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Abstract—This paper presents DDIOSim, a cycle-accurate
microarchitecture simulator that simulates Data Direct I/O-
based network packet processing. Our open-source simulator
consists of a front-end trace generator that generates traces
of CPU instructions, memory accesses, and network I/O events
across multiple networking applications, and a cycle-accurate
backend simulator that processes these traces by simulating
DDIO operations along with the entire CPU and cache/memory
hierarchy. Our simulator can be used to explore various DDIO
design and configuration options, and its interactions with other
microarchitecture optimizations like cache hierarchy, hardware
prefetchers, and DRAM schedulers.

I. INTRODUCTION

Recent advancements in networking technology have led to

a rise in network link speeds to 400Gbps and beyond [1].

A faster network link demands faster packet processing at

the CPU. Traditionally, data from network I/O devices is

transferred to the main memory through direct memory ac-

cess (DMA) first, and the CPU later fetches the data from

DRAM to process. However, this method is inefficient for

high throughput network I/O devices (100s of Gbps) due to

high DRAM latency and limited DRAM bandwidth. Intel’s

Data Direct IO (DDIO) [2] is a recent technology that directly

transfers I/O data from the network interface card (NIC) into

the last-level cache (LLC), resulting in lower access latency

and higher throughput for network packet processing.

In order to explore the hardware-level design options for

technologies like DDIO, the research community needs a

microarchitecture simulator that can simulate the network

packet processing done by the OS kernel, along with faithfully
simulating the behavior of hardware, including DDIO-enabled

NICs, CPU, caches, and DRAMs. While there has been a

proliferation of academic and commercial simulators [3]–[6],

there is no open-source simulator that can simulate the end-

to-end packet processing of DDIO, across the hardware and

software layers.

To help fill this void, we present DDIOSim, a cycle-accurate

simulator that simulates DDIO-enabled packet I/O across

both the NIC hardware and OS network stack, along with

a faithful simulation of DDIO interaction with the processor

and memory hierarchy. DDIOSim is built over two existing

simulators, QSim [7] and ChampSim [4]. QSim is a tracing

wrapper around the QEMU virtual machine that can be used to

generate CPU and memory traces, while ChampSim is a mi-

croarchitecture simulator that simulates user-level instruction

traces generated by binary instrumentation tools like Intel Pin

[8]. We extend QSim to work as a front-end trace generator, to

generate traces of CPU, memory, and I/O activity for user-level

and kernel-level packet processing performed by applications

running in the QEMU virtual machine. We then process these

traces in the backend, which is an extension of ChampSim

that is modified to simulate DDIO-related processing within

the processor and cache hierarchy.

Our design choices are informed by our desire to use

DDIOSim to explore various DDIO-related microarchitecture

design options across a variety of real-life applications. Be-

cause DDIOSim is built over a trace-based simulator like

ChampSim, we have the benefit of high-speed simulations,

along with the flexibility of adding state-of-the-art microar-

chitecture optimizations in the form of cache management

policies, data prefetchers, DRAM schedulers and so on. We

can also generate traces for, and simulate a variety of appli-

cations by running them within the QEMU virtual machine

of QSim. Experiments with DDIOSim can help us revisit

microarchitecture decisions and memory hierarchy configura-

tions for various applications, while keeping DDIO in mind.

We believe that DDIOSim is a useful tool for computer

architecture and networking researchers that want to include

DDIO-based microarchitecture optimizations in their research.

II. BACKGROUND & RELATED WORK

A. Intel Data Direct I/O (DDIO)

Intel DDIO, introduced with Intel Xeon processor E5 family

[2], makes the last level cache (LLC) the primary destination

and source of network I/O data rather than main memory,

helping to deliver increased bandwidth, lower latency, and

reduced power consumption. Traditionally, on the arrival of

an incoming packet at the NIC, it writes the data to main

memory (DRAM) using direct memory access (DMA). When

the packet is scheduled for processing, it is fetched into the

cache hierarchy from DRAM. With Intel DDIO, the NIC can

directly write data to LLC, avoiding multiple accesses to main

memory, reducing latency and memory bandwidth demand.

