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Abstract—Efforts to improve multicore scalability of network
functions (NFs) have traditionally focused on making network
stacks scalable via partitioning TCP/IP data structures into per-
core slices and ensuring flow-to-core affinity, leading to elimina-
tion of locking in the network stack while processing an incoming
packet. But the above techniques fail to eliminate locking in NFs
which store state at the granularity of an application-layer key
that does not map to a TCP/IP flow, e.g., NFs in the 5G packet
core that store state at the granularity of a mobile subscriber/user,
where requests from a user could arrive over multiple flows, or
requests from multiple users can arrive on a single flow. Prior
work does not allow steering all traffic of a particular user to
the same core for such NFs. This paper presents AppSteer, a
framework that enables application-aware steering of incoming
requests to cores for NFs running on the Linux Kkernel, in order
to localize the requests of a given application-layer entity (e.g.,
mobile user) to a single core. NFs running over AppSteer can
then partition their state into per-core slices and access it in
a lockfree manner, leading to better multicore scalability. We
evaluate AppSteer by building lockfree versions of production-
grade 5G core NFs running on top of AppSteer and show that
they have 15-18% higher throughput at 16 cores when compared
to their locking-based counterparts.

Index Terms—packet steering, multicore scalability

I. INTRODUCTION

With advances in chip making technology allowing for a
large number of processors to be placed on a single chip, there
is an increasing focus on designing multicore scalable soft-
ware (i.e., software whose performance scales with increasing
cores), to take advantage of the parallelism available in modern
CPUs [1]-[6]. This paper considers the multicore scalability
of networked applications, also known as network functions
(NFs), which are applications that receive network traffic over
well-defined external interfaces and process this traffic as per
the specified functional behavior of the NF. Most software NFs
are built as multi-threaded packet processing applications that
run over the multiple cores available in modern commodity
servers, either baremetal or inside VMs/containers in a cloud.
To improve performance, NFs are scaled horizontally by
adding more replicas, and vertically by adding more cores
to each replica. One important factor that limits the multicore
scalability of such NFs is contention for locks that protect
access to shared data structures, both within the userspace
processing of the NF as well as inside the network stack.

Prior work on improving multicore scalability of NFs [7]—
[14] has mainly considered the problem of reducing lock
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contention inside the network stack. Modern computer systems
distribute the interrupt load of incoming traffic across multiple
cores based on the hash of the connection 4-tuple, e.g., via
mechanisms like Receive Side Scaling (RSS [15]). Modern
multicore-scalable network stacks (often running on kernel
bypass packet I/O mechanisms like DPDK [16]) then ensure
that the network stack and userspace application processing
of a transport layer connection is localized to the same core
on which the traffic initially lands, by partitioning various
TCP/IP data structures, e.g., accept queues, into per-core
slices. This localization reduces the contention for locks on
shared network stack data structures across cores, improves
CPU cache locality, leading to better multicore scalability.

However, the above techniques do not eliminate locking
needed to safely access state shared across the multiple
application threads in userspace. The above techniques may
reduce lock contention at the NF userspace only if the NF
maintains state at the granularity of TCP/IP flows (eg. NATs,
load balancers). However, many stateful NFs may store state
at the granularity of an application level entity that does not
map to TCP/IP flows, e.g., at the granularity of application
layer keys in a key-value store. In such NFs, requests for a
given application layer entity/key could land on the NF over
multiple transport layer connections, or requests for multi-
ple entities/keys could arrive over a single (persistent, long
running) transport layer connection. Therefore, localizing the
transport layer connection to a single core will not eliminate
locking needed to access state at the NF.

An important set of NFs that do not maintain state at the
granularity of TCP/IP flows are the NFs in the mobile packet
core of a telecom network. The packet core consists of control
plane components that implement various signaling procedures
(e.g., registering a user to the network, setting up data transfer
sessions with suitable QoS) and data plane components that
forward user traffic between the mobile subscriber (user) and
other external networks. While the various components in
a mobile network were traditionally built as custom packet-
processing hardware, recent generations are seeing a greater
push towards softwarization. The 5G packet core [17] is
composed of several software NFs running on commodity
hardware, in accordance with the principle of Network Func-
tion Virtualization (NFV).

The NFs in the mobile packet core maintain state at the
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Fig. 1: Lock accesses and lock contentions in SMF

granularity of mobile subscribers. The NFs are typically built
as multi-threaded software, and all NF threads access shared
data structures containing mobile user state using locks to
ensure serialization. At high number of CPU cores, NF threads
may often need to wait to acquire locks due to high lock
contention, leading to lower NF throughput. To assess the
extent of this problem, we instrument one of the NFs in an
optimized production-grade 5G core (SMF, see Section V) to
measure the contention on its most contended application lock.
Figure 1 shows the number of lock acquisitions in the NF
during an experiment, and the number of these lock accesses
where the application thread had to wait due to contention. We
see from the figure that about half of the lock acquisitions saw
contention when the NF is running at saturation throughput on
24 cores, though this fraction is much lower at 7% at 4 cores.

