Design and Analysis of Algorithms
CS218M

Amortized Complexity

Paritosh Pandya
Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).

o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).
o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).
@ Multipop(S,k) pops k elements and leaves stack empty if
k> |S|.
MULTIPOP(S. k)

1 while not STACK-EMPTY (S) and k > 0
2 Por(S)
3 k=k—1

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).

o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).
@ Multipop(S,k) pops k elements and leaves stack empty if
k> |S|.
MULTIPOP(S. k)

1 while not STACK-EMPTY (S) and k > 0
2 Por(S)
3 k=k—1

e Worst case complexity of Multipop(S,k) is O(min(s, k).
Hence, Aggregate cost of n operations is O(n?). Pessimistic.

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).
o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).
@ Multipop(S,k) pops k elements and leaves stack empty if
k> |S|.
MuULTIPOP(S, k)

1 while not STACK-EMPTY (S) and k > 0
2 Por(S)
3 k=k—1

e Worst case complexity of Multipop(S,k) is O(min(s, k).
Hence, Aggregate cost of n operations is O(n?). Pessimistic.

@ Before you delete k elements you must do k push, each of
O(1). Hence Aggregate cost of k push and one Muplipop(S,k)
is O(k) and amortized cost per operation is O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and

o ldea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and

o ldea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

@ given a sequence of n operations, let ¢; be the actual cost of
op; and let ¢ be the amortized cost of op;.

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and

o ldea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

@ given a sequence of n operations, let ¢; be the actual cost of
op; and let ¢ be the amortized cost of op;.

o Let, CREDIT = X, & — X7, c¢i. We require that
CREDIT > 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and

o ldea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

@ given a sequence of n operations, let ¢; be the actual cost of
op; and let ¢ be the amortized cost of op;.

o Let, CREDIT = X, & — X7, c¢i. We require that
CREDIT > 0.

e Potential of a datatype configuration D is denoted (D). It
gives CREDIT retained by reaching D. It can define Credit

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential

o Let op; take datatype from config D;_1 to D;.
Hence & = ¢ + q)(D,')—(D(D,'_l)..
Hence, X7, & = (X7 ¢i) + ®(D,) — ®(Do)

o If invariantly®(D;) — ®(D;_1) > 0 then aggregate X ; & is
upperbound on Sigma?_; ¢;.

@ Potential function determines amortized cost & of each
operation.

e We typically define (D) = 0 and require that ®(D;) > 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Let (S) = |S| the number of elements in the stack.

P.K. Pandya Design and Analysis of Algorithms CS218M

Let (S) = |S| the number of elements in the stack.
@ Hence Dy = 0 and D; > 0 for all D;.

P.K. Pandya Design and Analysis of Algorithms CS218M

Let (S) = |S| the number of elements in the stack.

Hence Dy = 0 and D; > 0 for all D;.

Let Op; = Push(S, x): We have A® = 1.
Hence, & = ¢+ AP(D) = 1+ 1.

Let Op; = Pop(S: We have A® = —1.
Hence, § = ¢+ AP(D) = 1+ (-1).
Let Op; = Multipop(s, k): We have A® = — min(s, k).

Hence, & = c¢i+ A® = min(s, k) + (—min(s, k)) = 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Let (S) = |S| the number of elements in the stack.

Hence Dy = 0 and D; > 0 for all D;.

Let Op; = Push(S, x): We have A® = 1.
Hence, & = ¢+ AP(D) = 1+ 1.

Let Op; = Pop(S: We have A® = —1.
Hence, § = ¢+ AP(D) = 1+ (-1).
Let Op; = Multipop(s, k): We have A® = — min(s, k).

Hence, & = c¢i+ A® = min(s, k) + (—min(s, k)) = 0.

Hence amortized cost of each stack operation is O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

—
Q
)
c
=
(@]
)
>
| &
(q°]
=
m

Total
cost

%YQ\

O
0000O0O0O0O0

eSS

Counter
value

0

0

1

2

00000001

00000010

4

00000011

0000O0TO00

4
5
6
7
8
9

10

11

00000T1T01

10
11
15
16
18
19
22
23

0000O0T 10

00000111

00001000

00001001

00001010

00001011

00001110 25

14
15
16

26
31

00001 1 11

00010000

Design and Analysis of Algorithms CS218M

P.K. Pandya

Binary Counter of k bits

represented as bit-array A[0..k — 1].