DDIO is limited to 10% of LLC. The LLC space used by

DDIO cannot be further partitioned using Intel CAT [9] and

is shared among the multiple co-running workloads. DDIO

has two operating modes for an incoming I/O write operation.

In Write Update mode (destination address is an LLC hit),

the cache line is overwritten with new data whereas in Write

Allocate (destination address is an LLC miss) mode, a cache

line is allocated in LLC and no trips to memory are needed.
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Fig. 1: Overview of DDIOSim

The default configuration for Intel DDIO uses two LLC ways.

However using the Model Specific Register (MSR) - “IIO LLC

WAYS”, more LLC ways can be assigned to DDIO [10].

B. QSim and ChampSim

QSim [7] is a thread-safe multicore emulation library based

on the QEMU emulator [11], which provides instruction-level

control of the emulated environment. It boots a modified Linux

kernel inside QEMU emulator and provides callbacks for

extracting detailed information about the executing instruction

stream from QEMU. It is implemented as a library with a

C++ API, and manages a collection of instances of a modified

QEMU CPU emulator. Each instance contains its own set

of global variables, including the translation cache and CPU

state, but shares a common host process, guest RAM state,

and QSim callback pointers. The API allows control of the

QEMU CPU emulator at an instruction level using callbacks

that are invoked when an event of interest occurs in QEMU.

QSim modifies QEMU helper functions to invoke callbacks

registered by the user, which can be used to log instructions,

memory accesses, interrupts etc. The instructions callbacks

provide opcode, CPU mode, decoded instruction and register

values. The memory callbacks provide access type(read/write),

guest virtual, and guest physical / host virtual addresses. The

key advantage of using QSim over other front-end emulators

such as Intel PIN tool [8] is that it executes a Linux kernel and

allows tracing of OS kernel code execution along with user

code execution, which is essential to capture network stack

processing that is critical in understanding DDIO performance.

ChampSim [4] is a recent trace-based microarchitecture

simulator that has been used extensively for microarchitecture

research and ISCA championships [12], [13]. It models a high-

performance out-of-order (OoO) core and memory hierarchy,

and enables evaluating microarchitectural ideas for improving

problems of microarchitectures. It is written in C++ and

uses an instruction trace of an application to simulate the

microarchitecture level processing. At the end of simulation,

ChampSim provides a number of metrics and statistics to

evaluate the microarchitectural ideas and performance such

as IPC (Instructions per Cycle), cache hits, and so on. The

trace of application execution can be automatically obtained

from the Intel PIN tool, or can be taken from other front-end

emulators after suitable conversion into the ChampSim format.

C. Related work
Recent research has studied the performance benefits of

Intel DDIO using real hardware, and suggested approaches
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Fig. 2: DDIOSim Front-End Trace Generator

for improving the network performance. Farshin et al. [10]

propose tuning of DDIO LLC ways for improving throughput,

while Tootoonchian et al. [14] propose tuning the number of

RX descriptors. Yifan et al. [15] propose a mechanism to adap-

tively allocate more/less LLC ways to DDIO depending on the

performance status of workloads. All of these papers focus on

tuning the configuration parameters of existing DDIO-enabled

hardware but do not provide ways to explore the hardware

design of DDIO itself. Alian et al. [16] propose to change the

DDIO mechanism by writing the packets up to L2C for some

class of applications. However the simulator used has not been

made public.

III. DDIOSIM DESIGN

We present DDIOSim, a microarchitecture simulator that

simulates the behavior of DDIO for different workloads, allow-

ing researchers to explore design options. The simulator has

two main components, as shown in Figure 1: a front-end trace

generator based on QSim that generates instruction-level traces

for network applications, and a backend microarchitecture

simulator that runs cycle-accurate hardware simulations of

DDIO on the traces generated by the front-end.

A. Front-End: Trace Generator

The front-end trace generator, shown in Figure 2, is based

on the QSim trace generator. We use QSim primarily because

it allows tracing of OS kernel instructions pertaining to packet

processing (in addition to user application instructions), and

allows running multiple different types of networking appli-

cations inside the Linux OS of the QEMU emulator.

We extend the functionality of the existing QSim simulator

to trace the network events in the QEMU virtual NIC, in

addition to the CPU and memory events traced already. We

modified the QEMU virtual NIC implementation to invoke a

QSim callback when a received packet is stored in DRAM,

and when a packet to be sent is being read from DRAM.