In this paper, we investigate the problem of improving
multicore scalability of stateful NFs running over the linux
kernel, which maintain state at a granularity that does not
map to TCP/IP flows, e.g., NFs in the control plane of the
5G packet core, because previous work fails to address the
issue of multicore scalability for such NFs. We begin with
the observation that if the network stack can partition traffic
to cores based on application keys (e.g., mobile subscriber
identifiers) instead of the connection 4-tuple, we can ensure
affinity of application keys to cores, i.e., we can have all
traffic of a particular mobile subscriber land on the same core
always. With such application-aware packet steering in place,
NF threads can maintain state in per-core slices and access
it without locking, leading to a lockfree, multicore-scalable
design of the NF.

Note that there are other ways to perform application-
aware steering without requiring network stack support. For
example, we can steer requests of a specific key to a particular
application thread in user space using a request dispatcher
within the application. However, in such a design, the dis-
patcher thread may itself become the bottleneck, limiting
the scalability of the NF. Therefore, this paper investigates
the approach of application-aware packet steering performed
within the network stack itself, which is a cleaner and more
scalable approach. We also focus on compute-intensive NFs
like those found in the 5G core, which perform significant
computation on each request, and hence use locking exten-
sively to access application state. The problem of eliminating
application-layer locking is much less interesting in the case
of network I/O-intensive applications like simple key-value

stores. Finally, we note that there are many ways to enable
lock-free operations within the application itself, including
lock-free data structures. In this work, we limit our scope to
achieving lock-free operation via application-aware steering of
requests and sharding of application state across cores.

One of the main challenges in performing application-aware
steering for NFs like the 5G core NFs is that the application-
layer identifiers are embedded deep within the payload and
not within standard TCP/IP headers. Tracking these identifiers
is non-trivial because the size of the identifier and its position
within the packet both vary based on the type of the message.
Further, with persistent connections, requests from different
users can be bundled together over the same connection,
and sometimes even within the same network packet. Given
these complications, the standard network stack mechanisms
used to steer TCP connections to cores based on hash of the
TCP/IP header fields do not suffice to perform application-
aware steering in our use case. The key idea of AppSteer
is to expose an API to let the sender embed application
identifier into various transport layer header fields, e.g., TCP
source port numbers, SCTP stream identifiers. AppSteer uses
various techniques like eBPF (extended Berkeley Packet Filter)
programs and other kernel-level packet steering mechanisms
to steer traffic to CPU cores using these application identifiers,
ensuring that the traffic of a given application identifier always
reaches the same core, across all types of NFs.

With such a network stack capable of application-aware
packet steering in place, we modify two important control
plane NFs (AMF and SMF) of a production-grade 5G core
implementation to work over AppSteer, by partitioning the
internal application state into per-core slices and accessing
it without any userspace locking. We find that our modified
lockfree NFs have 15-18% higher saturation throughput as
compared to their locking-based counterparts when running on
16 cores. These performance gains, accruing from significantly
reduced contention for application locks—a measurement
similar to the one shown in Figure 1 results in zero lock
contentions in our prototype—are especially important for
the performance-sensitive usecases of 5G that require high
control plane throughput and low latency. Achieving higher
throughput for the same amount of CPU resources will also
translate to cost savings for mobile operators.

Our work makes the following contributions: (i) App-
Steer enables application-aware packet steering to cores for
multithreaded NFs, thereby enabling lockfree NF design for
improved multicore scalability. While the idea of application-
aware packet steering itself is not new, AppSteer’s treatment
of the idea is broader in scope than what has been considered
in prior work [18], [19]. (ii) We provide a complete design and
working implementation of AppSteer over the Linux network
stack, considering all the complexities of packet processing in
the Linux stack. (iii) We demonstrate the benefits of AppSteer
by building lockfree versions of 5G packet core NFs running
on top of AppSteer, and comparing them with their optimized
locking versions.
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II. BACKGROUND AND RELATED WORK
A. Linux network stack

Overview of packet flow. Figure 2 shows the steps involved in
the reception of a packet in the Linux network stack. @ Kernel
network stack dequeues the packet descriptor from the RX
queue of the network device, reads the packet from the DMA
buffer, wraps the packet in the sk_buff structure (representation
of a packet in the kernel), @ and before sending sk_buff to the
upper layers for protocol processing, the sk_buff is handed off
to an eBPF program (if installed by user application) running
at the XDP hook. @ For data packets received on established
connections, the sk_buff is placed into some intermediate
queues before finally reaching the socket receive queue to
handle out-of-order packets. @ Once an sk_buff is added
to the receive queue of the destination socket after protocol
processing, any application thread waiting on a read event on
the socket (e.g., using the read or epoll_wait system
calls) is woken up. When the application thread reads from the
socket, the packet is dequeued from the socket receive queue
and copied into the userspace buffer. Note that all operations
on a socket, including the bottom half enqueuing a packet into
the socket queue, or the application reading/sending a packet,
are protected by a single socket lock.

Listen sockets and SO_REUSEPORT. Besides data packets
arriving on established sockets, new connection requests (SYN
packets) can also arrive for listen sockets. To enable multiple
application threads to accept connections on the same server
port without locking the shared listen socket, Linux supports
the SO_REUSEPORT socket option [20]. This option allows
us to have multiple listen sockets listening for new connections
on the same transport layer port, and all sockets listening on
the same port belong to a reuseport group. During the listen
socket lookup procedure on receipt of a SYN packet, if the
matched socket belongs to a reuseport group, then the kernel
selects a socket out of that reuseport group randomly, ensuring
that new connections are distributed as uniformly as possible
between all listen sockets belonging to that reuseport group.

