
Design and Analysis of Algorithms
CS218M

Greedy Algorithms (2)

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M



The Greedy Paradigm

Build the solution by selecting elements (or making choices)
one by one.

A simple rule allows choice of element at each stage. Local
optimality.

Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.

P.K. Pandya Design and Analysis of Algorithms CS218M



Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

P.K. Pandya Design and Analysis of Algorithms CS218M



Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

P.K. Pandya Design and Analysis of Algorithms CS218M



Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

Let wt(A) = Σe∈A w(e). Then for all B ⊆ E , if B is a
spanning tree then wt(B) ≥ wt(A).

P.K. Pandya Design and Analysis of Algorithms CS218M



Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

Let wt(A) = Σe∈A w(e). Then for all B ⊆ E , if B is a
spanning tree then wt(B) ≥ wt(A).

P.K. Pandya Design and Analysis of Algorithms CS218M



Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

P.K. Pandya Design and Analysis of Algorithms CS218M



Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

P.K. Pandya Design and Analysis of Algorithms CS218M



Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

Prim

Extend current set of edges A having vertices UA with a minimum
weight edge going out of UA.

P.K. Pandya Design and Analysis of Algorithms CS218M



Generic MST Algorithm

Grow A one edge at a time.

Invariant: Current set of edges A is a subset of some MST.

An edge which can be added to A maintaining the invariant is
called a safe edge.

P.K. Pandya Design and Analysis of Algorithms CS218M



Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

P.K. Pandya Design and Analysis of Algorithms CS218M



Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

P.K. Pandya Design and Analysis of Algorithms CS218M



Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

Cut (S ,V − S) respects A if no edge of A is a crossing edge.

P.K. Pandya Design and Analysis of Algorithms CS218M



Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

Cut (S ,V − S) respects A if no edge of A is a crossing edge.

An edge (u, v) is a light edge if it is of minimum weight
amongst all edges crossing the cut.

P.K. Pandya Design and Analysis of Algorithms CS218M



Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

P.K. Pandya Design and Analysis of Algorithms CS218M



Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

P.K. Pandya Design and Analysis of Algorithms CS218M



Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

.

P.K. Pandya Design and Analysis of Algorithms CS218M



Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

P.K. Pandya Design and Analysis of Algorithms CS218M



Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

P.K. Pandya Design and Analysis of Algorithms CS218M



Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

P.K. Pandya Design and Analysis of Algorithms CS218M



Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}. Then T � is a spanning
tree.

P.K. Pandya Design and Analysis of Algorithms CS218M



Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}. Then T � is a spanning
tree.

wt(T �) = wt(T )− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T ).

P.K. Pandya Design and Analysis of Algorithms CS218M



Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}. Then T � is a spanning
tree.

wt(T �) = wt(T )− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T ).

Hence, T � is MST containing (u, v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees T1

and T2 (and merges these).

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees T1

and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees T1

and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.

Adding it using UNION gives A as set of trees represented as
disjoint sets.

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm: Example

P.K. Pandya Design and Analysis of Algorithms CS218M



Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

P.K. Pandya Design and Analysis of Algorithms CS218M



Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

P.K. Pandya Design and Analysis of Algorithms CS218M



Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

P.K. Pandya Design and Analysis of Algorithms CS218M



Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)

P.K. Pandya Design and Analysis of Algorithms CS218M



Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)

Implemeted using union by rank and path compression (CLRS
21.3, 21.4). For m operations over n element set, O(m · α(n))
where α(n) is very slowly growing (almost constant!).

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm for MST

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm for MST

Running Time

E · lg(E ) for sorting edges. Also, O(V ) of MAKE-SET and O(E )
of FIND-SET+UNION operations. Hence,
E · lg(E ) + (E + V )α(V ). Simplifies to O(E · lg(E )).

P.K. Pandya Design and Analysis of Algorithms CS218M



Kruskal Algorithm: Example

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) A and v . If no such edge
key = ∞.

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) A and v . If no such edge
key = ∞.

Maintain Q as a priority queue using the heap data structure.
Choose v by EXTRACT MIN(Q).

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) A and v . If no such edge
key = ∞.

Maintain Q as a priority queue using the heap data structure.
Choose v by EXTRACT MIN(Q).

After adding v , update key of all vertices adjecent to v which
are in Q.

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Prim Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Prim Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .

(loop at line 6) iterates V times and takes O(lg(V ) for each
EXTRACT-MIN. Hence V · lg(V ).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .

(loop at line 6) iterates V times and takes O(lg(V ) for each
EXTRACT-MIN. Hence V · lg(V ).

(loop at line 8) iterates 2 · E times. Each iteration takes
O(lg(V )) for change key. Hence O(E · lg(V )).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .

(loop at line 6) iterates V times and takes O(lg(V ) for each
EXTRACT-MIN. Hence V · lg(V ).

(loop at line 8) iterates 2 · E times. Each iteration takes
O(lg(V )) for change key. Hence O(E · lg(V )).

Hence, overall complexity O(E · lg(V )).