The NIC callbacks provide information about the packet size,

packet data, and the address where the packet will be stored

in DRAM, which is essential to simulate DDIO behavior.

The trace-generating application, written in C++ using the

QSim APIs, initializes Qsim and its QEMU emulator and sets

up the different callbacks. We run one endpoint of a client-

server network application whose network I/O we wish to

trace inside the QEMU emulator, with its corresponding peer

running outside the emulator in the host. When the tracing
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Fig. 3: DDIO implementation in ChampSim

mechanism is enabled, the different callbacks triggered by

the network application in QSim are received by the trace-

generating application, which then writes them to a trace file.

B. Backend: Microarchitecture Simulator

Our backend simulator is an extension of the open-source

ChampSim simulator. ChampSim is a trace-based simulator

that ingests an input trace containing a lot of different infor-

mation about the executing instruction, such as branch/non-

branch, source/destination registers, and memory references.

Therefore, we write an intermediate trace parser in C++ to

first convert the trace file generated by QSim into the format

acceptable to ChampSim. This intermediate parser parses the

QSim trace, and classifies each entry into branch/non-branch

instruction, memory access, or network packet read/write. For

branch instructions, it determines if the branch is taken, which

is useful for the branch predictor of ChampSim. It extracts the

registers and memory addresses and then generates the com-

plete memory reference addresses in case memory reference

addresses have to be evaluated from register values. Network

packet read/write events generated by our NIC callback are

translated into equivalent ChampSim instructions by extracting

the relevant data such as the physical address of the location

where NIC does the DMA read/write, size of data, etc. A spe-

cial instruction id differentiates between CPU instructions and

network DMA instructions in the ChampSim simulation. As

ChampSim simulates memory accesses on virtual addresses,

our intermediate parser translates the physical address of

memory accesses into virtual addresses using the information

present in memory callbacks. The final trace in ChampSim-

compatible format is then given as input to ChampSim.

We now modify the ChampSim simulator to simulate NIC

DMA and DDIO behavior, as shown in Figure 3, while ensur-

ing backward compatibility with the original non-networking

simulator features. A virtual NIC implementation was added

for simulating the NIC DMA process. When an instruction is

read from the trace, the network DMA instructions (identified

by a special id) are passed on to the virtual NIC instead of go-

ing through the CPU pipeline. The virtual NIC parses the NIC

DMA instructions of the trace and then DMA’s the network

packets to LLC or to DRAM, depending on whether DDIO is

enabled or disabled. It extracts the packet size and generates

an equivalent number of memory references to the read/write

queue of LLC/DRAM. The network packet identifiers such as

packet number and DMA address are maintained separately to

identify accesses to network packets as the packets are being

processed by the CPU.

The cache implementation in ChampSim is modified to

implement the DDIO mechanism. We reserve two default LLC

ways for storing incoming network packets and identifying

the network packets in the read/writeback queue. On arrival

of packets from virtual NIC when DDIO is enabled, we do

“Write Update” or “Write Allocate” [2] operation for storing

the packet data in LLC without going to DRAM, and invalidate

the address in L1D/L2 caches if it exists. Similar changes were

done in the DRAM implementation to identify network packet

read/write requests. Considerable changes were also done in

the handling of miss status holding registers (MSHR) to handle

scenarios where concurrent requests to the same addresses

arrive at MSHR, one from CPU and another NIC DMA request

from virtual NIC. In the read/write mechanism for both cache

and MSHR, the memory accesses from CPU and NIC had to

be handled differently as both have different semantics. This

is because, for memory access originating from CPU, data has

to be returned back to CPU, whereas for an NIC DMA write

update/allocate, no such action is required.

The processing of read/write memory references across the

memory hierarchy (cache and DRAM) was instrumented to

identify memory accesses to network packets when they are

stored and then later moved across the memory hierarchy

during the CPU packet processing. Identifying a memory

access for network packet data was essential to measure the

performance parameters of DDIO, e.g., the average memory

access latency, and the number of hits/misses for memory

accesses to network data. The network throughput for the

simulated networking application was calculated based on the

number of network packets processed in the simulation and

the time taken for completion of the simulation.

