in movies and TV shows, and guest-host
snippets in TV talk shows. Additionally, our method is fifty
times faster than the state-of-art spectral clustering tech-
nique with comparable accuracy.

1. Introduction
Suppose an avid cricket fan or coach wants to learn

exactly how Flintoff repeatedly got Hughes “out.” Or a
movie buff wants to watch an emotional scene involving
his favourite heroine in a Hollywood movie. Clearly, in
such scenarios, you want to skip frames that are “not in-
teresting.” One possibility that has been well explored is
extracting key frames in shots or scenes and then creating
thumbnails. Another natural alternative – the emphasis in
this paper – is to determine frames around, what we call,
lead stars. A lead star in an entertainment video is the actor
who, most likely, appears in many significant frames. We
define lead stars in other videos also. For example, the lead
star in a soccer match is the hero, or the player of the match,
who has scored “important” goals. Intuitively, he is the one
the audience has paid to come and see. Similarly the lead
star in a talk show is the guest who has been invited, or, for
that matter, the hostess. This work presents how to detect
lead stars in entertainment videos. Moreover like various
video summarization [11, 6, 1], lead stars is a natural way
of summarizing video. (Multiple lead stars are of course

allowed.)

Figure 1. Lead star detection. This is exemplified in sports by the
player of the match; in movies, stars are identified; and in TV
shows, the guest and host are located.

1.1. Related Work

Researchers have explored various video specific appli-
cations for lead stars detection – anchor detection in news
video [9], lead casts in comedy sitcoms [2], summarizing
meetings [8], guest host detection [6, 5] and locating the
lecturer in smart rooms by tracking the face and head [10].

Fitzgibbon [3] uses affine invariant clustering to detect
cast listing from movie. As the original algorithm had run-
time that is quadratic, the authors used a hierarchical strat-
egy to improve the clustering speed that is central to their
method. Foucher, S. and Gagnon, L. [4] used spatial clus-
tering techniques for clustering actor faces. Their methods
detect the actor’s cluster in unsupervised way with compu-
tation time of about 23 hours for a motion picture.

1.2. Our Strategy

Although the lead actor has been defined using a picto-
rial or semantic concept, an important observation is that
the significant frames in an entertainment video is often ac-
companied by a change in the audio intensity level. It is
true no doubt that not all frames containing the lead actors
involve significant audio differences. Our interest is not at
the frame level, however. Note that certainly the advent of
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important scenes and important people bear a strong corre-
lation to the audio level. We surveyed around one hundred
movies, and found that it is rarely, if at all, the case that the
lead star does not appear in audio highlighted sections, al-
though the nature of the audio may change from scene to
scene. And as alluded above, once the lead star has entered
the shot, the frames may well contain normal audio levels.

Figure 2. Our strategy for lead star detection. We detect lead stars
by considering segments that involve significant change in audio
level. However, this by itself is not enough!

Our method is built upon this concept. We detect lead
stars considering such important scenes of the video. To re-
duce false positives and negatives, our method clusters the
faces for each important scenes separately and then com-
bines the results. Unlike the method in [3], our method pro-
vides a natural segmentation for clustering. Our method is
shown to considerably reduce the computation time of the
previously mentioned state-of-the-art for computing lead
star in motion picture (a factor of 50). We apply this method
to sports video to identify the player of the match, motion
pictures to find heroes and heroines and TV show to detect
guest and host.

2. Methodology
As mentioned, the first step in the problem is to find im-

portant scenes which have audio highlights. Once such im-
portant scenes are identified, they are further examined for
potential faces. Once a potential face is found in a frame,
subsequent frames are further analyzed for false alarms us-
ing concepts from tracking. At this point, several areas are
identified as faces. Such confirmed faces are grouped into
clusters to identify the lead stars.

2.1. Audio Highlight Detection

The intensity of a segment of an audio signal is sum-
marized by the root-mean-square value. The audio track of
a video is divided into windows of equal size and the rms
value is computed for each audio window. From the result-
ing rms sequence, the rms ratio is computed for successive
items in the sequence.

Figure 4. Illustration of highlight detection from audio signal. We
detect highlights by considering segments that involve significant
low RMS ratio.

The rms ratio is marked as low when the value is below a
user defined threshold. In our implementation, we use 5 as
the threshold, and the video frames corresponding to such
windows are considered as ‘important.’

2.2. Finding & Tracking Potential People

Figure 5. Illustration of data matrix formation. The tracked faces
are stacked together to form the data matrix.

Once important scenes are marked, we seek to identify
people in the corresponding video segment. Fortunately
there are well understood algorithms that detect faces in an
image frame. We select a random frame within the window
and detect faces using the Viola & Jones face detector [7].

Every face detected in the current frame is then voted for
a confirmation by attempting to track them in subsequent
frames in the window. Confirmed faces are stored for the
next step in the processing in a data matrix. Confirmed faces
from each highlight i, is stored in the corresponding data
matrix Di as illustrated in Figure 5.

