Design and Analysis of Algorithms
CS218M

Amortized Complexity

Paritosh Pandya
Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M



Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M



Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).

o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M



Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).
o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).
@ Multipop(S,k) pops k elements and leaves stack empty if
k> |S|.
MULTIPOP(S. k)

1 while not STACK-EMPTY (S) and k > 0
2 Por(S)
3 k=k—1
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@ Push(S,x) and Pop(S). Each operation is O(1).

o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).
@ Multipop(S,k) pops k elements and leaves stack empty if
k> |S|.
MULTIPOP(S. k)

1 while not STACK-EMPTY (S) and k > 0
2 Por(S)
3 k=k—1

e Worst case complexity of Multipop(S,k) is O(min(s, k).
Hence, Aggregate cost of n operations is O(n?). Pessimistic.
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Worst Case Complexity versus Amortized Complexity

@ Push(S,x) and Pop(S). Each operation is O(1).
o Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).
@ Multipop(S,k) pops k elements and leaves stack empty if
k> |S|.
MuULTIPOP(S, k)

1 while not STACK-EMPTY (S) and k > 0
2 Por(S)
3 k=k—1

e Worst case complexity of Multipop(S,k) is O(min(s, k).
Hence, Aggregate cost of n operations is O(n?). Pessimistic.

@ Before you delete k elements you must do k push, each of
O(1). Hence Aggregate cost of k push and one Muplipop(S,k)
is O(k) and amortized cost per operation is O(1).
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Accouting for Low Complexity Operations: Credit and

o ldea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.
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@ given a sequence of n operations, let ¢; be the actual cost of
op; and let ¢ be the amortized cost of op;.
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Accouting for Low Complexity Operations: Credit and

o ldea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

@ given a sequence of n operations, let ¢; be the actual cost of
op; and let ¢ be the amortized cost of op;.

o Let, CREDIT = X, & — X7, c¢i. We require that
CREDIT > 0.
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Accouting for Low Complexity Operations: Credit and

o ldea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

@ given a sequence of n operations, let ¢; be the actual cost of
op; and let ¢ be the amortized cost of op;.

o Let, CREDIT = X, & — X7, c¢i. We require that
CREDIT > 0.

e Potential of a datatype configuration D is denoted (D). It
gives CREDIT retained by reaching D. It can define Credit
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Potential

o Let op; take datatype from config D;_1 to D;.
Hence & = ¢ + q)(D,')—(D(D,'_l)..
Hence, X7, & = (X7 ¢i) + ®(D,) — ®(Do)

o If invariantly®(D;) — ®(D;_1) > 0 then aggregate X ; & is
upperbound on Sigma?_; ¢;.

@ Potential function determines amortized cost & of each
operation.

e We typically define (D) = 0 and require that ®(D;) > 0.
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Let (S) = |S| the number of elements in the stack.
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Let (S) = |S| the number of elements in the stack.
@ Hence Dy = 0 and D; > 0 for all D;.
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Let (S) = |S| the number of elements in the stack.

Hence Dy = 0 and D; > 0 for all D;.

Let Op; = Push(S, x): We have A® = 1.
Hence, & = ¢+ AP(D) = 1+ 1.

Let Op; = Pop(S: We have A® = —1.
Hence, § = ¢+ AP(D) = 1+ (-1).
Let Op; = Multipop(s, k): We have A® = — min(s, k).

Hence, & = c¢i+ A® = min(s, k) + (—min(s, k)) = 0.
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Let (S) = |S| the number of elements in the stack.

Hence Dy = 0 and D; > 0 for all D;.

Let Op; = Push(S, x): We have A® = 1.
Hence, & = ¢+ AP(D) = 1+ 1.

Let Op; = Pop(S: We have A® = —1.
Hence, § = ¢+ AP(D) = 1+ (-1).
Let Op; = Multipop(s, k): We have A® = — min(s, k).

Hence, & = c¢i+ A® = min(s, k) + (—min(s, k)) = 0.

Hence amortized cost of each stack operation is O(1).
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Binary Counter of k bits

represented as bit-array A[0..k — 1].

INCREMENT(A)

i =0

while i < A.length and A[i] == 1
Ali] =0
i=i+1

ifi < A.length
Alil =1

(o) WV, TN N OV I S
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Binary Counter of k bits

represented as bit-array A[0..k — 1].

INCREMENT(A)

i=0

while i < A.length and A[i] ==
Ali] =0
i=i+1

ifi < A.length
Alil =1

(o) WV, TN N OV I S

e Worst case complexity of INC is (k).
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Binary Counter of k bits

represented as bit-array A[0..k — 1].