The design of our simulator meets requirements that are

not met by existing simulators. For DDIO-specific microarchi-

tecture optimizations like designing a better cache hierarchy

or prefetchers, we need simulators that can provide cycle

accurate simulations of DDIO, processor, and the memory

system. Further, all the recent state-of-the-art ideas on caching,

prefetching, and cache hierarchy have been proposed using the

ChampSim simulator as the platform, and all such source code

is publicly available. Therefore, building upon ChampSim

allows a fair comparison with prior work for all kinds of

workloads, including network intensive workloads through

DDIOSim. In terms of speed, our preliminary experiments

show that DDIOSim is faster (in terms of simulation speed)

than other execution-driven simulators like gem5. For ex-

ample, gem5 simulates 0.1 MIPS (millions of instructions

per second) whereas DDIOSim simulates 1 MIPS. Another

reason for using a trace-based but more accurate simulator

for microarchitecture study is the availability of industry-

generated server traces [17], [18], which cannot be run on

gem5 as gem5 needs the source code/binaries.
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Fig. 4: Speedup with DDIO over no DDIO.

IV. EVALUATION

A. Trace Generation

We generated traces for four different types of networking

workloads running inside QSim, as described below. These

workloads have different network I/O characteristics and were

chosen to study the performance gains of DDIO across differ-

ent classes of applications.

Simple Client Server (CS): A simple TCP server running in

the host OS sends data to a TCP client running inside QSim.

Snort: Snort IDS [19] runs in monitoring mode with the above

simple client-server application. Snort runs in the background,

monitoring the network packets received by the client.

Interactive Client Server (CS): The server running in the host

OS waits for clients response before sending next set of data,

resulting in a lower rate of packets than with the simple CS.

Redis: Redis server [20] runs inside QSim, receiving bulk GET

/ SET requests from an application in the host OS.

Metric
Simple
CS

Snort
Inter.
CS

Redis

NW Tput (Mbps) 27022 18315 761 132
LLC MPKI 15.4 8.24 0.72 2.55
IPC 0.87 1.06 0.94 0.98
Avg DRAM BW (MB/s) 2325 1545 91 363
Avg mem access time (cy-
cles) for all / only loads

60.2 /
26.6

38.9 /
19.1

5.5 /
5.7

10.3
/ 8.7

TABLE I: Characteristics of simulated network applications

Core Out-of-order, bimodal branch predictor, 4GHz
with 6 issue width, 4 retire width, 352 entry ROB

TLBs 64-entry ITLB/DTLB, 1536-entry STLB, LRU
L1I cache 32KB 8-way (4 cycles), 8 MSHRs, LRU
L1D cache 48KB 12-way (5 cycles), 16 MSHRs, LRU
L2 cache 512KB 8-way (10 cycles), 32 MSHRs
LLC 2MB 16-way (20 cycles), 64 MSHRs
DRAM 4GB, 2666.6 MT/s, 1 channel
DRAM
Controller

1 controller, 64 read/write queues, FR-FCFS

TABLE II: ChampSim simulation parameters

Table I shows the microarchitecture-level characteristics of

these applications when simulated without Intel DDIO. The

first two workloads can be termed as network I/O intensive

applications as they have a high network throughput, while the

next two workloads are less I/O intensive with a lower network

throughput. These traces, which are representative of different

types of network applications, were run through DDIOSim,

with the simulation parameters shown in Table II.

(

+((((

,((((

-((((

.((((

/((((

3	4�����3 3���
 ��
����
	5���3 ���	 !�

"

��
#�

9

��
�8

9�
�


�<%
'�

 =

!�
"��#�����"��#���� 

����;�>> ����;�! 7	89���
9��'�

��

Fig. 5: Network throughput with and without DDIO.

The correctness of implementation of network packet DMA

process and DDIO behavior in ChampSim was verified using

different statistics generated by ChampSim. The number of

packets being processed while generating the trace matched

the number of packets being processed while simulating that

trace in ChampSim. Similarly, the number of memory accesses

to network packets during packet processing approximately

matched the number of accesses performed during Linux

network stack processing. We also match memory dependen-

cies, register dependencies and timing information between

instructions. The incoming network packets are stored in two

LLC ways identified for DDIO. The maximum throughput

achieved (46 Gbps with DDIO) is comparable to throughput

achieved on a multicore server system running Linux [21].