INCREMENT(A)

i =0

while i < A.length and A[i] == 1
Ali] =0
i=i+1

ifi < A.length
Alil =1

(o) WV, TN N OV I S

P.K. Pandya Design and Analysis of Algorithms CS218M

Binary Counter of k bits

represented as bit-array A[0..k — 1].

INCREMENT(A)

i=0

while i < A.length and A[i] ==
Ali] =0
i=i+1

ifi < A.length
Alil =1

(o) WV, TN N OV I S

e Worst case complexity of INC is (k).

P.K. Pandya Design and Analysis of Algorithms CS218M

Binary Counter of k bits

represented as bit-array A[0..k — 1].

INCREMENT(A)

i=0

while i < A.length and A[i] == 1
Ali] =0
i=i+1

ifi < A.length
Alil =1

(o) WV, TN N OV I S

e Worst case complexity of INC is (k).

@ Amortized worst case complexity of INC is ?77.

P.K. Pandya Design and Analysis of Algorithms CS218M

Amortized Complexity: Counter

Let ®(D) be number of trailing 1 in config D. Let t; = ®(Dj_;.
e ci=t+1 Also Ad = —t.
@ Hence & = ¢+ A® = 1. Hence O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table

e TABLE-INSERT
o TABLE-DELETE

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table

e TABLE-INSERT
o TABLE-DELETE

@ Table Expansion:
T .size the size of table.
T .num Number of occupying elements in table.

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table

e TABLE-INSERT
o TABLE-DELETE

@ Table Expansion:
T .size the size of table.
T .num Number of occupying elements in table.

o If T.size = T.num then before insert, allocate double sized
table and copy.

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table Insert

TABLE-INSERT(T, x)
if T.size == 0
allocate T.table with 1 slot
T.size = 1
if 7. num == T.size
allocate new-table with 2 - T.size slots
insert all items in 7. table into new-table
free T.table
T.table = new-table
T.size = 2+ T.size
insert x into T.table
T.num = T.num + 1

— O N0 1 RN =

— p—

P.K. Pandya Design and Analysis of Algorithms CS218M

INSERT-TABLE

P.K. Pandya Design and Analysis of Algorithms CS218M

INSERT-TABLE

o If T.num < T .size then ¢; = 1.

P.K. Pandya Design and Analysis of Algorithms CS218M

INSERT-TABLE

o If T.num < T .size then ¢; = 1.

o If T.num = T .size then ¢; = num;

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.
e &(T) = 2- T.num — T.size.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.
e &(T) = 2- T.num — T.size.
o Initially, T.num = T.size = 0. Hence &5 = 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.
e &(T) = 2- T.num — T.size.
o Initially, T.num = T.size = 0. Hence &5 = 0.
@ Assume occupancy « is at least 0.5. Hence, ®; > 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

e &(T) = 2- T.num — T.size.

o Initially, T.num = T.size = 0. Hence &5 = 0.

@ Assume occupancy « is at least 0.5. Hence, ®; > 0.
@ Case 1: T.num < T.size. Then,

&G = ¢+ o -,
= 1+ (2 num; — size;) — (2 - num;_; — sizei_1)
= 14 (2 num; — size;) — (2(num; — 1) — size;)
3.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

®(T) = 2-T.num — T.size.

Initially, T.num = T .size = 0. Hence ¢ = 0.

Assume occupancy « is at least 0.5. Hence, ®; > 0.

Case 1: T.num < T.size. Then,

G = 6+ o —di,
= 1+ (2 num; — size;) — (2 - num;_; — sizei_1)
= 14 (2 num; — size;) — (2(num; — 1) — size;)

3.

@ Case 2: T.num = T .size. Then,
¢ = ¢ + ([), — CI),,l
num; + (2 - num; — size;) — (2 - num; _; — size;_,)
= num; + (2 - num; — 2 - (num; — 1)) — Q(num; — 1) — (num; — 1))
num; + 2 — (num; — 1)
3.

TABLE-DELETE

@ Let a = T.num/T .size be the load factor.
@ Double the table on INSERT when o;_1 = 1.

