

Graphical Models for Data Mining

NLP-AI Seminar

Manoj Kumar Chinnakotla

Title Page		
Con		
44	••	
•		
Page 2 of 39		
Go Back		
Full Screen		
Close		
Quit		

Outline of the Talk

- Graphical Models Overview
- Motivation
- Bayesian Networks
- Markov Random Fields
- Inferencing and Learning
- Expressive Power
- Example Applications
 - Gene Expression Analysis
 - Web Page Classification
- Summary

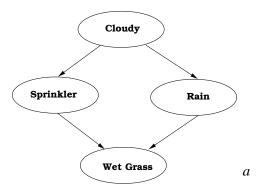
Title Page		
Con	tents	
••	••	
•		
Page 3 of 39		
Go Back		
Full Screen		
Close		
Quit		

Graphical Models - An Introduction

- Graph $G = \langle V, E \rangle$ representing a family of probability distributions
- \bullet Nodes V Random Variables
- \bullet Edges E Indicate Stochastic Dependence
- *G* encodes *Conditional Independence* assertions in domain
- Mainly two kinds of Models
 - Directed (a.k.a Bayesian Networks)
 - Undirected (a.k.a Markov Random Fields (MRFs))



Graphical Models (Contd...)



- Direction of edges based on causal knowledge
 - $A \rightarrow B$: A "causes" B
 - -A B: Not sure of causality
- Mixed versions also possible *Chain Graphs*

^aFigure adapted from [RN95]

Why Graphical Models?

- Framework for modeling and effeciently reasoning about multiple correlated random variables
- Provides insights into the assumptions of existing models
- Allows qualitative specification of independence assumptions

Title Page		
Con	tents	
44	••	
•		
Page 6 of 39		
Go Back		
Full Screen		
Close		
Quit		

Why Graphical Models? Recent Trends in Data Mining

- Traditional learning algorithms assume
 - Data available in record format
 - Instances are *i.i.d* samples
- Recent domains like Web, Biology, Marketing have more *richly* structured data
- Examples : DNA Sequences, Social Networks, Hyperlink structure of Web, Phylogeny Trees
- Relational Data Mining Data spread across multiple tables
- Relational Structure helps significantly in enhancing accuracy [CDI98, LG03]
- Graphical Models offer a natural formalism to model such data

KRÉSIT

Directed Models : Bayesian Networks

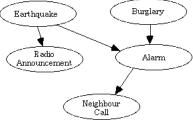
ditional independence assumptions among the variables
Cycles not allowed - Edges usually have causal interpretations
Specifies a compact representation of joint distribution over the variables given by

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P_i(X_i \mid Pa(X_i))$$

• Bayes Net - DAG encoding the con-

where $Pa(X_i) =$ Parents of Node X_i in the network

• P_i → Conditional Probability Distribution (CPD) of X_i



а

KRÉIT

Undirected Graphical Models Markov Random Fields

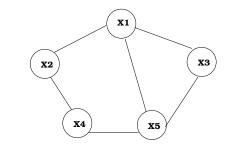
- Have been well studied and applied in Vision
- No underlying causal structure
- Joint distribution can be factorized into

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(X_c)$$

where C - Set of cliques in graph

- ψ_c Potential function (a positive function) on the clique X_c
- Z Partition Function given by

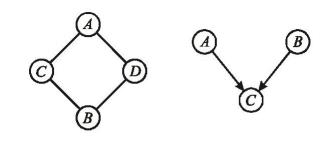
$$Z = \sum_{\vec{x}} \prod_{c \in C} \psi_c(X_c)$$



Title Page		
Con	Contents	
••	••	
•		
Page 9 of 39		
Go Back		
Full Screen		
Close		
Quit		

Expressive Power Directed vs Undirected Models

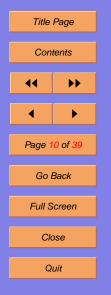
- Dependencies which can be modeled Not exactly similar
- Example :



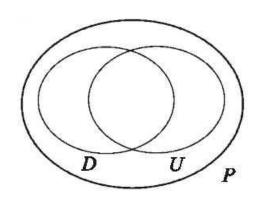
а

• Decomposable Models - Class of dependencies which both can model

^aFigure adapted from [JP98]



What Class of Distributions Can be Modeled?



