
Design and Analysis of Algorithms
CS218M

Asymptotic Complexity

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M



Resources

Textbook

Introduction to Algorithms, T.H. Cormen, C.E. Leicserson,
R.L. Rivest, C. Stein, Third Edition, PHI, 2014. CLRS

Course Webpage

Course URL: https://cse.iitb.ac.in/∼pandya58/CS218M/algo.html

Reference for Today’s Class: CLRS Ch 2.1,2.2 and Ch 3.1
Self Study Topics: CLRS Ch 3.2

P.K. Pandya Design and Analysis of Algorithms CS218M





Recap:

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language

Linear_Search(A,x):

found=false

for i from 1 to n

if A[i]==x

found=true

return

Indentation gives the block structure.

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language

Linear_Search(A,x):

found=false

for i from 1 to n

if A[i]==x

found=true

return

Indentation gives the block structure.

Control structures: if-else, while, for, repeat-until

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language

Linear_Search(A,x):

found=false

for i from 1 to n

if A[i]==x

found=true

return

Indentation gives the block structure.

Control structures: if-else, while, for, repeat-until

Comments // this is a comment.

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language

Linear_Search(A,x):

found=false

for i from 1 to n

if A[i]==x

found=true

return

Indentation gives the block structure.

Control structures: if-else, while, for, repeat-until

Comments // this is a comment.

Expressions and comditions.
Condition x + 1 > y
Assignments i = e, and multiple assignments i,j = j,i.

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (2)

All variables are local to procedures.

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (2)

All variables are local to procedures.

Primitive types integers, booleans, ...

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (2)

All variables are local to procedures.

Primitive types integers, booleans, ...

Objects and arrays are of reference type.

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (2)

All variables are local to procedures.

Primitive types integers, booleans, ...

Objects and arrays are of reference type.

Object have attributes: E.g. f has attribute f.x

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (2)

All variables are local to procedures.

Primitive types integers, booleans, ...

Objects and arrays are of reference type.

Object have attributes: E.g. f has attribute f.x

Array A[1..n]

Array length attribute A.Length
Array slice A[i..j] denotes list (slice) of elements A[i] to
A[j]

Example: Let A=[5,4,3,2,1]. Then, A[2..4]=[4,3,2].

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (3)

Procedures with Parameters. The return e1,e2,e3

statement will exit the procedure returning three values.

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (3)

Procedures with Parameters. The return e1,e2,e3

statement will exit the procedure returning three values.

Parameter passing for primitive types is by value

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (3)

Procedures with Parameters. The return e1,e2,e3

statement will exit the procedure returning three values.

Parameter passing for primitive types is by value

Parameter passing of Arrays and Objects is by reference

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (3)

Procedures with Parameters. The return e1,e2,e3

statement will exit the procedure returning three values.

Parameter passing for primitive types is by value

Parameter passing of Arrays and Objects is by reference

Recursive procedure invocations are permitted.

P.K. Pandya Design and Analysis of Algorithms CS218M



Pseudo Code Language (3)

Procedures with Parameters. The return e1,e2,e3

statement will exit the procedure returning three values.

Parameter passing for primitive types is by value

Parameter passing of Arrays and Objects is by reference

Recursive procedure invocations are permitted.

Boolean operators and, or are short-circuiting.
E.g. boolean condition x!=nil and x.f=y

P.K. Pandya Design and Analysis of Algorithms CS218M



Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

P.K. Pandya Design and Analysis of Algorithms CS218M



Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

Each primitive type variable (int, bool,...) is stored in one
word.

P.K. Pandya Design and Analysis of Algorithms CS218M



Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

Each primitive type variable (int, bool,...) is stored in one
word.

Variable access (load, store) takes constant time.

P.K. Pandya Design and Analysis of Algorithms CS218M



Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

Each primitive type variable (int, bool,...) is stored in one
word.

Variable access (load, store) takes constant time.

Each primitive operation takes constant time.

P.K. Pandya Design and Analysis of Algorithms CS218M



Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

Each primitive type variable (int, bool,...) is stored in one
word.

Variable access (load, store) takes constant time.

Each primitive operation takes constant time.

Program execution consists of a sequence of loads, stores,
primitive operations (e.g. +,*, and) as specified by the
pseudo code control flow.

P.K. Pandya Design and Analysis of Algorithms CS218M



Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

Each primitive type variable (int, bool,...) is stored in one
word.

Variable access (load, store) takes constant time.

Each primitive operation takes constant time.

Program execution consists of a sequence of loads, stores,
primitive operations (e.g. +,*, and) as specified by the
pseudo code control flow.

Each array access takes constant time.

P.K. Pandya Design and Analysis of Algorithms CS218M



Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

Each primitive type variable (int, bool,...) is stored in one
word.