2.3. Face Dictionary Formation

In this step, the confirmed faces are grouped based on
their features. There are a variety of algorithms for dimen-

2
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Figure 3. Strategy further unfolded. We first detect scenes accompanied by change in audio level. Next we look for faces in these important
scenes, and to further confirm the suitability track faces in subsequent frames. Finally, a face dictionary representing the lead stars is
formed by clustering the confirmed faces.

Figure 6. Illustration of face dictionary formation.

sionality reduction, and subsequent grouping. We observe
that the Principal Component Analysis (PCA) method has
been successfully used for face recognition. We use PCA
to extract feature vectors from Di and we use the k-means
algorithm for clustering. The number of clusters is decided

based on minimal mean square error. Representative faces
from clusters of all highlights are clustered again to get the
final set of clusters. The representative faces of these clus-
ters forms the face dictionary.

At this point, we have a dictionary of faces, but not all
faces belong to lead actors. We use the following parame-
ters to shortlist the faces to form lead stars.

1. The number of faces in the cluster. If a cluster (pre-
sumably of the same face) has a large cardinality, we
give this cluster a high weightage.

2. Position of the face with respect to center of the image.
Lead stars are expected to be in the center of the image.

3. Size of the detected face. Again, lead stars typically
occupy a significant portion of the image.

4. Duration for which the faces in the cluster occur in the
current window as a fraction of the window size.

The face dictionary formed for the movie Titanic is
shown in Figure 7. Our method has successfully detected
the lead actors in movie. As can be noticed, along with lead
stars, there are patches that have been misclassified as faces.

3
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Figure 7. Face dictionary formed for the movie Titanic. Lead stars
are highlighted in blue (third image), and red (last image). Note
that this figure does not indicate the frequency of detection.

3. Applications
In this section, we demonstrate our technique using three

applications — Lead Actor Detection in Motion Picture,
Player of the Match Identification and Host Guest Detec-
tion. As applications go, Player of the Match Identification
has not been well explored considering the enormous inter-
est. In the other two applications, our technique detects lead
stars faster than the state-of-art techniques, which makes
our method practical and easy to use.

3.1. Lead Actor Detection in Motion Picture

In motion pictures, detecting the hero, heroine and vil-
lain has many interesting benefits. A person while review-
ing a movie can skip the scenes where lead actors are not
present. A profile of the lead actors can also be generated.
Significant scenes containing many lead actors can be used
for summarizing video.

In our method, the face dictionary formed contains the
lead actors. These face dictionaries are good enough in most
of the cases. However, for more accurate results, the algo-
rithm scans through a few frames of every shot to determine
the faces occurring in the shot. The actors who occur in a
large number of shots is identified as the lead actor. The
result of lead actors for the movie Titanic after scanning
through entire movie is shown in the Figure 8.

Figure 8. Lead actors detected for the movie Titanic
.

3.2. Player of the Match Identification

In the sports, sports highlight and key frames [6] are the
two main methods used for summarizing. We summarize
sports using the player of the match capturing the star play-
ers.

Detecting and tracking players in the complete sports
video does not yield player of the match. The star play-
ers can play for shorter time and score more as opposed to
players who attempt many times and don’t. So analyzing

the players when there is score leads to the identification of
star players. This is easily achieved by our technique, as
detecting highlights results in exciting scenes like scores.

Figure 9. Lead star detected for the highlights of a soccer match
Liverpool vs Havant & Waterlooville. The first image is erro-
neously detected as face. The other results represents players and
coach.

The result of lead sports stars detected from a soccer
match Liverpool vs Havant & Waterlooville is presented in
the Figure 9. The key players of the match are detected.

3.3. Host Guest Detection

In TV interviews and other TV programs, detecting host
and guest of the program is the key information used in
video retrieval. Javed et. al. [5] have proposed a method
for the same which removes the commercials and then ex-
ploits the structure of the program to detect guest and host.
The algorithm uses the inherent structure of the interview
that the host occurs for shorter duration than guest. How-
ever, it is not always the case, especially when the hosts are
equally popular like in the case of TV shows like Koffee
With Karan. In the case of competition shows, the host is
shown for longer duration than guests or judges.

Our algorithm detects hosts and guests as lead stars. To
distinguish hosts and guests, we detect lead stars on multi-
ple episodes and combine the result. As it is intuitive, the
lead stars over multiple episodes are hosts and the other lead
stars detected for specific episodes are guests.

4. Experiments
We have implemented our system in Matlab. We tested

our method on an Intel Core Duo processor, 1.6 Ghz, 2GB
RAM. We have conducted experiments on 7 popular motion
pictures, 9 soccer match highlights and two episodes of TV
shows summing up to total of 19 hours 23 minutes of video.
Our method detected lead stars in all the videos in an aver-
age of 14 minutes for an one hour video. The method [4] in
the literature computes lead star of a motion picture in 23
hours, whereas we compute lead star for motion picture in
an average of 30 minutes. We now provide more details.

4.1. Lead Actor Detection in Motion Picture

We ran our experiments on 7 box-office hit movies listed
in the table 1. This totally sums up to 16 hours of video.

4
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Table 1. Time taken for computing lead actors for popular movies.

