Design and Analysis of Algorithms CS218M Asymptotic Complexity

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

★ ∃ → ★ ∃

Textbook

 Introduction to Algorithms, T.H. Cormen, C.E. Leicserson, R.L. Rivest, C. Stein, Third Edition, PHI, 2014. CLRS

Course Webpage

Course URL: https://cse.iitb.ac.in/~pandya58/CS218M/algo.html

Reference for Today's Class: CLRS Ch 2.1,2.2 and Ch 3.1 Self Study Topics: CLRS Ch 3.2

• • = • • = •

Recap:

· Algorithm V/& Program Prog=((cole, PL, Compiler, OS, Machine) , Analysis of Algo · Correctness . Efficiency · Design Paradigns · Inherent (amplexity of Problems Complexity classey . NP- Complek class (日) (四) (日) (日)

Pseudo Code Language

• Indentation gives the block structure.

.

```
Linear_Search(A,x):
   found=false
   for i from 1 to n
        if A[i]==x
        found=true
        return
```

- Indentation gives the block structure.
- Control structures: if-else, while, for, repeat-until

```
Linear_Search(A,x):
   found=false
   for i from 1 to n
        if A[i]==x
        found=true
        return
```

- Indentation gives the block structure.
- Control structures: if-else, while, for, repeat-until
- Comments // this is a comment.

```
Linear_Search(A,x):
   found=false
   for i from 1 to n
        if A[i]==x
        found=true
        return
```

- Indentation gives the block structure.
- Control structures: if-else, while, for, repeat-until
- Comments // this is a comment.
- Expressions and comditions.
 Condition x + 1 > y
 Assignments i = e, and multiple assignments i, j = j, i.

何 ト イヨ ト イヨ ト

• All variables are local to procedures.

- All variables are local to procedures.
- Primitive types integers, booleans, ...

- All variables are local to procedures.
- Primitive types integers, booleans, ...
- Objects and arrays are of reference type.

- All variables are local to procedures.
- Primitive types integers, booleans, ...
- Objects and arrays are of reference type.
- Object have attributes: E.g. f has attribute f.x

- All variables are local to procedures.
- Primitive types integers, booleans, ...
- Objects and arrays are of reference type.
- Object have attributes: E.g. f has attribute f.x
- Array A[1..n] Array length attribute A.Length Array slice A[i..j] denotes list (slice) of elements A[i] to A[j]

Example: Let A=[5,4,3,2,1]. Then, A[2..4]=[4,3,2].

Pseudo Code Language (3)

• Procedures with Parameters. The return e1,e2,e3 statement will exit the procedure returning three values.

- 1 **if** *p* < *r*
- $2 \qquad q = \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 MERGE-SORT $(A, q + 1, r) \Leftarrow$
- 5 MERGE(A, p, q, r)
 - Procedures with Parameters. The return e1,e2,e3 statement will exit the procedure returning three values.
 - Parameter passing for primitive types is by value

- 1 **if** *p* < *r*
- $2 \qquad q = \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 MERGE-SORT(A, q + 1, r)
- 5 MERGE(A, p, q, r)
 - Procedures with Parameters. The return e1,e2,e3 statement will exit the procedure returning three values.
 - Parameter passing for primitive types is by value
 - Parameter passing of Arrays and Objects is by reference

- 1 **if** p < r
- $2 \qquad q = \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 MERGE-SORT(A, q + 1, r)
- 5 MERGE(A, p, q, r)
 - Procedures with Parameters. The return e1,e2,e3 statement will exit the procedure returning three values.
 - Parameter passing for primitive types is by value
 - Parameter passing of Arrays and Objects is by reference
 - Recursive procedure invocations are permitted.