KRÉSIT



Inference

visible

hidden

- Given a subset of variables X_K , compute distribution of $P(X_U|X_K)$ where $\vec{X} = \{X_U\} \cup \{X_K\}$
- Marginals involve summation over exponential terms
- Complexity handled by exploiting the graphical structure
- Algorithms : *Exact* and *Approximate*
- Some Examples : Variable Elimination, Sum-Product Algorithm, Sampling Algorithm

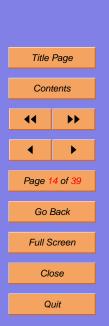
KRÍT

Learning

- Estimating graphical structure G and parameters from data
- Standard ML estimates used when variables in the model are fully *Observable*
- MRFs use Iterative Algorithms for parameter estimation
- Structure Learning relatively hard

KRÉSIT

Applications



KRÍT

Bio-informatics Gene Expression Analysis

- Gene Expression Analysis Introduction
- Standard Techniques Clustering and Bayesian Networks
- Probabilistic Relational Models (PRMs)
- Integrating Additional Information into PRM
- Learning PRMs from Data

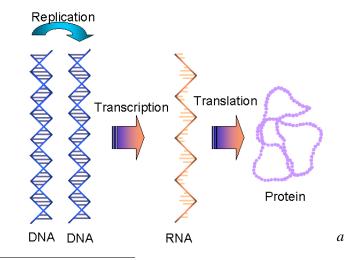
Title Page			
Contents			
••	•• ••		
◀			
Page 15 of 39			
Go Back			
Full Screen			
Close			
Quit			

DNA - The Blueprint of Life!

- DNA Deoxyribo Nucleic Acid
- Double Helix Structure
- Each Strand Sequence of Nucleotides {Adenine (A),Guanine (G),Cytosine (C), Thymine (T)}
- Complementary Strands A \leftrightarrow G, C \leftrightarrow T
- *Gene* Portions of DNA that code for Proteins or large biomolecules

KRESIT

The Central Dogma - Transcription and Translation



^aFigure Source : www.swbic.org/education/comp-bio/images/

Title Page		
Con	tents	
44	••	
•		
Page 17 of 39		
Go Back		
Full Screen		
Close		
Quit		

Gene Expression

- Each cell has same copy of DNA still different cells synthesize different Proteins!
 - Example : Cells making the proteins needed for muscles, eye lens etc.
- Gene said to be *expressed* if it produces it's corresponding protein
- Genes expressed vary Based on time, location, environmental and biological conditions
- Expression regulated by a complex collection of proteins

Title Page		
Contents		
44	•• ••	
•		
Page 18 of 39		
Go Back		
Full Screen		
Close		
Quit		

DNA Micro-array Technology

- *Micro-array or Gene chips* used for experiments
- Allows measurement of *expression levels* of tens of thousands of genes simultaneously
- Many experiments measure *expression* of same set of genes under various environmental/biological conditions
 - Example : Cell is heated up, cooled down, drug added

• Expression Level

- Estimated based on amount of mRNA for that gene currently present in that cell
- Ratio of expression level under experiment condition to expression under normal condition taken instead

Gene Expression Data

KRÍT

Examples

		Features \rightarrow		
		Experiment 1	Experiment 2	 Experiment N
	Gene 1	1083	1464	 1115
	Gene 2	1585	398	 511
[
[Gene M	170	302	 751

a

- Enormous amount of expression data for various species publicly available
- Some Examples
 - EBI Micro-array data repository (http://www.ebi.ac.uk/arrayexpress/)
 - Stanford Micro-array Database (http://genomewww5.stanford.edu/) etc.

```
<sup>a</sup>Figure Source : [?]
```


Title Page		
Contents		
44	••	
•		
Page 20 of 39		
Go Back		
Full Screen		
Close		
Quit		

The Problem - Drowning in Data! Where is Information?

- Enormous amount of data
 - EBI data repository has grown 100-fold just in a year!
- Difficult for humans to comprehend, detect patterns
- Biological experiments Costly and Time consuming
- Machine Learning/Data Mining techniques to the rescue
 - Allow learning of models which provide useful insight into the biological processes
 - Reduce the number of biological experiments needed

Title Page		
Contents		
44	••	
•		
Page 21 of 39		
Go Back		
Full Screen		
Close		
Quit		

Gene Expression Analysis - Approaches

- Aim
 - To identify co-regulated genes
 - To gain biological insight into gene regulatory mechanisms
- Approaches
 - Clustering
 - Bayesian Networks
 - Probabilistic Relational Models (PRMs)
- Focus of the Presentation
 - Probabilistic Models for Gene Expression using PRMs

Title Page		
Con	tents	
••	••	
•		
Page 22 of 39		
Go Back		
Full Screen		
Close		
Quit		

Clustering

- Two-Side Clustering
 - Genes and Experiments partitioned into clusters G_1, \ldots, G_k and E_1, \ldots, E_l simultaneously
 - Summarizes data into groups of $k \times l$
 - Assumption Expression governed by a distribution specific to each combination of Gene/Experiment clusters