B. 5G Mobile Packet core

The 5G packet core consists of several components that
implement control plane and data plane functionalities for
mobile subscribers. The Access and Mobility Function (AMF)
is the entry point to all other control plane network functions
in the packet core. The base station maintains a persistent

SCTP connection with the AMF and exchanges messages over
this persistent connection. A user that wishes to connect to a
mobile network for the first time sends an initial registration
request to the AMF via the RAN. The AMF communicates
with other control plane NFs in order to authenticate the user,
setup security keys and complete the registration procedure.
All the NFs in the control plane communicate with each
other over REST APIs, implemented over HTTP2 connections.
After registration, the user establishes one or more sessions
to transfer voice or data packets through the packet core.
These session related messages are first received by the
AMEF, which then passes them on to the Session Management
Function (SMF). Once the sessions are established, the UPF
in the dataplane forwards user traffic according to the QoS
parameters requested by the user.

Our inspection of the codebase of AMF and SMF from a
production-grade 5G packet core implementation [21] shows
that they are designed as multi-threaded applications listening
for requests from a single server listen socket over a persistent
connection, and/or from multiple listen sockets over short
connections. An NF running on a N-core system has N threads,
each pinned to a core, and each listening on a separate epoll
instance for network events. AMF has an SCTP server socket
and listens for SCTP association requests from RANSs that wish
to connect to it. Once connected, the RAN and AMF maintain
a persistent SCTP connection for the duration of the associa-
tion, and all messages coming from different UEs belonging
to the RAN are received over the same SCTP connection at
the AMF. The communication between AMF and SMF (and
other control plane NFs) can happen over a single long running
persistent TCP connection (where all request/responses are
exchanged over this single TCP connection), or it can happen
over multiple TCP connections (where each request/response
is exchanged over a separate TCP connection). Both AMF and
SMF maintain some context for every mobile subscriber (user)
that they are handling, and read/write to this state during the
processing of various signaling messages.

C. Related Work

Optimizations to the kernel network stacks. Prior work
suggests various optimizations to make the kernel network
stack multicore scalable. Affinity-Accept [9] suggests having
per-core listen sockets in the accept() system call, instead of all
application threads accepting connections from a single listen
socket. Megapipe [13] and Fastsocket [8] propose splitting var-
ious kernel data structures like the socket hash table into per-
core slices. Such solutions benefit the case of short connections
where there are connections to be accepted at scale (Affinity-
Accept), and high number of entries in kernel data structures
(Megapipe and Fastsocket). These solutions are orthogonal to
our work as they cannot be used to perform application-aware
packet steering inside the kernel, and hence cannot eliminate
userspace locking.

Kernel bypass network stack optimizations. Many systems
bypass the kernel to achieve high performance networking
by using SR-IOV [22], or libraries such as DPDK [16] or



netmap [23]. Examples include mTCP [7], IX [11], Stackmap
[14], and TAS [10]. These solutions rely on RSS [15] to split
traffic to cores, and then use per-core TCP data structures
to avoid lock contention. RSS uses the hash of the connec-
tion 4-tuple to steer incoming packets to various kernel and
application level threads for network stack and application
processing. Such solutions cannot steer packets to cores based
on application-layer identifiers. Such solutions will not also
work in the case of persistent connections, as all packets of a
flow (possibly belonging to different users) will consistently
be steered to a single CPU core. Also, these solutions require
bypassing the kernel which may be hard to do in the cloud.
Kernel bypass request scheduling. ZygOS [12], minOS [24]
and Shinjuku [25] schedule incoming requests to cores in order
to improve tail latencies, by scheduling requests to idle cores.
Shenango [26] combines scheduling with dynamic scaling
to provide high CPU utilization. Such solutions schedule
requests to run on various cores based on the workload the
application is subjected to, and not based on any application
layer identifiers. Limitations with kernel bypass network stack
optimizations discussed above also apply here.
Application-aware request steering. While prior work pro-
poses techniques to perform application-aware packet steering,
none of them works across all NFs like those found in the 5G
core, as described below. Mica [18] is a high-performance
key-value store that aims to do application-aware request
steering based on application keys, to avoid locks during
write operations. Mica embeds application identifier in the
source port of the request and uses that to steer requests at
the receiver. However, Mica only works in the case of UDP
and uses kernel bypass mechanisms and RSS to perform the
steering, hence suffering from similar drawbacks discussed
above. Syrup [19], a recent framework for application-defined
CPU scheduling and packet steering inside the linux kernel,
is the closest to our work. Syrup uses eBPF hooks at the
SO_REUSEPORT logic, and can be programmed easily to
perform application-aware packet steering. However, Syrup
redirects all packets of a flow to the same receive socket,
and hence cannot be used to perform application-aware packet
steering when requests of multiple users come over a long-
running transport layer connection.

