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The Greedy Paradigm

@ Build the solution by selecting elements (or making choices)
one by one.

@ A simple rule allows choice of element at each stage. Local
optimality.

@ Greedy choice property: The current selection cannot be
removed (no backtracking/exploring alternative choices).

@ The final solution must be optimal.

Sequence of locally optimalchoices gives globally optimal solution.

Examples: Picking 10 coins, Finding shortest path, Minimum
Spanning Tree.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.

@ Ais a tree spanning V.
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.

@ Ais a tree spanning V.

o Let wt(A) = X.ca w(e). Then forall BC E, if Bis a
spanning tree then wt(B) > wt(A).
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Minimum Spanning Tree (MST)

Given connected and weighted undirected graph G = (V, E, w)
with nodes V, Edges EC V x Vandw: E — R, find AC E s.t.

@ Ais a tree spanning V.

o Let wt(A) = X.ca w(e). Then forall BC E, if Bis a
spanning tree then wt(B) > wt(A).
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Add lowest weight edge which does not form a cycle to current A.
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Greedy Paradigm + Data Structures

Grow A adding one edge at a time.

Add lowest weight edge which does not form a cycle to current A.

Extend current set of edges A having vertices Us with a minimum
weight edge going out of Ua.
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Generic MST Algorithm

@ Grow A one edge at a time.
@ Invariant: Current set of edges A is a subset of some MST. ¢

@ An edge which can be added to A maintaining the invariant is
called a safe edge.

GENERIC-MST(G, w)

1 A=90

2 while A does not form a spanning tree
3 find an edge (u, v) that is safe for A
4 A= AU{(u,v)}

5 return A
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Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define

e Pair (S,V —S)is a cut.

P.K. Pandya Design and Analysis of Algorithms CS218M



Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define

e Pair (S,V —S)is a cut.

e Edge (u,v) crosses the cut (S,V —S)ifue Sandv ¢S or
vice verse.
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Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define

e Pair (S,V —S)is a cut.
e Edge (u,v) crosses the cut (S,V —S)ifue Sandv ¢S or
vice verse.

e Cut (S,V — S) respects A if no edge of A is a crossing edge.
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Terminology

Given connected, undirected, weighted graph G = (V, E, w), and
A C E, define
e Pair (S,V —S)is a cut.
e Edge (u,v) crosses the cut (S,V —S)ifue Sandv ¢S or
vice verse.
e Cut (S,V — S) respects A if no edge of A is a crossing edge.
@ An edge (u,v) is a light edge if it is of minimum weight
amongst all edges crossing the cut.
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Main Property

Let A subset of some MST. Let cut (S,V — S) respect A and let
(u,v) be a light edge. Then, (u,v) is a safe edge.
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Main Property

Let A subset of some MST. Let cut (S,V — S) respect A and let
(u,v) be a light edge. Then, (u,v) is a safe edge.
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

o Let (x,y) € T be crossing edge. (Must exist).
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

o Let (x,y) € T be crossing edge. (Must exist).
@ Hence w(u,v) < w(x,y). (why?)
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

o Let (x,y) € T be crossing edge. (Must exist).

@ Hence w(u,v) < w(x,y). (why?)

olet 77" = T—{(x,y)} U {(u,v)}. Then T’ is a spanning
tree.
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

o Let (x,y) € T be crossing edge. (Must exist).

@ Hence w(u,v) < w(x,y). (why?)

olet 77" = T—{(x,y)} U {(u,v)}. Then T’ is a spanning
tree.

o wt(T') = wt(T)— w(x,y)+ w(u,v).
Hence, wt(T') < wt(T).
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o A gray edges, MST T. Let (u,v) ¢ T be a light-edge.

o Let (x,y) € T be crossing edge. (Must exist).

@ Hence w(u,v) < w(x,y). (why?)

olet 77" = T—{(x,y)} U {(u,v)}. Then T’ is a spanning
tree.

o wt(T') = wt(T)— w(x,y)+ w(u,v).
Hence, wt(T') < wt(T).