- 1 **if** p < r
- $2 \qquad q = \lfloor (p+r)/2 \rfloor$
- 3 MERGE-SORT(A, p, q)
- 4 MERGE-SORT(A, q + 1, r)
- 5 MERGE(A, p, q, r)
 - Procedures with Parameters. The return e1,e2,e3 statement will exit the procedure returning three values.
 - Parameter passing for primitive types is by value
 - Parameter passing of Arrays and Objects is by reference
 - Recursive procedure invocations are permitted.
 - Boolean operators and, or are short-circuiting.
 E.g. boolean condition(x!=nil and x.f=y)

• Memory is organized as words.

< ∃ →

- Memory is organized as words.
- Each primitive type variable (int, bool,...) is stored in one word.

- Memory is organized as words.
- Each primitive type variable (int, bool,...) is stored in one word.
- Variable access (load, store) takes constant time.

- Memory is organized as words.
- Each primitive type variable (int, bool,...) is stored in one word.
- Variable access (load, store) takes constant time.
- Each primitive operation takes constant time.

- Memory is organized as words.
- Each primitive type variable (int, bool,...) is stored in one word.
- Variable access (load, store) takes constant time.
- Each primitive operation takes constant time.
- Program execution consists of a sequence of loads, stores, primitive operations (e.g. +,*, and) as specified by the pseudo code control flow.

- Memory is organized as words.
- Each primitive type variable (int, bool,...) is stored in one word.
- Variable access (load, store) takes constant time.
- Each primitive operation takes constant time.
- Program execution consists of a sequence of loads, stores, primitive operations (e.g. +,*, and) as specified by the pseudo code control flow.
- Each array access takes constant time.

- Memory is organized as words.
- Each primitive type variable (int, bool,...) is stored in one word.
- Variable access (load, store) takes constant time.
- Each primitive operation takes constant time.
- Program execution consists of a sequence of loads, stores, primitive operations (e.g. +,*, and) as specified by the pseudo code control flow.
- Each array access takes constant time.
- There is no concurrency. We do not have cache memory, paging, pipelining etc.

Modelling Execution time of an Algorithm

{ thit to [i. 1] [n. 1] [n. 1] [n VVD 8, 4} Cales SQUARE-MATRIX-MULTIPLY (A, B)CI C, n = A.rows2 let C be a new $n \times n$ matrix Ca for i = 1 to n3 for j = 1 to n5530 $c_{ij} = 0$ for k = 1 to n $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ return $\begin{aligned} & (rowth Fundm) \\ & T(n) = C_{1} + C_{2} + C_{3} n + C_{4} n^{2} + C_{5} n^{2} + C_{6} n^{3} + (C_{7} n^{3}) \\ & = (C_{4} + C_{7}) n^{3} + (C_{4} + C_{5}) n^{2} + C_{3} n + (C_{7} + S_{5}) \\ & = G_{1} n^{3} + J_{2} n^{3} + C_{1} + C_{1} + d \end{aligned}$

Time Complexity of Insertion Sort Algorithm

< ロ > < 同 > < 三 > < 三 >

Time Complexity of Insertion Sort Algorithm

INSERTION-SORT(A)1 for j = 2 to A.length 2 key = A[j]3 // Insert A[j] into the sorted sequence A[1 ... j - 1]. 4 i = i - 15 while i > 0 and A[i] > key6 A[i+1] = A[i]7 i = i - 18 A[i+1] = kev

Growth Function

イロト イポト イヨト イヨト

Time Complexity of Insertion Sort Algorithm (2)

INSERTION-SORT(A) С for j = 2 to A.length 1 С 2 key = A[j]С 3 // Insert A[j] into the sorted sequence $A[1 \dots j - 1]$. 0 i = i - 14 C 5 while i > 0 and A[i] > keyA[i + 1] = A[i]6 C 7 i = i - 1С A[i+1] = key8 С

・ 同 ト ・ ヨ ト ・ ヨ ト …

Time Complexity of Insertion Sort Algorithm (2)