ITI. DESIGN
A. Design Goals

Most previous work (§11-C) deals with multicore scalability
of simple NFs like NATs and load balancers that maintain
TCP flow state and rewrite packet headers using this state.
However, there are many NFs, like those in the 5G packet core,
that do not fit this mold, for the following reasons. (i) They
are transport layer endpoints (TCP/SCTP), and not simply
packet-header rewriting NFs like NATs. This means that the
incoming request would have to go through transport layer
protocol parsing and processing before being handed to the
NF. (ii) They maintain state at a granularity that is application-
specific (e.g., mobile subscriber), and not at the granularity
of TCP flows. (iii) There is no one-to-one mapping between
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Fig. 3: Head of Line (HOL) blocking
application-layer entities and transport layer connections. That
is, requests of a given application-layer entity can arrive
over multiple transport layer connections. Conversely, one
transport layer connection can see traffic pertaining to different
application-layer entities. The primary goal of AppSteer is
to redesign the network stack to enable lockfree operation
of such NFs via application-aware packet steering, i.e., by
redirecting traffic of a particular application-layer entity to the
same core always. A secondary goal is to provide an API for
enabling application-aware steering to NFs running over the
Linux kernel, so that the solution can be widely used across
a variety of NFs.

B. Design Challenges and Key Ideas

Embedding application-layer identifiers in packet headers.
The goal of AppSteer is to redirect every application-layer re-
quest to the same application thread (or core, assuming threads
are pinned to cores) always, so that state can be maintained in
per-core slices and accessed without locking. Performing this
application-aware steering requires some agreement between
the sender and receiver. Senders embed application-layer iden-
tifiers (app id) to outgoing packets via the API exposed by
AppSteer. The receiver installs rules inside the kernel, mapping
the complete app id space among different NF threads (each
having a unique id, which we will refer to thread id from now
onwards). Embedding the app id in the transport layer protocol
headers lets us extract the app id from each incoming request
at the receiver without parsing complex application data.

Head of line (HOL) blocking and per-thread queues.
In the context of application aware request steering, when
multiple application threads read data from the head of a
socket queue, but specific threads can only process specific
requests for which they store state, there will be head of
line blocking as shown in Figure 3. For example, suppose
thread 1 performs a recv system call on a socket, but the
request at the head of the queue must be steered to another
thread 2 that is currently busy and cannot receive. Thread
1 is blocked from making progress in this case. AppSteer
overcomes this challenge by introducing per-thread queues,
enabling each NF thread to read incoming requests from its
own exclusive queue, thereby removing any HOL blocking.
Note the analogous treatment of established sockets and listen
sockets in our solution. In the case of requests arriving over
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a single long running persistent transport layer connection on
an established socket, AppSteer provisions per-thread socket
receive queues via careful changes to the Linux kernel, and
redirects requests of a thread to its corresponding queue. In
the case of short connections, where each request arrives over
a new connection, we provision per-thread listen sockets (and
in turn, per-thread accept queues) listening on the same port
via SO_REUSEPORT, and redirect new connection requests
to the suitable listen socket/accept queue.

Redirecting requests to queues using eBPF. We have so far
described two key ideas of our solution: we embed app ids in
the packet headers of incoming traffic, and we provision per-
thread queues so that each thread can receive traffic destined
to it in its own queue without HOL blocking. Now, how do we
redirect traffic of a particular app id to its correct thread/queue?
Note that RSS, which splits kernel level packet processing of
incoming requests among different cores using the hash of
the TCP 5-tuple, is not enough, because RSS has no control
over which receive queue (or listen socket) incoming requests
are appended to. Instead, AppSteer uses an eBPF program
which parses the transport layer protocol header of incoming
requests to replace the app id corresponding to the request with
the correct queue or socket identifier, based on the mappings
installed by the receiver NF. We use this embedded queue id
(or socket id) to deliver requests to the intended receive queue
(or listen socket), and therefore to the intended NF thread, via
careful changes to the packet processing logic in Linux.

request

C. Design Overview

Figure 4 illustrates our design. @ Receiver NF has per-
thread receive queues (or listen sockets) wherein each thread
of the NF reads requests from an exclusive receive queue (or
listen socket). Receiver NF uses APIs provided by AppSteer
to install rules mapping each NF thread to a particular per-
thread receive queue or listen socket, and mapping the app id
to receive queue id (or listen socket id). @ The sender tags
outgoing traffic with an app id, again using an API provided by
AppSteer. @ AppSteer embeds this app id inside the transport
layer protocol header before sending it to the receiver.
AppSteer uses the provided mappings in an eBPF program

to switch app id with receive queue id (or listen socket id).

This queue id (embedded in the same part of transport
layer protocol header as app id) is used further up the network
stack at the receiver to deliver an incoming request to the
intended receive queue (or listen socket), and @ in turn to the
intended NF thread because of a one-to-one mapping between
NF threads and receive queues (or listen sockets).

AppSteer design described so far expects the receiver NF
to statically shard NF state among different NF threads. This
could lead to a case of load imbalance at the NF if a particular
partition of an NF thread receives disproportionately higher
load. This would leave other NF threads underutilised and a
single thread overloaded. To overcome this issue we present
the receiver NF with an exception map in which it could
install rules to redirect certain requests belonging to an app
id to a receive queue (or listen socket) different from the
one mentioned in the static rules installed before hand. The
receiver can monitor its load on the various threads and
populate the entries in this exception map at runtime.