@ Hence, T’ is MST containing (u, v).
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Kruskal Algorithm and Correctness

At each iteration.

@ Add edges from E to A in order of increasing weights.
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Kruskal Algorithm and Correctness

At each iteration.
@ Add edges from E to A in order of increasing weights.

@ A gives rise to a set of disjoint trees.
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Kruskal Algorithm and Correctness

At each iteration.
@ Add edges from E to A in order of increasing weights.
@ A gives rise to a set of disjoint trees.

e Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees Tp
and T, (and merges these).
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Kruskal Algorithm and Correctness

At each iteration.
@ Add edges from E to A in order of increasing weights.
@ A gives rise to a set of disjoint trees.

e Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees Tp
and T, (and merges these).

e Choose cut respecting A as (T1,S — T1). Clearly, (u,v) is
safe edge. Theorem applies.
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Kruskal Algorithm and Correctness

At each iteration.

Add edges from E to A in order of increasing weights.

A gives rise to a set of disjoint trees.

Kruskal iteration extends A by minimum weight edge (u, v)
which does not form a cycle. Thus, it connects two trees T;
and T, (and merges these).

Choose cut respecting A as (T1,S — T1). Clearly, (u,v) is
safe edge. Theorem applies.

Adding it using UNION gives A as set of trees represented as
disjoint sets.
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Kruskal Algorithm: Example
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
e MAKESET (u)
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Maintain S = (S51,...,Sk) with u; € S; as unique representative.
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
e MAKESET (u)
e FINDSET(u)
e UNION(u,v)
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Disjoint Set Data Structure

Maintain S = (S51,...,Sk) with u; € S; as unique representative.
e MAKESET (u
e FINDSET(u)
e UNION(u,v)
@ Implemeted using union by rank and path compression (CLRS

21.3, 21.4). For m operations over n element set, O(m - a(n))
where a(n) is very slowly growing (almost constant!).
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Kruskal Algorithm for MST

MST-KRUSKAL(G, w)

O 00N N B~ W~

A=90
for each vertex v € G.V O C\/)

MAKE-SET(v) CL T
sort the edges of G.E into nondecreasing order by weight w @( — Lb ‘)
for each edge (u,v) € G.E, taken in nondecreasing order by weight

if FIND-SET (1) # FIND-SET(v)

A= AU{(u,v)}

return AUNION(M’ K O CE)
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Kruskal Algorithm for MST

MST-KRUSKAL(G, w)

1 A=90

2 for each vertex v € G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u,v) € G.E, taken in nondecreasing order by weight
6 if FIND-SET (1) # FIND-SET(v)

7 A= AU{(u,v)} ‘}

8 UNION(u, v)

9 return A

Running Time

E - Ig(E) for sorting edges. Also, O(V) of MAKE-SET and O(E)
of FIND-SET+UNION operations. Hence,
E - Ig(E) + (E+ V)o(V). Simplifies to O(E - Ig(E)). (e
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Kruskal Algorithm: Example
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.

@ For each vertex v € Q, priority v.key is weight of minimum
weight edge between (any vertex in) A and v. If no such edge
key = oo.
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.

@ For each vertex v € Q, priority v.key is weight of minimum
weight edge between (any vertex in) A and v. If no such edge
key = oo.

@ Maintain @ as a priority queue using the heap data structure.
Choose v by EXTRACT_MIN(Q).
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Prim Algorithm for MST

@ Maintain A as a single tree with set of vertices Uy. Let
QR=S5—-Ua.

@ In each iteration, we choose edge e with minimum weight
amongst {(u,v) | u€ UaAv ¢ Ua}. Clearly, this is safe
edge.

@ For each vertex v € Q, priority v.key is weight of minimum
weight edge between (any vertex in) A and v. If no such edge
key = oo.