• Clustering Techniques - Problems

- Similarity based on all the measurements. What if similarity exists only over a subset of measurements?
- Difficult to integrate additional information Gene Annotation, Cell-Type/Strain used, Gene Promoters

KRÉSIT

Bayesian Networks

- *Bayes Net* DAG encoding the conditional independence assumptions among the variables
- Specifies a compact representation of joint distribution over the variables given by

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid Pa(X_i))$$

where $Pa(X_i) =$ Parents of Node X_i in the network

- Provides insight into the influence patterns across variables
- Friedman et al have applied it to learn gene regulatory mechanisms

Title Page		
Con	tents	
••	•• ••	
•	►	
Page 24 of 39		
Go Back		
Full Screen		
Close		
Quit		

Bayesian Networks (Contd...) Modeling Relational Data

- *Relational Data* Data spread across multiple tables
- Provides valuable additional information for learning models
 - Example : DNA Sequence Information, Gene Annotations
- Bayes Nets not suitable for modeling
 - Bayes Net Learning Algorithms Attribute Based
 - Assume all the data to be present in a single table
 - Make sample independence assumption
- Solution : Why not "flatten" the data?
 - Will make the samples dependent
 - Can't be used to reach conclusions based on relational dependencies

Title Page	
Contents	
••	••
•	
Page 25 of 39	
Go Back	
Full Screen	
Close	
Quit	

Probabilistic Relational Models (PRMs)

- Learns a probabilistic model over a *relational schema* involving multiple entities
- Entities in the current problem *Gene*, *Array* and *Expression*
- Each entity X can have attributes of the form
 - X.B Simple Attribute
 - X.R.C Attribute of another relation where R is a *Reference Slot*
- *Reference Slots* Similar to foreign keys in the database world

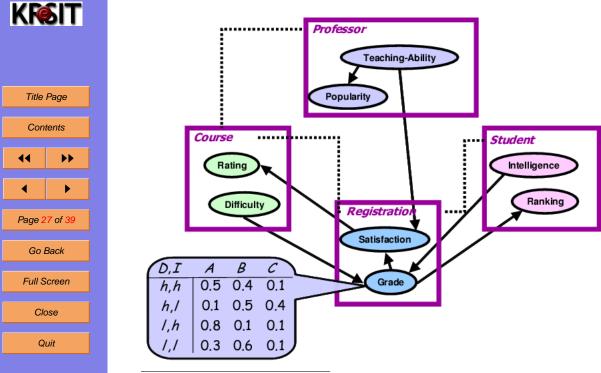
KRÉSIT

PRMs (Contd...)

- Attributes of objects Random Variables
- Given the above, a PRM Π is defined by
 - A class-level dependency structure S
 - The parameter set θ_S for the resultant *Conditional Probability Distribution (CPD)*
- The PRM Π is only a class-level "template" Gets instantiated for each object

A Sample PRM

а



^{*a*}Figure Source : [FGKP99]

Title Page Contents 44 Page 28 of 39 Go Back Full Screen Close Quit

PRM for Gene Expression



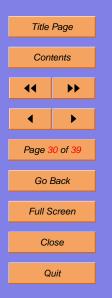
^{*a*}Figure Source : [STG+01]

Title Page	
Contents	
44	••
•	
Page 29 of 39	
Go Back	
Full Screen	
Close	
Quit	

Inferencing in PRMs

- A *Relational Skeleton* σ is an instantiation of this schema
- For Example : 1000 gene objects, 100 array objects and 100,000 objects expression objects
- Relational skeleton σ completely specifies the values for the reference slots
- Objective

Given σ , with observed evidence regarding some variables, update the probabilistic distribution over the rest of the variables



Inferencing in PRMs (Contd...)

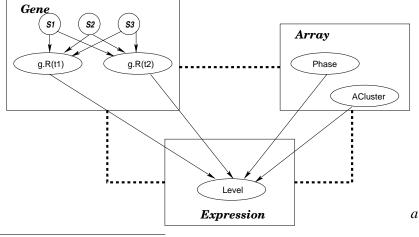
- Given a relational skeleton σ , a PRM induces a *Bayesian Network* over all the random variables
- Parents and *CPDs* of Bayes Net Obtained from class-level PRM
- Bayesian Network Inferencing Algorithms are then used for *inference* in the resultant network

Title Page	
Contents	
••	••
•	
Page 31 of 39	
Go Back	
Full Screen	
Close	
Quit	

Integrating Additional Sources of Data DNA Sequence Information

- *Transcription Factors (TFs)* Proteins that bind to specific DNA sequence in the promoter region known as *binding sites*
- TFs encourage or repress the start of transcription
- Why is sequence information important?
 - Help in identifying TF binding sites
 - Two genes with similar expression profiles mostly likely to be controlled by same TFs
- New features added
 - Base pairs of Promoter Sequence
 - Regulates variable g.R(t) for each TF t