D. Sender Design

AppSteer exposes a modified send() API to the sender NF
which allows it to tag each outgoing request with an app id. We
embed a hash of this app id inside the transport layer protocol
header associated with the outgoing request. In the case of
TCP, which is a byte oriented protocol, the kernel might
coalesce multiple requests under a single TCP header before
sending it out on the network. Because we need each outgoing
request to be sent out with its own TCP header, containing its
own hash of app id, AppSteer stops the kernel from trying
to coalesce multiple requests encapsulated by a single TCP
header at the sender via changes to the kernel sender logic at
several places. We also switch off segmentation offloads at the
sender for the same reason. Because we are primarily focusing
on compute-intensive NFs which do not have a network I/O
bottleneck, these changes are not expected to negatively impact
NF performance. Note that we do not need to stop coalescing
of requests in the case of SCTP, which is a message oriented
protocol, because even if multiple requests are coalesced, each
request gets its own SCTP header. This enables independent
steering of even coalesced requests.

E. TCP Receiver Design

The TCP receiver processing in AppSteer proceeds as
follows. For receivers acting as servers for long-running TCP
connections, we provision per-thread receive queues in the
receive socket of established connections. For receivers acting
as servers of short connections, we provision per-thread accept
queues and listen sockets via SO_REUSEPORT. Each of
these per-thread receive/accept queues is assigned a unique
identifier. Every packet received from an AppSteer-compliant
sender will contain the app id in the transport layer headers.
AppSteer allows the receiver NF to provide mappings to map
the app id space to the per-thread queue identifiers for the
TCP sockets at the receiver. This mapping is used in an eBPF
program at the XDP hook (for long running connections) or the
listen socket lookup module (for short connections), to switch



the app id on incoming requests with the queue id. This queue
id is used by the kernel further up the stack when adding an
sk_buff to a per-thread receive queue. The recv() system call
is changed to read requests from the head of the per-thread
receive queue mapped to the NF thread that is making the
system call, in order to avoid HOL blocking. Considering that
most NFs make use of event driven programming, AppSteer
modifies the epoll subsytem to be aware of our design. The
epoll_wait() system call is programmed to return an EPOLLIN
event only if the per-thread receive queue mapped to the NF
thread making the epoll_wait() call has an outstanding request.

Much like at the sender, AppSteer intervenes at all of the
places in the receive datapath where an sk_buff is being added
to a queue or is moved from one queue to another, and
stops coalescing of incoming sk_buff with the tail of receiving
queue. We also switch off GRO to further stop coalescing of
sk_buffs at the start of packet processing.

One challenge with having per-thread receive queues in
AppSteer is that it enables the NF threads to read data received
at the socket out of order, possibly violating TCP’s in-order
delivery state machine that assumes a single receiver queue.
While this may not matter much to the application itself (which
must expect and handle out of order processing of requests in
a multithreaded application), this out of order processing of
received data will break TCP state management. Therefore,
AppSteer decouples the transferring of requests to the NF for
processing, and the TCP state management which includes
updating the receive window, sending out acks etc. These two
stages are tightly coupled inside the vanilla kernel, wherein
a recv() system call triggers packet copy of the request to
the NF userspace buffer, and simultaneously updates all state
pertaining to the TCP connection that is affected by recv(). To
achieve said decoupling, AppSteer adds the incoming request
not just in the per-thread receive queue, but also in the original
receive queue in the TCP socket. When the recv() system call
reads a request from a particular per-thread receive queue,
it also marks that particular request as read in the original
receive queue. The original receive queue still maintains all
requests in-order, and AppSteer uses this queue for TCP state
management. As soon as the request at the head of the original
receive queue is marked read, AppSteer starts clearing requests
until it encounters a request marked unread. AppSteer also
invokes the TCP state management machine to move the TCP
receive window and send out acks as it keeps clearing requests
from the original queue. This gives the TCP state management
logic the illusion that all requests are being read in-order, and
preserves the correctness of the TCP state machine.

F. SCTP Receiver Design

The handling of SCTP transport layer processing in App-
Steer is similar to the TCP processing to a large extent.
Similar to TCP, we have per-thread receive queues, and we
add requests to a particular receive queue based on the app
id attached by the sender in the SCTP header. Similar to that
of TCP, we program the recv() system call to succeed and
the epoll_wait() system call to return an EPOLLIN event only

if there are requests in the receive queue mapped to the NF
thread making the recv() and epoll_wait() call. However, in
the case of TCP, the XDP program that switched app id with
queue id is relatively simple because AppSteer ensures that
each packet only contains a single request and hence we have
to parse a single TCP header to make the switch. But, in the
case of SCTP, there may be multiple requests present inside a
single SCTP packet, albeit with separate SCTP headers. Each
of these requests are called data chunks. There might also
be control information related chunks that do not carry any
SCTP data. The XDP program used by AppSteer carefully
parses each SCTP data chunk header, switching app id with
queue id, and skipping any control chunks in the packet.

Every SCTP data chunk also contains a stream sequence
number (SSN), and SCTP expects chunks to be delivered in the
order of their SSN. This expectation of ordered delivery can be
switched off by setting the unordered bit in the flags of the data
chunk header, in which case the SSN is completely ignored
by the SCTP protocol layer. This is also something that the
XDP program does while switching app id with queue id. This
simplifies our design further up the stack, because there being
no need for ordered delivery, and the transfer of data to the
user application and the SCTP state management relating to
that transfer are no longer coupled. As a result, AppSteer only
adds an incoming request to the per-thread receive queue and
not the original receive queue, and the recv() system call can
handle the SCTP state management as well.