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

@ Let « = T.num/ T .size be the load factor.
@ Double the table on INSERT when o;_1 = 1.
e Halve the table on DELETE when «oj_; =1/2

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let « = T.num/ T .size be the load factor.
Double the table on INSERT when «;_1 = 1.
Halve the table on DELETE when aj_1 =1/2

Aggregate complexity of n operations becomes O(n?).

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let « = T.num/ T .size be the load factor.

Double the table on INSERT when «;_1 = 1.

Halve the table on DELETE when aj_1 =1/2
Aggregate complexity of n operations becomes O(n?).
Halve the table on DELETE when aj_1 = 1/4

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let « = T.num/ T .size be the load factor.

Double the table on INSERT when «;_1 = 1.

Halve the table on DELETE when aj_1 =1/2
Aggregate complexity of n operations becomes O(n?).
Halve the table on DELETE when aj_1 = 1/4

2-T.num — T.size ifa(T)>1/2,
T.size/2 — T.num ifa(T) <1/2.

O(T) =

P.K. Pandya Design and Analysis of Algorithms CS218M

e
X
1
<
e [~
.M 7 =4] AV
= 87
s L =t =
4 [y - 3 \7/{..\ TN
N v 4 Al
JD b(/ \m. = w H‘
g T\ gl ‘
oA D 1P A aY
N
;. HH\ AN J k)
Y = ~% A S
< 2 O g <&
> c— .- N o)
¢ g = ~
T © s B P .
//..w \V m .‘l wr \\.v\] AV.\N
Oy T o e 2
~ < v
S J

C

Noble va

o

N~
=N
—‘
g Y
PR =
N
D 1 =
LI T A
1 =
T >4
P / \~ (
L N/ —
> 2 Yt .\- ®
o] ——
q -
v ° ~
\ .U\ 7 \
—~ | . 7 <
LN e
WY :
\\Ml P
N -
AN
[N y /l\\ c A \\\
M
L
1 ff\/ T
1
W) NE,
N
)

=
- i
(¥ —
T N
. ~
U dl
PU) -l
~— V!
~J { ™~
< ST
/.\") r ~
1 7 — N[mv
ra S \l ¥ S
N7, T ~ 1)
() -~ ~ <17
~ ~N —>
3 AR C ._ P#
< —(m\y T —.."
2 = b w N
= ™ =P \),\,v St
.\\.\) l\.\al..-\ \M U -
BERE IR RS
— ~ N \.lb\ . Q0 < { u\\“
L < £ 7 -
\ _u\../ —
“n\nl‘\cx \n’)’ A

EMJLZE D '(%%)
ETINNTD O
kY q\‘.. e | L
AR) LN
' EEE
Ve v [V = U=
InAge
}1 Y | TVl
LZ_VU~AVY IS
> \se
a)= Me S12EN (I) A
]]L/‘n’:\\ “- i* "L \ / J
3 MEMIZED (Wl b))
Q_JQ’\”‘\"\.T V)

(@Y%) a)
L bad e \
i~ u/ \q Q &
] J&VM | Q Y“
M (494 C .m
S g £_oN =%
Ll Vil 2N A -
Pl | = I 9o |9
& S| |7 s <
m m.. W) rm \ >
N. — > .m. q o
W ‘m d\ b
J M2) XL
7 - o=
d N A __SD DS
<T >) cy s rmw
AR SN YRR
\m' 9_ vV M xl'rk W E
§) Qs
) .\MH ..rl < \
b N J 9| W
PRI A N (o2 N
.\w S AV —
. 3) . <1
1 \Y Z h ol

| <
= = —
[~o B =
\.}NJ J .v \m 1 L
DL 4 v
= T TN
o Bu Q‘ A“M ' aiv [
) N -lrl.w.v.ﬂv (AR
S ENRalan MTan
- - - 7 1N
BRE dRREUNG
e . s W . NI
ot - <3 o RN
AR i PIIRTA
o [® 1 Y) DI 2
M.\\J)u ./ - T >
.\ (ﬂv \ T T VM
g 3 4 LT B =
i V. T - <1
nww va) .AHWI 2L
< 2V =3
AN — i
s i
B <13 ST
Qnu- L Pl
e 5 2
BANKS T
Ik <\