@ Maintain @ as a priority queue using the heap data structure.
Choose v by EXTRACT_MIN(Q).

o After adding v, update key of all vertices adjecent to v which
are in Q.
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Prim Algorithm
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A Mg_\ CQ:\/”)"ﬂ

MST-PRIM(G, w, r)

1 foreachu € G.V

2 u.key = O (‘\j )

3 u.m = NIL

4 rkey =0

5 =G.V O(dl) )
6 whlle O#0 V )
7 u = EXTRACT-MIN(Q) O (\/ \03/(

8 for cach v € G.Adj[u] O Qrv

9 ﬁveQWV)<vk€y

10 = U

11 vkgy—w(u ‘l)) 3 OQF [La )
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Complexity of Prim Algorithm

MST-PRIM(G, w, r)

1 foreachu € G.V

2 Uu.key = oo

3 u.m = NIL

4 rkey =0

5 0=G.V

6 while O # 0

7 u = EXTRACT-MIN(Q)
8 for each v € G.Adj[u]

9 ifve Qandw(u,v) < v.key
0 VT =u

1 v.key = w(u,v)
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Complexity of Prim Algorithm (2)

o (loop at line 1) executes O(V/) iterations.
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Complexity of Prim Algorithm (2)

o (loop at line 1) executes O( V) iterations.
e (line 5) O(V) for forming MIN-priority queue of V.
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Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V/) iterations.

(
(loop at line 6) iterates V times and takes O(lg(V') for each
EXTRACT-MIN. Hence V - Ig(V).

°
e (line 5) O(V) for forming MIN-priority queue of V.
°
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Complexity of Prim Algorithm (2)

(loop at line 1) executes O(V/) iterations.

(

(loop at line 6) iterates V times and takes O(/g(V') for each
EXTRACT-MIN. Hence V - Ig(V).

o (loop at line 8) iterates 2 - E times. Each iteration takes
O(lg(V)) for change key. Hence O(E - Ig(V)).

°
e (line 5) O(V) for forming MIN-priority queue of V.
°
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Complexity of Prim Algorithm (2)

o (loop at line 1) executes O( V) iterations.
e (line 5) O(V) for forming MIN-priority queue of V.

@ (loop at line 6) iterates V times and takes O(lg(V) for each
EXTRACT-MIN. Hence V - Ig(V).

o (loop at line 8) iterates 2 - E times. Each iteration takes
O(lg(V)) for change key. Hence O(E - Ig(V)).

@ Hence, overall complexity O(E - Ig(V)).
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Single Source Shortest Paths

Given directed and weighted graph G = (V/, E, /) with nodes V/,
Edges EC V x V and I : E — R, and start node s € V, for every
node t find smallest weight path vp, v, ..., vk where vy = s and
vk = t and its weight d(t).
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Single Source Shortest Paths

Given directed and weighted graph G = (V/, E, /) with nodes V/,
Edges EC V x V and I : E — R, and start node s € V, for every
node t find smallest weight path vp, v, ..., vk where vy = s and
vk = t and its weight d(t).

o Weight of a path vg, vy, ..., v is Zf-‘;ol I(vi, vig1).
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Single Source Shortest Paths

Given directed and weighted graph G = (V/, E, /) with nodes V/,
Edges EC V x V and I : E — R, and start node s € V, for every
node t find smallest weight path vp, v, ..., vk where vy = s and
vk = t and its weight d(t).
o Weight of a path vg, vy, ..., v is Zf-‘;ol I(vi, vig1).
@ Shortest Path Tree as node attribute 7: Let w.m = v give the
predecessor of w on the shortest path from s to w as v.
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Dijkstra's SSP Algorithm

@ We assume that /. > 0 for all e € E. No negative edge
weights.

@ We maintain S C V for which shortest paths are found.
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Dijkstra's SSP Algorithm

@ We assume that /. > 0 for all e € E. No negative edge
weights.

@ We maintain S C V for which shortest paths are found.

Dijkstra's Algorithm (G, £)
Let S be the set of explored nodes
For each ue€S, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v ¢S with at least one edge from S for which
d'(v) =min,_(, yyues d(1) + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile
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Invariant

e For all u € S, the d(u) gives the length of the shortest path
from s to u andw gives the shortest path to u.
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Invariant

e For all u € S, the d(u) gives the length of the shortest path
from s to u andw gives the shortest path to u.

o Forall v ¢ S define d'(v) = ming, ).ues d(u)+I(u,v).
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Invariant

e For all u € S, the d(u) gives the length of the shortest path
from s to u andw gives the shortest path to u.

o Forall v ¢ S define d'(v) = ming, ).ues d(u)+I(u,v).