P.K. Pandya Design and Analysis of Algorithms CS218M



Single Source Shortest Paths

Given directed and weighted graph G = (V ,E , l) with nodes V ,
Edges E ⊆ V × V and l : E → �, and start node s ∈ V , for every
node t find smallest weight path v0, v1, . . . , vk where v0 = s and
vk = t and its weight d(t).

P.K. Pandya Design and Analysis of Algorithms CS218M



Single Source Shortest Paths

Given directed and weighted graph G = (V ,E , l) with nodes V ,
Edges E ⊆ V × V and l : E → �, and start node s ∈ V , for every
node t find smallest weight path v0, v1, . . . , vk where v0 = s and
vk = t and its weight d(t).

Weight of a path v0, v1, . . . , vk is Σk−1
i=0 l(vi , vi+1).

P.K. Pandya Design and Analysis of Algorithms CS218M



Single Source Shortest Paths

Given directed and weighted graph G = (V ,E , l) with nodes V ,
Edges E ⊆ V × V and l : E → �, and start node s ∈ V , for every
node t find smallest weight path v0, v1, . . . , vk where v0 = s and
vk = t and its weight d(t).

Weight of a path v0, v1, . . . , vk is Σk−1
i=0 l(vi , vi+1).

Shortest Path Tree as node attribute π: Let w .π = v give the
predecessor of w on the shortest path from s to w as v .

P.K. Pandya Design and Analysis of Algorithms CS218M



Dijkstra’s SSP Algorithm

We assume that le ≥ 0 for all e ∈ E . No negative edge
weights.

We maintain S ⊆ V for which shortest paths are found.

P.K. Pandya Design and Analysis of Algorithms CS218M



Dijkstra’s SSP Algorithm

We assume that le ≥ 0 for all e ∈ E . No negative edge
weights.

We maintain S ⊆ V for which shortest paths are found.

P.K. Pandya Design and Analysis of Algorithms CS218M



Dijkstra’s SSP Algorithm: Example

P.K. Pandya Design and Analysis of Algorithms CS218M



Invariant

For all u ∈ S , the d(u) gives the length of the shortest path
from s to u andπ gives the shortest path to u.

P.K. Pandya Design and Analysis of Algorithms CS218M



Invariant

For all u ∈ S , the d(u) gives the length of the shortest path
from s to u andπ gives the shortest path to u.

For all v /∈ S define d �(v) = min(u,v):u∈S d(u) + l(u, v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Invariant

For all u ∈ S , the d(u) gives the length of the shortest path
from s to u andπ gives the shortest path to u.

For all v /∈ S define d �(v) = min(u,v):u∈S d(u) + l(u, v).

Maintaining Invariant: Greedy Choice

For extending S , choose v /∈ S with minimum d �(v) and set
d(v) = d �(v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Correctness of Greedy Choice

If (u, v) is edge with u ∈ S and v /∈ S giving minimum
d(u) + l(u, v)then d(v) = d(u) + l(u, v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Dijkstra SSP Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Dijkstra SSP Algorithm

while loop iterates V times.

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Dijkstra SSP Algorithm

while loop iterates V times.

In each iteration, we scan all E edges to find the minimum
d �(v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Dijkstra SSP Algorithm

while loop iterates V times.

In each iteration, we scan all E edges to find the minimum
d �(v).

Total time O(V · E ).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Dijkstra SSP Algorithm

while loop iterates V times.

In each iteration, we scan all E edges to find the minimum
d �(v).

Total time O(V · E ).
If we compute and store d �(v) in an array and update it only
for required edges, complexity becomes O(V 2 + E ) which
simplifies to O(V 2).

P.K. Pandya Design and Analysis of Algorithms CS218M



Priority Queue based SSP Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Priority Queue based SSP Algorithm

We can improve the performance by storing V − S nodes in
MIN-PRIORITY QUEUE by the key d �(v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Priority Queue based SSP Algorithm

We can improve the performance by storing V − S nodes in
MIN-PRIORITY QUEUE by the key d �(v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Priority Queue based SSP Algorithm

We can improve the performance by storing V − S nodes in
MIN-PRIORITY QUEUE by the key d �(v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity

Initializing priority queue O(V ).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity

Initializing priority queue O(V ).

Loop (line 4) iterates O(V ) times. Hence EXTRACT-MIN
executes O(V ) times giving O(V · lg(V )).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity

Initializing priority queue O(V ).

Loop (line 4) iterates O(V ) times. Hence EXTRACT-MIN
executes O(V ) times giving O(V · lg(V )).

For loop (line 7) iterates O(E ) with 1 CHANGE-KEY
operation each. Gives O(E · lg(V )).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity

Initializing priority queue O(V ).

Loop (line 4) iterates O(V ) times. Hence EXTRACT-MIN
executes O(V ) times giving O(V · lg(V )).

For loop (line 7) iterates O(E ) with 1 CHANGE-KEY
operation each. Gives O(E · lg(V )).

Overall Complexity is O(E · lg(V )). Good for sparse graphs.

P.K. Pandya Design and Analysis of Algorithms CS218M