INSERTION-SORT (A)
 cost
 times

 1
 for
$$j = 2$$
 to A.length
 c_1
 n

 2
 key = A[j]
 c_2
 $n-1$

 3
 // Insert A[j] into the sorted
 $sequence A[1.. j - 1].$
 0
 $n-1$

 4
 $i = j - 1$
 c_4
 $n-1$

 5
 while $i > 0$ and $A[i] > key$
 c_5
 $\sum_{j=2}^{n} t_j$

 6
 $A[i + 1] = A[i]$
 c_6
 $\sum_{j=2}^{n} (t_j - 1)$

 7
 $i = i - 1$
 c_7
 $\sum_{j=2}^{n} (t_j - 1)$

 8
 $A[i + 1] = key$
 c_8
 $n - 1$

Growth Function in General Case

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1).$$

æ

Best Case Execution Time of Insertion Sort

INSERTION-SORT(A)for j = 2 to A.length 1 2 key = A[j]3 // Insert A[j] into the sorted sequence $A[1 \dots j - 1]$. 4 i = j - 15 while i > 0 and A[i] > key6 A[i + 1] = A[i]7 i = i - 18 A[i+1] = key

$$\begin{array}{ccc} cost & times \\ c_1 & n \\ c_2 & n-1 \end{array}$$

С

0

4:---

$$\begin{array}{ll} & n - 1 \\ c_4 & n - 1 \\ c_5 & \sum_{j=2}^{n} t_j \\ c_6 & \sum_{j=2}^{n} (t_j - 1) \\ c_7 & \sum_{j=2}^{n} (t_j - 1) \\ c_8 & n - 1 \end{array}$$

1

A B M A B M

Best Case Execution Time of Insertion Sort

INSERTION-SORT (A)
 cost
 times

 1
 for
$$j = 2$$
 to A.length
 c_1
 n

 2
 key = A[j]
 c_2
 $n-1$

 3
 // Insert A[j] into the sorted
 c_2
 $n-1$

 4
 $i = j - 1$
 c_4
 $n-1$

 5
 while $i > 0$ and $A[i] > key$
 c_5
 $\sum_{j=2}^{n} t_j$

 6
 $A[i + 1] = A[i]$
 c_6
 $\sum_{j=2}^{n} (t_j - 1)$

 7
 $i = i - 1$
 c_7
 $\sum_{j=2}^{n} (t_j - 1)$

 8
 $A[i + 1] = key$
 c_8
 $n - 1$

Growth Function in Best Case

- Array is already sorted in correct order.
- While loop terminates immediately $t_j = 1$.

Time Complexity of Insertion Sort Algorithm (4)

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8(n-1).$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Time Complexity of Insertion Sort Algorithm (4)

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8 (n-1).$$

Best Case Execution Time $t_i = 1$

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8).$

= gntb

▲御▶ ▲ 理▶ ▲ 理▶

æ

Worst Case Execution Time of Insertion Sort

INSERTION-SORT(A)for j = 2 to A.length 1 2 key = A[j]3 // Insert A[j] into the sorted sequence $A[1 \dots j - 1]$. 4 i = j - 15 while i > 0 and A[i] > key6 A[i + 1] = A[i]7 i = i - 18 A[i+1] = key

$$\begin{array}{ccc} cost & times \\ c_1 & n \\ c_2 & n-1 \end{array}$$

0

times

$$\begin{array}{ll} 0 & n-1 \\ c_4 & n-1 \\ c_5 & \sum_{j=2}^{n} t_j \\ c_6 & \sum_{j=2}^{n} (t_j-1) \\ c_7 & \sum_{j=2}^{n} (t_j-1) \\ c_8 & n-1 \end{array}$$

• • = • • = •

Worst Case Execution Time of Insertion Sort

INSERTION-SORT(A)
 cost
 times

 1
 for
$$j = 2$$
 to $A.length$
 c_1
 n

 2
 $key = A[j]$
 c_2
 $n-1$

 3
 // Insert $A[j]$ into the sorted
 c_2
 $n-1$

 4
 $i = j - 1$
 c_4
 $n-1$

 5
 while $i > 0$ and $A[i] > key$
 c_5
 $\sum_{j=2}^{n} t_j$

 6
 $A[i+1] = A[i]$
 c_6
 $\sum_{j=2}^{n} (t_j - 1)$

 7
 $i = i - 1$
 c_7
 $\sum_{j=2}^{n} (t_j - 1)$

 8
 $A[i+1] = key$
 c_8
 $n-1$

Growth Function in Worst Case

- Array is already sorted in reverse order.
- While loop in line five executes j times. Hence $t_j = j$.