1V. IMPLEMENTATION
A. Kernel changes

We modify the linux kernel (based on version 5.11) to
implement AppSteer as described in §III. Our implementation
adds 350 LOC to the Linux kernel. We modify the socket
structure to accommodate multiple receive queues, and add
code to enqueue an incoming packet to the correct receive
queue based upon the rules installed by the NF. We also
the epoll subsystem of the linux kernel to notify only the
thread running on the core for which the received packet
is destined to. Finally we program the recv system call to
read packets from a specific receive queue based on the rules
installed by the NF. AppSteer makes use of the stream id field
inside the SCTP header to hold app id. The stream id field
length is 16 bits, and hence the app id keyspace in our current
implementation 2°16 in the case of SCTP. In the case of TCP,
we use the reserved field inside the TCP header to hold the
app id. This field is 4 bits wide and hence the app id keyspace
is only 16 in our current implementation of the TCP design.
Although this limits the number of cores that we can scale our
NF to 16 in our current implementation, the implementation
could easily be made more scalable by using a different field
(such as a TCP option field) inside the TCP header that holds
a longer app id, and we leave this exploration to future work.

B. API exposed to NFs

send (request, app_id) This APl is used by the sender
to tag each outgoing request with an app_id. When the request



is to be sent over persistent connections, AppSteer passes the
app_id along with the modified write() system call, and then
embeds the app_id in the protocol header inside the kernel.
In the case of short connections, AppSteer creates a source
port number with the app_id embedded in it, and binds the
sender socket to that port before establishing a connection and
sending a request over that connection.
map_thread_to_queue (queueid) This API is used at
the receiver to map the calling NF thread to a per-thread
receive queue (or listen socket). AppSteer does not allow
multiple threads to be mapped to the same queue.
map_appid_to_queue (app_id) This API is used at the
receiver to divide the entire appid keyspace among the per-
thread receive queues (or per-thread listen sockets in the case
of short connections). The receiver NF implements this API,
by adding logic to return a queue_id based on the app_id
passed to the API. AppSteer calls the implemented API from
our eBPF programs (at XDP hook or at socket lookup module)
to map incoming requests containing app_id to a particular
receive queue (or listen socket) identifier.

add_exception (app_id, queue_id) This API is
used at the receiver to add exceptions to the steering logic
of the NF. AppSteer adds the app_id to queue_id mappings in
an eBPF exception map, which is used by the eBPF programs
in AppSteer to change the steering if needed (§III-C).

C. Example NFs: AMF and SMF in 5G core

To test the benefits of performing application-aware steering
with AppSteer, we port NFs from a production-grade 5G
packet core implementation [21] to run over AppSteer. We
describe our implementation of AMF and SMF because these
are the most complex NFs in the 5G packet core. Both NFs
maintain state at the granularity of the mobile subscriber, in
various maps which have various user identifiers as keys.
This state is shared across the multiple threads of the NF,
which are pinned to a core and run an event-driven epoll
loop. The NFs access this state with suitable locking to handle
various signaling messages from mobile users, e.g., to register
a user, or to setup a data session for the user. These NFs also
communicate over both long-running persistent connections
and short connections over TCP or SCTP with other NFs.
We compare the performance of these baseline NFs with the
lockfree versions built over AppSteer.

To build lockfree versions of these NFs over AppSteer, we
modify both NFs to maintain state in per-core slices that can
be accessed without locking. In order to perform application-
aware packet steering, we embed the hash of user identifiers
in the protocol headers using our API at the sender. At the
receiver, we install rules using our API to deliver a request to
the desired queue id. We also assume that the number of cores
assigned to the NF does not change dynamically, so that the
mappings are stable.

. V. EVALUATION
A. Experiment Setup

Load Generator. The load generator in our implementation
is a RAN emulator software that emulates a specified number
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Fig. 5: SMF Throughput (persistent TCP)
Number of cores 1 4 8 16
Rate of epoll events in 1214 4599 7882 13347
locking SMF

Rate of epoll events in
lockfree SMF

TABLE I: Rate of socket events at SMF (per second)

846 3314 5989 9496

of concurrent users (each user denoted by a thread inside the
RAN emulator), and generates signaling load from these users
in a closed loop manner towards our packet core NFs. We use
the initial registration and session establishment procedures to
measure the performance of the AMF and SMF respectively,
because these procedures consume significant computation
resources at the corresponding NFs.

Experimental setup. We host both the locking and lockfree
NFs on two commodity multicore servers running Ubuntu
21.04 with Linux kernel version 5.11 (with our kernel-level
changes incorporated when running with lockfree NFs). Both
machines are connected directly without any switches in
between. One of the servers hosts the NFs which generates
traffic towards our NF under test, while the other server hosts
the NF under test. In the case of 5G packet core, this server can
host other NFs which the NF under test exchanges messages
with to complete a particular callflow of a 5G core signaling
procedure. All NFs hosted on the same machine are assigned
mutually disjoint sets of cores in order to not impact each
other’s performance.

Parameters and metrics. We vary the number of threads in
the client to increase the load on the NF under test (AMF, SMF
or echoserver), and measure its performance when it reaches
its maximum capacity at peak CPU saturation. We measure
this saturation throughput (control plane procedures/second)
when different number of cores are assigned to the NF under
test, thereby measuring its multicore scalability, i.e., how its
capacity scales with increasing cores.