No. Movie Name Duration Computation Time for Computation Time for
Detecting Lead Stars Refinement

(hh:mm) (hh:mm) (hh:mm)
1 The Matrix 02:16 00:22 00:49
2 The Matrix Reloaded 02:13 00:38 01:25
3 Matrix Revolutions 02:04 00:45 01:07
4 Eyes Wide Shut 02:39 00:12 00:29
5 Austin Powers 01:34 00:04 01:01

in Goldmember
6 The Sisterhood 01:59 00:16 00:47

of the Traveling Pants
7 Titanic 03:18 01:01 01:42

Total 16:03 03:18 07:20

Figure 10. Lead actors identified for popular movies appear on the right.

The lead stars in all these movies are computed in 3 hour
18 minutes. So the average computation time for a movie is
around 30 minutes. From Table 1, we see that the best com-
putation time is 4 minutes for the movie Austin Powers in
Goldmember which is 1 hour 42 minutes in duration. The
worst computation time is 45 minutes for the movie Ma-
trix Revolutions of duration 2 hour 4 minutes. For movies
like Eyes Wide Shut and Austin Powers in Goldmember, the
computation is faster as there are fewer audio highlights.
Whereas action movies like Titanic sequels take more time
as there are many audio highlights. This causes the varia-
tion in computation time among movies.

The lead actors detected are shown in the Figure 10. The
topmost star is highlighted in red color and the next top star
is highlighted in blue color. As you can notice in the figure,

in most of the movies topmost stars are detected. Since the
definition of “top” is subjective, it could be said that in some
cases, top stars are not detected in some cases. Further, in
some cases the program identifies the same actor multiple
times. This could be due to disguise, or due to pose vari-
ation. The result is further refined for better accuracy as
mentioned in Section 3.1.

4.2. Player of the Match Identification

We have conducted experiments on 11 soccer match
highlights taken from BBC and listed in Table 2. Our
method on an average takes half the time of the duration
of the video. Note however, that these timings are for only
sections that have already been manually edited by the BBC
staff. If the video were run on a routine full soccer match,

5
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we expect our running time to be a lower percentage of the
entire video.

Table 2. Time taken for computing key players from BBC MOTD
highlights for premier league 2007-08.

No. Soccer Match Duration Computation
(hh:mm) (hh:mm)

1 Barnsley vs Chelsea 00:02 00:01
2 BirminghamCity vs 00:12 00:04

Arsena
3 Tottenham vs Arsenal 00:21 00:07
4 Chelsea vs Arsenal 00:14 00:05
5 Chelsea vs 00:09 00:05

Middlesborough
6 Liverpool vs Arsena 00:12 00:05
7 Liverpool vs 00:15 00:06

Havant & Waterlooville
8 Liverpool vs 00:09 00:05

Middlesbrough
9 Liverpool vs 00:18 00:04

NewcaslteUnited
Total 01:52 00:43

The results of key player detection is presented in the
Figure 11. The key players of the match are identified for
all the matches.

4.3. Host Guest Detection

We conducted our experiment on the TV show Koffee
with Karan. Two different episodes of the show were com-
bined and fed as input. Our method identified the host in
4 minutes for a video of duration 1 hour 29 minutes. Our
method is faster than the method proposed by Javed et. al.
[5].

Table 3. Time taken for identifying host in a TV show Koffee With
Karan. Two episodes are combined into a single video and given
as input.

TV show Duration Computation
(hh:mm) (hh:mm)

Koffee With Karan 01:29 00:04

The result of our method for the TV show Koffee with
Karan is presented in Figure 12. Our method has success-
fully identified the host.

Figure 12. Host detection of TV show “Koffee with Karan”. Two
episodes of the show are combined and given as input. The first
person in the detected list (sorted by the weight) gives the host.

5. Conclusion

Detecting lead stars has numerous applications like iden-
tifying player of the match, detecting lead actor and actress
in motion pictures, guest host identification. Computational
time has always been a bottleneck for using this technique.
In our work, we have presented a faster method to solve this
problem with comparable accuracy. This makes our algo-
rithm usable in practice.
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Appendix: Algorithm
Algorithm for detecting lead stars is presented below. In

motion pictures, this indicates the lead actors. In sports,
this fetches the key players. In TV show, among episodes,
fetches host as the top most star.

Detection of lead actors

program LeadActorDetection (Video)

var
Highlights: Int[][];
Faces, FacesInInterval: List<Image>;
Interval, Shots, RandomFrames: int[];
LeadActorsClusterCenters: List<Image>;
LeadActors: List<Image>;

begin
Highlights := GetAudioHighLights(Video);
Faces := [];
i := 0
repeat
Interval := Highlights(i);
Shots := ComputeShot(Video, Interval);
RandomFrame := GetRandomNumber(Interval);
FacesInInterval := ExtractFace(Video,

RandomFrame, Shots);
Faces.add(FacesInInterval);
i := i + 1;
until i <= length(Highlights)
LeadActorsClsCenters := Cluster(Faces);
LeadActors := SelectTopClusters(

LeadActorsClsCenters, Faces);
end.
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