B. Results: Performance Gains with DDIO
We now describe the performance gains observed for the

various network applications when DDIO is enabled, as com-

pared to when DDIO is disabled during simulation. The broad

conclusions match those reported by DDIO in prior work.

These results showcase the usefulness of our simulator in

faithfully simulating DDIO mechanisms.

Figure 4 shows the IPC (normalized to baseline case without

DDIO) of different network I/O workloads with DDIO. There

is significant IPC improvement of up to 70% for network I/O

intensive workloads (Simple CS and Snort). However, this

increase is not significant in the less network I/O intensive

workloads (Interactive CS and Redis) as expected. A similar

trend can be seen with network throughput in Figure 5, where

the more network I/O intensive applications see significant

throughput gains with DDIO enabled, as the performance gains

accruing from CPU accessing network data faster from LLC

with DDIO matter more for network I/O intensive applications

that perform more network packet accesses per unit time.

Figure 6 shows the LLC misses per kilo instruction (MPKI)

of different network I/O workloads with and without DDIO,

and we see that DDIO reduces LLC MPKI significantly for

network I/O intensive workloads. Similar improvements have

been observed for DRAM memory bandwidth utilization.

These results are expected because DDIO stores the incoming

network packets in LLC instead of DRAM, which ensures that

the memory accesses for network packet data can be serviced

from LLC, leading to a reduction in LLC MPKI and DRAM

memory bandwidth utilization.

Figure 7 shows the system-wide average memory access

time (AMAT) for memory accesses (including accesses at all
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Fig. 6: LLC MPKI with and without DDIO.

levels of memory hierarchy) to network I/O data with and

without DDIO enabled. Servicing the network packet data

for CPU processing from LLC instead of DRAM leads to

a reduction in AMAT as data can be fetched from LLC with

lesser latency. We also see that DDIO improves the AMAT

for load requests significantly from 61 cycles to 13 cycles for

network-intensive applications.

We also ran simulations with increasing LLC cache sizes,

and we observed that increasing the size of LLC for the

network I/O intensive workloads leads to more performance

gains with DDIO. We observed improvements of around 4.3%

in throughput/IPC and 33% in AMAT for the Simple CS

trace for an LLC size of 16 MB over an LLC size of 2

MB. Improvement in performance with higher LLC size occur

because there is more space for DDIO to store incoming

packets, and more of the application’s working set can fit into

the LLC. However, we observe that there is no significant

further improvement for LLC sizes beyond 16MB, as the

application’s working set is able to fit within 16MB.

In summary, our simulation results from DDIOSim show

that DDIO improves various performance metrics like IPC,

application throughput, AMAT, and cache hit rates, especially

for network I/O intensive applications. These results match

what is expected of DDIO, as seen from prior published works.

These results showcase the correctness of the modeling of

DDIO behavior in DDIOSim, and make DDIOSim a useful

tool to experiment with various design and configuration

options for DDIO in a microarchitecture simulator.

V. CONCLUSION AND FUTURE WORK

DDIO plays an important role in improving the performance

of networking applications. While prior work has characterized

the various performance gains of DDIO, there are no open-

source simulators available today to experiment with various

DDIO design options or understand its interactions with other

microarchitecture optimizations. Our work seeks to address

this lacuna by developing DDIOSim, a microarchitecture sim-

ulator that builds upon QSim and ChampSim to provide a

cycle-accurate simulation of DDIO and its interactions with

the CPU and cache hierarchy.

Our results show that the simulator helps to characterize the

performance gains of DDIO for different types of applications.

In the future, we plan to use our simulator to study and test

new microarchitecture ideas for further improving the DDIO

performance gains. For example, we can study the impact

of running multiple CPU and memory-intensive applications

along with networking applications, improving existing DDIO
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Fig. 7: Average memory access time with and without DDIO.

mechanisms by writing packets to various levels of cache,

interactions between DDIO and hardware prefetchers, and

so on. We plan to open-source the simulator code upon

publication, in order to benefit the wider research community.
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