B. Evaluation of SMF

We compare the performance of our baseline locking-
based SMF (running on vanilla kernel) with lockfree SMF
running on top of AppSteer, when the SMF receives session
establishment requests over a persistent TCP connection, i.e.,
all session establishment requests come over the same TCP
connection. Figure 5 plots saturation throughput (number of
session establishments completed/sec) of both designs as a
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function of the number of cores SMF runs on. We see an
improvement of 14.9% in throughput at 16 cores in the case
of lockfree SMF when compared with locking SMF. Most
of these gains come from eliminating locks to access state
stored at SMF in the lockfree SMF design made possible
by AppSteer. Figure 1 plots the ratio of lock accesses which
end up being contended at SMF in the baseline locking-based
SMF, which we completely eliminate in the lockfree SMF
design. Some part of these gains also come from optimizing
notifications to threads in the epoll subsystem of AppSteer.
When a multithreaded NF runs on the vanilla Linux kernel
and waits for events in an epoll wait loop, all threads are
woken up when a request arrives on a socket. With the use
of per-thread receive queues, only the thread responsible for
servicing the request is woken up in the lockfree NFs running
on AppSteer. Table I shows the rate of socket events per second
both versions of SMF encounter with varying number of cores.
We experience a 28% drop in the rate of socket events in the
case of our lockfree design when compared with the locking
design. This makes AppSteer more CPU efficient as we avoid
spurious wakeups, which in turn contributes to the gains.

Next, we compare the performance of our baseline locking-
based SMF (running on vanilla kernel) with lockfree SMF
running on top of AppSteer, when the SMF receives session
establishment requests over separate short connections, i.e.,
each session establishment request comes over a new TCP
connection. Figure 6 shows the saturation throughput (session
establishments/second) as a function of the number of SMF
cores for both designs, and also compares this throughput
against the saturation throughput in the case of lockfree SMF
receiving requests over a persistent TCP connection. We see
from this figure that our lockfree design scales much better
than the locking-based baseline over short connections, and
has a 17.7% higher saturation throughput at 16 cores. Further,
as expected, the lockfree SMF that uses persistent connec-
tions performs better than the lockfree SMF that uses short
connections because it avoids TCP connection establishment
and teardown overheads. This result highlights the benefits of
AppSteer over prior work like Syrup [19] which can be used
to perform application-aware request steering only over short
connections and not for persistent connections.
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C. Evaluation of AMF

Number of Cores 1 4 8 12 16
Contention ratio(in %) 0 10.1 27.4 444 558

TABLE II: AMF Lock Contention

Next, we compare the performance of our baseline locking-
based AMF with the lockfree AMF built over AppSteer. In this
experiment, the AMF receives user registration requests from
the RAN over a long running SCTP connection. Figure 7 plots
the saturation throughput (number of users registered/sec) of
both designs as a function of the number of cores AMF
runs on. We see an improvement of 17.8% in throughput at
16 cores in the case of lockfree AMF when compared with
locking AMF. Most of these gains come from eliminating
locks to access state stored at AMF in the lockfree AMF
design. Table II shows the ratio of lock accesses which end up
being contended at AMF in the baseline locking-based AMF,
which we completely eliminate in the lockfree AMF design by
running on top of AppSteer. Much like in the case of SMF, we
also see 10% fewer socket events in the case of our lockfree
design when compared with the locking design, which also
contributes to the gains seen with AppSteer.

D. Overhead analysis

Kernel processing overheads. AppSteer makes changes to
the Linux kernel as described in section $III to achieve
application-aware packet steering in the case of TCP and SCTP
sockets. These changes result in some overheads being added
to the packet processing pipeline of the vanilla kernel, espe-
cially when processing packets over long-running persistent
TCP and SCTP connections, where we add per-thread receive
queues and perform extra work on them. We define the average
hold time of a lock as the average time which a thread holds
the lock for after acquiring the lock. Since all operations on
a socket are protected by a single lock (see §II), the average
hold time of a socket lock approximates the processing time
per socket operation, and a comparison between the average
hold times of the kernel socket lock in our locking and lockfree
designs will give a good indication of the overheads we add to
the packet processing pipeline in order to perform application-
aware steering. Table III shows the average hold time of the
socket lock for SMF (running on persistent TCP) and AMF
(on SCTP), for both the locking and lockfree designs at 16



cores, obtained from /proc/lock_stat. We see from this
table that our design does not add much overhead to the SCTP
packet processing, as we do not need to make many changes
to the SCTP state management. However, we add about 0.5 us
extra overhead to the TCP packet processing pipeline because
we have to handle both the original TCP receive queue along
with the per-thread receive queues, which increases the socket
lock hold time significantly. However, this increase in overhead
in the kernel packet processing of AppSteer is more than
compensated by the elimination of userspace locking with
AppSteer, resulting in a net increase in performance when
running lockfree NFs over AppSteer. Therefore, AppSteer is
beneficial mainly in NFs that are compute intensive and per-
form significant computation over shared state while holding
locks in userspace, where the benefits of lockfree operation
outweigh the costs imposed by AppSteer in the form of extra
overheads in the kernel. It is important to note that AppSteer
does not add kernel processing overheads in the case of packets
received over short connections, because we use the kernel’s
SO_REUSEPORT to provision per-core accept queues, and
we simply replace the socket matching logic of the kernel in
the case of SO_REUSEPORT with our own eBPF program to
facilitate application-aware steering.

