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Pseudo Code Language

Linear_Search(A,x):

found=false

for i from 1 to n

if A[i]==x

found=true

return

Indentation gives the block structure.
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Pseudo Code Language

Linear_Search(A,x):

found=false

for i from 1 to n

if A[i]==x

found=true

return

Indentation gives the block structure.

Control structures: if-else, while, for, repeat-until

Comments // this is a comment.

Expressions and comditions.
Condition x + 1 > y
Assignments i = e, and multiple assignments i,j = j,i.
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Pseudo Code Language (2)

All variables are local to procedures.
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Pseudo Code Language (2)

All variables are local to procedures.

Primitive types integers, booleans, ...

Objects and arrays are of reference type.

Object have attributes: E.g. f has attribute f.x

Array A[1..n]

Array length attribute A.Length
Array slice A[i..j] denotes list (slice) of elements A[i] to
A[j]

Example: Let A=[5,4,3,2,1]. Then, A[2..4]=[4,3,2].
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Pseudo Code Language (3)

Procedures with Parameters. The return e1,e2,e3

statement will exit the procedure returning three values.
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Pseudo Code Language (3)

Procedures with Parameters. The return e1,e2,e3

statement will exit the procedure returning three values.

Parameter passing for primitive types is by value

Parameter passing of Arrays and Objects is by reference

Recursive procedure invocations are permitted.

Boolean operators and, or are short-circuiting.
E.g. boolean condition x!=nil and x.f=y
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Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.
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Model of Computation: RAM

Random Access Memory Model.

Memory is organized as words.

Each primitive type variable (int, bool,...) is stored in one
word.

Variable access (load, store) takes constant time.

Each primitive operation takes constant time.

Program execution consists of a sequence of loads, stores,
primitive operations (e.g. +,*, and) as specified by the
pseudo code control flow.

Each array access takes constant time.

There is no concurrency. We do not have cache memory,
paging, pipelining etc.
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Modelling Execution time of an Algorithm
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Time Complexity of Insertion Sort Algorithm
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Time Complexity of Insertion Sort Algorithm

Growth Function
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Time Complexity of Insertion Sort Algorithm (2)
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Time Complexity of Insertion Sort Algorithm (2)

Growth Function in General Case
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Best Case Execution Time of Insertion Sort
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Best Case Execution Time of Insertion Sort

Growth Function in Best Case

Array is already sorted in correct order.

While loop terminates immediately tj = 1.
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Time Complexity of Insertion Sort Algorithm (4)
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Time Complexity of Insertion Sort Algorithm (4)

Best Case Execution Time tj = 1
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Worst Case Execution Time of Insertion Sort
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Worst Case Execution Time of Insertion Sort

Growth Function in Worst Case

Array is already sorted in reverse order.

While loop in line five executes j times. Hence tj = j .
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Time Complexity of Insertion Sort Algorithm (4)
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Time Complexity of Insertion Sort Algorithm (4)

Worst Case Execution Time
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Asymptotic Order of Growth

The efficiency of two algorithms with growth functions T1(n) and
T2(n):

Asymptotic growth: We compare T1(n) and T2(n) as n grows
large.
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Asymptotic Order of Growth

The efficiency of two algorithms with growth functions T1(n) and
T2(n):

Asymptotic growth: We compare T1(n) and T2(n) as n grows
large.

Only the highest order terms dominate.
Simplify a ∗ n2 + b ∗ n + c to a ∗ n2. (why?)
Constant of the highest order term is less important as n
grows large. Simplify a ∗ n2 + b ∗ n+ c to its order of growth
Θ(n2).

Example

Let T1(n) = 104 ∗ n2 + 103 ∗ n + 106 and T2(n) = 10−4 ∗ n4.
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Insertion Sort: Simplified Worst Case Execution Time
Analysis

Growth Function in Worst Case

Array is already sorted in reverse order.Hence tj = j .

We keep only the maximum order term.

We disregard constants.
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Order of Growth: Mathematical Definition

Big Theta

We write f (n) = Θ(g(n)) instead of f (n) ∈ Θ(g(n))

Pronounced g(n) is asymptotically a tight bound for f (n) OR
f (n) is of order Θ of g(n).
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Examples

To show f (n) = Θ(g(n)) choose positive c1, c2 and n0 such that
for all n > n0 we have 0 ≤ c1 ∗ g(n) ≤ f (n) ≤ c2 ∗ g(n)

Show that (1/2) ∗ n2 − 3n = Θ(n2)

Show that 6(n3) �= Θ(n2)
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Asymptotic Upper and Lower Bounds

Asymptotic Upper Bound

Asymptotic Lower Bound
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Properties

f (n) = Θ(g(n)) if and only if f (n) = O(g(n)) and
f (n) = Ω(g(n)).

Symmetry: f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n))

Reflexivity, Transitivity of = Θ, = O and = Ω.
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Standard Mathematical Functions and their Properties
For Self Study.

CLRS Section 3.2
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