Variable access (load, store) takes constant time.

Each primitive operation takes constant time.

Program execution consists of a sequence of loads, stores,
primitive operations (e.g. +,*, and) as specified by the
pseudo code control flow.

Each array access takes constant time.

There is no concurrency. We do not have cache memory,
paging, pipelining etc.

P.K. Pandya Design and Analysis of Algorithms CS218M



Modelling Execution time of an Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm

Growth Function

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm (2)

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm (2)

Growth Function in General Case

P.K. Pandya Design and Analysis of Algorithms CS218M



Best Case Execution Time of Insertion Sort

P.K. Pandya Design and Analysis of Algorithms CS218M



Best Case Execution Time of Insertion Sort

Growth Function in Best Case

Array is already sorted in correct order.

While loop terminates immediately tj = 1.

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm (4)

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm (4)

Best Case Execution Time tj = 1

P.K. Pandya Design and Analysis of Algorithms CS218M



Worst Case Execution Time of Insertion Sort

P.K. Pandya Design and Analysis of Algorithms CS218M



Worst Case Execution Time of Insertion Sort

Growth Function in Worst Case

Array is already sorted in reverse order.

While loop in line five executes j times. Hence tj = j .

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm (4)

P.K. Pandya Design and Analysis of Algorithms CS218M



Time Complexity of Insertion Sort Algorithm (4)

Worst Case Execution Time

P.K. Pandya Design and Analysis of Algorithms CS218M



Asymptotic Order of Growth

The efficiency of two algorithms with growth functions T1(n) and
T2(n):

Asymptotic growth: We compare T1(n) and T2(n) as n grows
large.

P.K. Pandya Design and Analysis of Algorithms CS218M



Asymptotic Order of Growth

The efficiency of two algorithms with growth functions T1(n) and
T2(n):

Asymptotic growth: We compare T1(n) and T2(n) as n grows
large.

Only the highest order terms dominate.
Simplify a ∗ n2 + b ∗ n + c to a ∗ n2. (why?)

P.K. Pandya Design and Analysis of Algorithms CS218M



Asymptotic Order of Growth

The efficiency of two algorithms with growth functions T1(n) and
T2(n):

Asymptotic growth: We compare T1(n) and T2(n) as n grows
large.

Only the highest order terms dominate.
Simplify a ∗ n2 + b ∗ n + c to a ∗ n2. (why?)
Constant of the highest order term is less important as n
grows large. Simplify a ∗ n2 + b ∗ n+ c to its order of growth
Θ(n2).

P.K. Pandya Design and Analysis of Algorithms CS218M



Asymptotic Order of Growth

The efficiency of two algorithms with growth functions T1(n) and
T2(n):

Asymptotic growth: We compare T1(n) and T2(n) as n grows
large.

Only the highest order terms dominate.
Simplify a ∗ n2 + b ∗ n + c to a ∗ n2. (why?)
Constant of the highest order term is less important as n
grows large. Simplify a ∗ n2 + b ∗ n+ c to its order of growth
Θ(n2).

Example

Let T1(n) = 104 ∗ n2 + 103 ∗ n + 106 and T2(n) = 10−4 ∗ n4.

P.K. Pandya Design and Analysis of Algorithms CS218M



Insertion Sort: Simplified Worst Case Execution Time
Analysis

Growth Function in Worst Case

Array is already sorted in reverse order.Hence tj = j .

We keep only the maximum order term.

We disregard constants.

P.K. Pandya Design and Analysis of Algorithms CS218M



Order of Growth: Mathematical Definition

Big Theta

We write f (n) = Θ(g(n)) instead of f (n) ∈ Θ(g(n))

Pronounced g(n) is asymptotically a tight bound for f (n) OR
f (n) is of order Θ of g(n).

P.K. Pandya Design and Analysis of Algorithms CS218M



Examples

To show f (n) = Θ(g(n)) choose positive c1, c2 and n0 such that
for all n > n0 we have 0 ≤ c1 ∗ g(n) ≤ f (n) ≤ c2 ∗ g(n)

Show that (1/2) ∗ n2 − 3n = Θ(n2)

Show that 6(n3) �= Θ(n2)

P.K. Pandya Design and Analysis of Algorithms CS218M





Asymptotic Upper and Lower Bounds

Asymptotic Upper Bound

Asymptotic Lower Bound

P.K. Pandya Design and Analysis of Algorithms CS218M





Properties

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and
f (n) = Ω(g(n)).

Symmetry: f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n))

Reflexivity, Transitivity of = Θ, = O and = Ω.

P.K. Pandya Design and Analysis of Algorithms CS218M





Standard Mathematical Functions and their Properties
For Self Study.

CLRS Section 3.2

P.K. Pandya Design and Analysis of Algorithms CS218M