Time Complexity of Insertion Sort Algorithm (4)

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8(n-1).$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

Time Complexity of Insertion Sort Algorithm (4)

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j - 1) + c_7 \sum_{j=2}^n (t_j - 1) + c_8(n-1).$$

Worst Case Execution Time

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8(n-1)$$

= $\left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8).$

$$= an^{\prime} + b^{\prime} + c$$

• • = • • = •

Asymptotic Order of Growth

The efficiency of two algorithms with growth functions $T_1(n)$ and $T_2(n)$:

• Asymptotic growth: We compare $T_1(n)$ and $T_2(n)$ as n grows large.

Asymptotic Order of Growth

The efficiency of two algorithms with growth functions $T_1(n)$ and $T_2(n)$:

- Asymptotic growth: We compare $T_1(n)$ and $T_2(n)$ as n grows large.
- Only the highest order terms dominate. Simplify $a * n^2 + b * n + c$ to $a * n^2$. (why?)

The efficiency of two algorithms with growth functions $T_1(n)$ and $T_2(n)$:

- Asymptotic growth: We compare $T_1(n)$ and $T_2(n)$ as n grows large.
- Only the highest order terms dominate. Simplify $a * n^2 + b * n + c$ to $a * n^2$. (why?)
- Constant of the highest order term is less important as n grows large. Simplify $a * n^2 + b * n + c$ to its order of growth $\Theta(n^2)$.

伺 ト イヨ ト イヨ ト

The efficiency of two algorithms with growth functions $T_1(n)$ and $T_2(n)$:

- Asymptotic growth: We compare $T_1(n)$ and $T_2(n)$ as n grows large.
- Only the highest order terms dominate. Simplify $a * n^2 + b * n + c$ to $a * n^2$. (why?)
- Constant of the highest order term is less important as n grows large. Simplify $a * n^2 + b * n + c$ to its order of growth $\Theta(n^2)$.

Example

Insertion Sort: Simplified Worst Case Execution Time Analysis

- Array is already sorted in reverse order. Hence $t_j = j$.
- We keep only the maximum order term.
- We disregard constants.

Order of Growth: Mathematical Definition

Big Theta

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.^1$

- We write $f(n) = \Theta(g(n))$ instead of $f(n) \in \Theta(g(n))$
- Pronounced g(n) is asymptotically a tight bound for f(n) OR f(n) is of order Θ of g(n).

To show $f(n) = \Theta(g(n))$ choose positive c_1 , c_2 and n_0 such that for all $n > n_0$ we have $0 \le c_1 * g(n) \le f(n) \le c_2 * g(n)$ • Show that $(1/2) * n^2 - 3^n = \Theta(n^2)$ 2n • Show that $6(n^3) \neq \Theta(n^2)$ s.t. Jc, c2, n2 >0 $r^2 - 3n \leq c_1 n^2$ œ c,n²≤ ir n \forall n>n

Asymptotic Upper and Lower Bounds

Asymptotic Upper Bound

 $O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.$

Asymptotic Lower Bound

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

- $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- Symmetry: $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Reflexivity, Transitivity of $= \Theta$, = O and $= \Omega$.

 $F(n) = \Theta(f(n)) \qquad \text{veflexivily} \\ f(n) = \Theta(g(n)) \land g(n) = \Theta(h(n)) \\ \implies F(n) = \Theta(h(n))$

Standard Mathematical Functions and their Properties For Self Study

forminated by $O(n^3)$

CLRS Section 3.2

P.K. Pandya Design and Analysis of Algorithms CS218M