INCREMENT(A)

i=0

while i < A.length and A[i] == 1
Ali] =0
i=i+1

ifi < A.length
Alil =1

(o) WV, TN N OV I S

e Worst case complexity of INC is (k).

@ Amortized worst case complexity of INC is ?77.
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Amortized Complexity: Counter

Let ®(D) be number of trailing 1 in config D. Let t; = ®(Dj_;.
e ci=t+1 Also Ad = —t.
@ Hence & = ¢+ A® = 1. Hence O(1).
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Dynamic Table

e TABLE-INSERT
o TABLE-DELETE
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Dynamic Table

e TABLE-INSERT
o TABLE-DELETE

@ Table Expansion:
T .size the size of table.
T .num Number of occupying elements in table.
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Dynamic Table

e TABLE-INSERT
o TABLE-DELETE

@ Table Expansion:
T .size the size of table.
T .num Number of occupying elements in table.

o If T.size = T.num then before insert, allocate double sized
table and copy.
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Dynamic Table Insert

TABLE-INSERT(T, x)
if T.size == 0
allocate T.table with 1 slot
T.size = 1
if 7. num == T.size
allocate new-table with 2 - T.size slots
insert all items in 7. table into new-table
free T.table
T.table = new-table
T.size = 2+ T.size
insert x into T.table
T.num = T.num + 1

— O N0 1 RN =

— p—
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INSERT-TABLE
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INSERT-TABLE

o If T.num < T .size then ¢; = 1.
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INSERT-TABLE

o If T.num < T .size then ¢; = 1.

o If T.num = T .size then ¢; = num;

P.K. Pandya Design and Analysis of Algorithms CS218M



Potential Function

Becomes 0 every-time the table is doubled.
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Potential Function

Becomes 0 every-time the table is doubled.
e &(T) = 2- T.num — T.size.
o Initially, T.num = T.size = 0. Hence &5 = 0.
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Potential Function

Becomes 0 every-time the table is doubled.
e &(T) = 2- T.num — T.size.
o Initially, T.num = T.size = 0. Hence &5 = 0.
@ Assume occupancy « is at least 0.5. Hence, ®; > 0.
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Potential Function

Becomes 0 every-time the table is doubled.

e &(T) = 2- T.num — T.size.

o Initially, T.num = T.size = 0. Hence &5 = 0.

@ Assume occupancy « is at least 0.5. Hence, ®; > 0.
@ Case 1: T.num < T.size. Then,

&G = ¢+ o -,
= 1+ (2 num; — size;) — (2 - num;_; — sizei_1)
= 14 (2 num; — size;) — (2(num; — 1) — size;)
3.
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Potential Function

Becomes 0 every-time the table is doubled.

®(T) = 2-T.num — T.size.

Initially, T.num = T .size = 0. Hence ¢ = 0.

Assume occupancy « is at least 0.5. Hence, ®; > 0.

Case 1: T.num < T.size. Then,

G = 6+ o —di,
= 1+ (2 num; — size;) — (2 - num;_; — sizei_1)
= 14 (2 num; — size;) — (2(num; — 1) — size;)

3.

@ Case 2: T.num = T .size. Then,
¢ = ¢ + ([), — CI),,l
num; + (2 - num; — size;) — (2 - num; _; — size;_,)
= num; + (2 - num; — 2 - (num; — 1)) — Q(num; — 1) — (num; — 1))
num; + 2 — (num; — 1)
3.



TABLE-DELETE

@ Let a = T.num/T .size be the load factor.
@ Double the table on INSERT when o;_1 = 1.
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TABLE-DELETE

@ Let « = T.num/ T .size be the load factor.
@ Double the table on INSERT when o;_1 = 1.
e Halve the table on DELETE when «oj_; =1/2
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TABLE-DELETE

Let « = T.num/ T .size be the load factor.
Double the table on INSERT when «;_1 = 1.
Halve the table on DELETE when aj_1 =1/2

Aggregate complexity of n operations becomes O(n?).
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TABLE-DELETE

Let « = T.num/ T .size be the load factor.

Double the table on INSERT when «;_1 = 1.

Halve the table on DELETE when aj_1 =1/2
Aggregate complexity of n operations becomes O(n?).
Halve the table on DELETE when aj_1 = 1/4
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TABLE-DELETE

Let « = T.num/ T .size be the load factor.

Double the table on INSERT when «;_1 = 1.

Halve the table on DELETE when aj_1 =1/2
Aggregate complexity of n operations becomes O(n?).
Halve the table on DELETE when aj_1 = 1/4

2-T.num — T.size ifa(T)>1/2,
T.size/2 — T.num ifa(T) <1/2.

O(T) =
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