eBPF overheads. Next, we measure the overhead incurred by
our eBPF programs when rewriting packet headers to map app
id to queue id for application-aware request steering. Because
the eBPF processing in the case of SCTP is more complex than
that at TCP, we measure the overhead of the eBPF program
used to steer requests over SCTP at AMF. Each SCTP packet
being parsed might have multiple chunks (user requests), and
our eBPF program parses each chunk to rewrite stream ids.
Table IV shows the eBPF packet processing overheads as a
function of the number of chunks in the SCTP packet. Note
that 20 chunks is the maximum number of chunks that can
be accommodated in a packet of length 1 MTU in our use
case. We see from the table that the overheads are very low,
with parsing 20 chunks taking only 23.6 microseconds. This
is negligible overhead when the overall registration procedure
at AMF itself takes order of milliseconds to process. Once
again, the overheads added by AppSteer are compensated by
the benefits accrued due to eliminating userspace locking, es-
pecially in NFs that are compute intensive and hold userspace
locks to access shared state during such computation.

SMF (TCP) AMF (SCTP)
Locking NF 0.32 1.40
Lockfree NF 0.81 1.44

TABLE III: Avg. hold times of socket lock (in us)

Number of chunks
SCTP packet

Time taken to parse the SCTP
packet (in us)

TABLE IV: Overhead of XDP program

inthe 4 g 16 20

37 67 114 196 236

E. Microbenchmarks

So, which type of NFs will benefit from AppSteer and at
what level of application-layer locking will we start to see
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Fig. 8: Throughput comparison between lockfree and locking
echoserver designs under two different configurations of ser-
vice time

the benefits? We perform some microbenchmarks to answer
this question. We build a small echoserver to run on top of
AppSteer, which receives a request, does some dummy work,
and returns a response back to the client. The client embeds
an app id in each of the request, and the receiver also installs
some rules to evenly distribute load among all threads of
the echoserver. We build two versions of the echo servers,
one compute-intensive and one I/O-intensive, that differ in the
amount of computation they perform on the dummy requests
they receive. Both versions have locking variants that run on
the vanilla kernel, and lockfree versions built with AppSteer
API running on our modified kernel. The locking variant
spends a configurable fraction of its time holding a lock while
servicing the dummy request. Figure 8 shows the saturation
throughput (at 8 CPU cores) of the locking echoserver version
in both the compute and I/O intensive configurations as
we increase the amount of locking in the echoserver. For
comparison, we also show the saturation throughput of the
lockfree echoserver (on AppSteer) in both configurations. Note
that the throughput of the lockfree version does not depend on
the amount of locking being varied on the x-axis. We see that
in the case of the compute intensive configuration, the lockfree
echoserver running on top of AppSteer does better than
the locking echoserver if the locking echoserver spent more
than 4.33% of its service time holding a lock. This number
increases to around 8.33% and 10% in the case of I/O intensive



configuration. This is because the CPU intensive echoserver
saturates at a much lower packet rate when compared to the
I/0 intensive echoserver, and hence has lesser overhead added
by AppSteer to the kernel packet processing. On the other
hand, in the I/O intensive echoserver, packet rates are higher,
which puts more load on the packet processing pipeline in
the kernel, translating to higher contentions on the socket
lock. Therefore, a higher locking percentage is required to
offset the overheads of AppSteer inside the kernel to see any
performance benefits. This result once again reinforces the
fact that AppSteer is more useful for applications that are
compute intensive and when the said computation requires
holding application-layer locks.

VI. CONCLUSION

AppSteer considers the problem of improving the multicore
scalability of software network functions via application-aware
packet steering. Prior work has dealt extensively with the
problem of eliminating lock contention within the network
stack by splitting kernel data structures into per-core slices,
and using RSS to maintain flow level affinity to a core. These
network stacks were mostly developed on top of kernel bypass
mechanisms like DPDK, and they lead to multicore scalability
of the NF only if it maintains state at the granularity of
a transport layer flow. AppSteer extends the scope of this
problem by considering NFs running on top of the linux
kernel, and NFs which store state at the granularity of an
application key which does not map to a transport layer flow.
The AppSteer framework exposes APIs that let an NF steer
network traffic to application threads based on application
identifiers in the packets, and implements these APIs over
the Linux kernel via eBPF programs and kernel changes.
With such a mechanism in place, NFs can partition their state
into per-thread slices and access it without locking, leading
to multicore scalability. We use the NFs in the 5G control
plane as a use case to demonstrate the benefits of AppSteer,
because these compute-intensive NFs maintain state at the
granularity of a mobile subscriber, access the state frequently
to perform significant computation on each user request, and
cannot be ported to run on kernel bypass network stacks
easily. We modify the NFs of a production-grade 5G packet
core implementation to maintain per-core state and operate
in a lockfree manner running on top of AppSteer. We then
compare the saturation throughput of our lockfree NFs with
their optimised locking-based baselines running on vanilla
kernel, and find that the lockfree NFs have up to 15-18%
higher throughput on 16 cores. We also evaluate the costs and
benefits of AppSteer and come up with clear guidelines on
when application-aware steering is beneficial.
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