Maintaining Invariant: Greedy Choice

For extending S, choose v ¢ S with minimum d’(v) and set
d(v) =d'(v).
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Correctness of Greedy Choice

@ If (u,v) is edge with u € S and v ¢ S giving minimum
d(u) + I(u, v)then d(v) = d(u) + I(u, v).
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Complexity of Dijkstra SSP Algorithm

Dijkstra's Algorithm (G, ¢)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v ¢S with at least one edge from S for which
d'(v) =mineg—(y,pyues d() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile
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Complexity of Dijkstra SSP Algorithm

Dijkstra's Algorithm (G, ¢)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v ¢S with at least one edge from S for which
d'(v) =mineg—(y,pyues d() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile

@ while loop iterates V times.
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Complexity of Dijkstra SSP Algorithm

Dijkstra's Algorithm (G, ¢)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v ¢S with at least one edge from S for which
d'(v) =mineg—(y,pyues d() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile

@ while loop iterates V times.
@ In each iteration, we scan all E edges to find the minimum

d'(v).
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Complexity of Dijkstra SSP Algorithm

Dijkstra's Algorithm (G, ¢)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v ¢S with at least one edge from S for which
d'(v) =mineg—(y,pyues d() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile

@ while loop iterates V times.

@ In each iteration, we scan all E edges to find the minimum
d'(v).

e Total time O(V - E).
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Complexity of Dijkstra SSP Algorithm

Dijkstra's Algorithm (G, ¢)
Let S be the set of explored nodes
For each ueS, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v ¢S with at least one edge from S for which
d'(v) =mineg—(y,pyues d() + £, is as small as possible
Add v to S and define d(v)=d'(v)
EndWhile

@ while loop iterates V times.

@ In each iteration, we scan all E edges to find the minimum
d'(v).

e Total time O(V - E).

e If we compute and store d’(v) in an array and update it only
for required edges, complexity becomes O(V? + E) which
simplifies to O(V?).
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Priority Queue based SSP Algorithm
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Priority Queue based SSP Algorithm

@ We can improve the performance by storing V — S nodes in
MIN-PRIORITY QUEUE by the key d’(v).
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Priority Queue based SSP Algorithm

@ We can improve the performance by storing V — S nodes in
MIN-PRIORITY QUEUE by the key d’(v).
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Priority Queue based SSP Algorithm

@ We can improve the performance by storing V — S nodes in
MIN-PRIORITY QUEUE by the key d’(v).

DUKSTRA(G, w, 5)

1 INITIALIZE-SINGLE-SOURCE(G,s)
2 §=90

3 0=GV

4 while O #0

5 u = EXTRACT-MIN(Q)

6 S =5U{u}

7 for each vertex v € G. Adj[u]

8 RELAX(u, v, w)
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Complexity
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Complexity

e Initializing priority queue O(V/).
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Complexity

e Initializing priority queue O(V/).
@ Loop (line 4) iterates O(V') times. Hence EXTRACT-MIN
executes O(V) times giving O(V - Ig(V)).
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Complexity

e Initializing priority queue O(V/).

@ Loop (line 4) iterates O(V') times. Hence EXTRACT-MIN
executes O(V) times giving O(V - Ig(V)).

e For loop (line 7) iterates O(E) with 1 CHANGE-KEY
operation each. Gives O(E - Ig(V)).
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Complexity

e Initializing priority queue O(V/).

@ Loop (line 4) iterates O(V') times. Hence EXTRACT-MIN
executes O(V) times giving O(V - Ig(V)).

e For loop (line 7) iterates O(E) with 1 CHANGE-KEY
operation each. Gives O(E - Ig(V)).

@ Overall Complexity is O(E - Ig(V')). Good for sparse graphs.
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