PRM with Promoter Sequence Information



^{*a*}Figure Source : [SBS+02]

Title Page	
Contents	
44	••
•	
Page 33 of 39	
Go Back	
Full Screen	
Close	
Quit	

Learning the Models

• CPD Parameter Estimation

- Expression.Level modeled using a Gaussian
- CPD divides the expression values into $k \times l$ groups
- Parameter set constitutes the mean and variance of each group

• CPD Structure Learning

- Scoring Function measure of "goodness" of a structure relative to data
- Search Algorithm finding the structure with highest score
- Bayesian Score as scoring function- Posterior of structure given data $P(S \mid D)$
- Greedy local structure search used for search algorithm

Title Page	
Contents	
••	••
•	
Page 34 of 39	
Go Back	
Full Screen	
Close	
Quit	

PRMs for Gene Expression : Conclusion

- Templates for directed graphical models over relational data
- PRMs can be applied to relational data spread across multiple tables
- Capable of learning *unified models* integrating sequence information, expression data and annotation data
- Can easily accommodate additional information related to domain

KRÉIT

Title Page	
Contents	
44	••
•	
Page 35 of 39	
Go Back	
Full Screen	
Close	
Quit	

Web Mining Collective Web Page Classification [CDI98]

- Class of neighbouring pages (in Web Graph) usually correlated.
- Construct a directed graphical model based on the web graph.
 - Nodes Random Variables for the category of each page
- Given an assignment of categories for some nodes :
 - Run inferencing on the above graphical model
 - Find the Most Probable Explanation for the rest

Title Page	
Contents	
••	••
•	
Page 36 of 39	
Go Back	
Full Screen	
Close	
Quit	

Summary

- Graphical Models A natural formalism for modeling multiple correlated random variables
- Allows integration of domain knowledge in the form of dependency structures
- Techniques especially useful when data spread across multiple tables
- Allows easy integration of new additional information



KRÉSIT

Thanks!

KRÉSIT

References

Title Page	
Contents	
44	••
•	
Page 38 of 39	
Go Back	
Full Screen	
Close	
Quit	

[NLD99] Nir Friedman, Lise Getoor, Daphne Koller and Avi Pfeffer, Learning Probabilistic Relational Models, In Proceedings of IJCAI 1999, pages 1300-1309, 1999.

- [CDI98] Soumen Chakrabarti, Byron E. Dom and Piotr Indyk, Enhanced hypertext categorization using hyperlinks, In Proceedings of SIGMOD-98, ACM International Conference on Management of Data, pages 307–318, 1998.
- [Chi02] David Maxwell Chickering, The WinMine Toolkit, Microsoft, MSR-TR-2002-103, 2002, Redmond, WA.
- [Col02] Michael Collins, Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms, In the proceedings of EMNLP 2002, pages 1–8, 2002.
- [Fri00] Friedman N., Linial, Nachman I. and Pe'er D., Using Bayesian Networks to Analyze Expression Data, Journal of Computational Biology, vol 7, pages 601-620, 2000.
- [GS04] Shantanu Godbole and Sunita Sarawagi, Discriminative Methods for Multi-Labeled Classification, In Proceedings of PAKDD 2004, 2004.
- [LG03] Qing Lu and Lise Getoor, Link-based Classification, In Proceedings of ICML 2003, page 496, August 2003.
- [Mur01] Kevin P. Murphy, The Bayes Net Toolbox for MATLAB, Journal of Computing Science and Statistics, vol. 33, 2001.
- [FGKP99] Nir Friedman, Lise Getoor, Daphne Koller and Avi Pfeffer, Learning Probabilistic Relational Models, IJCAI, 1300-1309, 1999

KRÉIT

- [STG+01] E. Segal, B. Taskar, A. Gasch, N. Friedman and D. Koller, Rich probabilistic models for gene expression, Bioinformatics, 17, s243-52, 2001
- [SBS+02] E. Segal, Y. Barash, I. Simon, N. Friechnan and D. Koller, From promoter sequence to expression: A probabilistic framework, RECOMB, 2002
- [RN95] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, 1995.
- [MWJ99] Kevin P. Murphy, Yair Weiss and Michael I. Jordan, Loopy belief propagation for approximate inference : An emperical Study. In Proceedings of UAI 99, Pages 467-475, 1999.
- [JP98] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers, 1988.

27 6, 35 6 27 28 32 4, 7 9