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The Greedy Paradigm

Build the solution by selecting elements (or making choices)
one by one.

A simple rule allows choice of element at each stage. Local
optimality.

Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V ,E ,w)
with nodes V , Edges E ⊆ V × V and w : E → �, find A ⊆ E s.t.

A is a tree spanning V .

Let wt(A) = Σe∈A w(e). Then for all B ⊆ E , if B is a
spanning tree then wt(B) ≥ wt(A).
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Kruskal

Add lowest weight edge which does not form a cycle to current A.

Prim

Extend current set of edges A having vertices UA with a minimum
weight edge going out of UA.
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Generic MST Algorithm

Grow A one edge at a time.

Invariant: Current set of edges A is a subset of some MST.

An edge which can be added to A maintaining the invariant is
called a safe edge.
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Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.
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Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.
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Terminology

Given connected, undirected, weighted graph G = (V ,E ,w), and
A ⊆ E , define

Pair (S ,V − S) is a cut.

Edge (u, v) crosses the cut (S ,V − S) if u ∈ S and v /∈ S or
vice verse.

Cut (S ,V − S) respects A if no edge of A is a crossing edge.

An edge (u, v) is a light edge if it is of minimum weight
amongst all edges crossing the cut.
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Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.
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Main Property

Theorem

Let A subset of some MST. Let cut (S ,V − S) respect A and let
(u, v) be a light edge. Then, (u, v) is a safe edge.

.
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).
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Proof
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}. Then T � is a spanning
tree.
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}. Then T � is a spanning
tree.

wt(T �) = wt(T )− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T ).
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Proof

A gray edges, MST T . Let (u, v) /∈ T be a light-edge.

Let (x , y) ∈ T be crossing edge. (Must exist).

Hence w(u, v) ≤ w(x , y). (why?)

Let T � = T − {(x , y)} ∪ {(u, v)}. Then T � is a spanning
tree.

wt(T �) = wt(T )− w(x , y) + w(u, v).
Hence, wt(T �) ≤ wt(T ).

Hence, T � is MST containing (u, v).
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Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.
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Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees T1

and T2 (and merges these).
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Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees T1

and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.
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Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees T1

and T2 (and merges these).

Choose cut respecting A as (T1, S − T1). Clearly, (u, v) is
safe edge. Theorem applies.

Adding it using UNION gives A as set of trees represented as
disjoint sets.
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Kruskal Algorithm: Example
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)
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Disjoint Set Data Structure

Maintain S = (S1, . . . , Sk) with ui ∈ Si as unique representative.

MAKESET(u)

FINDSET(u)

UNION(u,v)

Implemeted using union by rank and path compression (CLRS
21.3, 21.4). For m operations over n element set, O(m · α(n))
where α(n) is very slowly growing (almost constant!).
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Kruskal Algorithm for MST
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Kruskal Algorithm for MST

Running Time

E · lg(E ) for sorting edges. Also, O(V ) of MAKE-SET and O(E )
of FIND-SET+UNION operations. Hence,
E · lg(E ) + (E + V )α(V ). Simplifies to O(E · lg(E )).
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Kruskal Algorithm: Example
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) A and v . If no such edge
key = ∞.
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edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) A and v . If no such edge
key = ∞.
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Choose v by EXTRACT MIN(Q).
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Prim Algorithm for MST

Maintain A as a single tree with set of vertices UA. Let
Q = S − UA.

In each iteration, we choose edge e with minimum weight
amongst {(u, v) | u ∈ UA ∧ v /∈ UA}. Clearly, this is safe
edge.

For each vertex v ∈ Q, priority v .key is weight of minimum
weight edge between (any vertex in) A and v . If no such edge
key = ∞.

Maintain Q as a priority queue using the heap data structure.
Choose v by EXTRACT MIN(Q).

After adding v , update key of all vertices adjecent to v which
are in Q.
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Prim Algorithm
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Prim Algorithm
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Complexity of Prim Algorithm
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Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.
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Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .
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Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .

(loop at line 6) iterates V times and takes O(lg(V ) for each
EXTRACT-MIN. Hence V · lg(V ).
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Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .

(loop at line 6) iterates V times and takes O(lg(V ) for each
EXTRACT-MIN. Hence V · lg(V ).

(loop at line 8) iterates 2 · E times. Each iteration takes
O(lg(V )) for change key. Hence O(E · lg(V )).

P.K. Pandya Design and Analysis of Algorithms CS218M



Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V ) iterations.

(line 5) O(V ) for forming MIN-priority queue of V .

(loop at line 6) iterates V times and takes O(lg(V ) for each
EXTRACT-MIN. Hence V · lg(V ).

(loop at line 8) iterates 2 · E times. Each iteration takes
O(lg(V )) for change key. Hence O(E · lg(V )).

Hence, overall complexity O(E · lg(V )).
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Single Source Shortest Paths

Given directed and weighted graph G = (V ,E , l) with nodes V ,
Edges E ⊆ V × V and l : E → �, and start node s ∈ V , for every
node t find smallest weight path v0, v1, . . . , vk where v0 = s and
vk = t and its weight d(t).
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Single Source Shortest Paths

Given directed and weighted graph G = (V ,E , l) with nodes V ,
Edges E ⊆ V × V and l : E → �, and start node s ∈ V , for every
node t find smallest weight path v0, v1, . . . , vk where v0 = s and
vk = t and its weight d(t).

Weight of a path v0, v1, . . . , vk is Σk−1
i=0 l(vi , vi+1).
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Single Source Shortest Paths

Given directed and weighted graph G = (V ,E , l) with nodes V ,
Edges E ⊆ V × V and l : E → �, and start node s ∈ V , for every
node t find smallest weight path v0, v1, . . . , vk where v0 = s and
vk = t and its weight d(t).

Weight of a path v0, v1, . . . , vk is Σk−1
i=0 l(vi , vi+1).

Shortest Path Tree as node attribute π: Let w .π = v give the
predecessor of w on the shortest path from s to w as v .
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Dijkstra’s SSP Algorithm

We assume that le ≥ 0 for all e ∈ E . No negative edge
weights.

We maintain S ⊆ V for which shortest paths are found.
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Dijkstra’s SSP Algorithm

We assume that le ≥ 0 for all e ∈ E . No negative edge
weights.

We maintain S ⊆ V for which shortest paths are found.
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Dijkstra’s SSP Algorithm: Example
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Invariant

For all u ∈ S , the d(u) gives the length of the shortest path
from s to u andπ gives the shortest path to u.
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Invariant

For all u ∈ S , the d(u) gives the length of the shortest path
from s to u andπ gives the shortest path to u.

For all v /∈ S define d �(v) = min(u,v):u∈S d(u) + l(u, v).
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Invariant

For all u ∈ S , the d(u) gives the length of the shortest path
from s to u andπ gives the shortest path to u.

For all v /∈ S define d �(v) = min(u,v):u∈S d(u) + l(u, v).

Maintaining Invariant: Greedy Choice

For extending S , choose v /∈ S with minimum d �(v) and set
d(v) = d �(v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Correctness of Greedy Choice

If (u, v) is edge with u ∈ S and v /∈ S giving minimum
d(u) + l(u, v)then d(v) = d(u) + l(u, v).
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Complexity of Dijkstra SSP Algorithm
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Complexity of Dijkstra SSP Algorithm

while loop iterates V times.
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Complexity of Dijkstra SSP Algorithm

while loop iterates V times.

In each iteration, we scan all E edges to find the minimum
d �(v).
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Complexity of Dijkstra SSP Algorithm

while loop iterates V times.

In each iteration, we scan all E edges to find the minimum
d �(v).

Total time O(V · E ).
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Complexity of Dijkstra SSP Algorithm

while loop iterates V times.

In each iteration, we scan all E edges to find the minimum
d �(v).

Total time O(V · E ).
If we compute and store d �(v) in an array and update it only
for required edges, complexity becomes O(V 2 + E ) which
simplifies to O(V 2).
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Priority Queue based SSP Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Priority Queue based SSP Algorithm

We can improve the performance by storing V − S nodes in
MIN-PRIORITY QUEUE by the key d �(v).
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Priority Queue based SSP Algorithm

We can improve the performance by storing V − S nodes in
MIN-PRIORITY QUEUE by the key d �(v).
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Complexity
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Complexity

Initializing priority queue O(V ).
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Complexity

Initializing priority queue O(V ).

Loop (line 4) iterates O(V ) times. Hence EXTRACT-MIN
executes O(V ) times giving O(V · lg(V )).
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Complexity

Initializing priority queue O(V ).

Loop (line 4) iterates O(V ) times. Hence EXTRACT-MIN
executes O(V ) times giving O(V · lg(V )).

For loop (line 7) iterates O(E ) with 1 CHANGE-KEY
operation each. Gives O(E · lg(V )).
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Complexity

Initializing priority queue O(V ).

Loop (line 4) iterates O(V ) times. Hence EXTRACT-MIN
executes O(V ) times giving O(V · lg(V )).

For loop (line 7) iterates O(E ) with 1 CHANGE-KEY
operation each. Gives O(E · lg(V )).

Overall Complexity is O(E · lg(V )). Good for sparse graphs.
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