Design and Analysis of Algorithms CS218M Amortized Complexity

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

→ ∃ → < ∃</p>

Stack

• Push(S,x) and Pop(S). Each operation is O(1).

Stack

- Push(S,x) and Pop(S). Each operation is O(1).
- Aggregate cost of *n* operations O(n). Hence Amortized cost per operation is O(n)/n = O(1).

Stack

- Push(S,x) and Pop(S). Each operation is O(1).
- Aggregate cost of *n* operations O(n). Hence Amortized cost per operation is O(n)/n = O(1).
- Multipop(S,k) pops k elements and leaves stack empty if k > |S|.

```
MULTIPOP(S, k)
```

1 while not STACK-EMPTY(S) and k > 0

2
$$\operatorname{Pop}(S)$$

$$3 \qquad k = k -$$

Stack

- Push(S,x) and Pop(S). Each operation is O(1).
- Aggregate cost of *n* operations O(n). Hence Amortized cost per operation is O(n)/n = O(1).
- Multipop(S,k) pops k elements and leaves stack empty if k > |S|.

```
MULTIPOP(S, k)
```

```
1 while not STACK-EMPTY(S) and k > 0
```

```
2 POP(S)
```

$$3 k = k - 1$$

Worst case complexity of Multipop(S,k) is O(min(s, k).
 Hence, Aggregate cost of n operations is O(n²). Pessimistic.

Stack

- Push(S,x) and Pop(S). Each operation is O(1).
- Aggregate cost of *n* operations O(n). Hence Amortized cost per operation is O(n)/n = O(1).
- Multipop(S,k) pops k elements and leaves stack empty if k > |S|.

```
MULTIPOP(S, k)
```

1 while not STACK-EMPTY(S) and k > 0

2
$$\operatorname{Pop}(S)$$

$$3 k = k - 1$$

- Worst case complexity of Multipop(S,k) is O(min(s, k).
 Hence, Aggregate cost of n operations is O(n²). Pessimistic.
- Before you delete k elements you must do k push, each of O(1). Hence Aggregate cost of k push and one Muplipop(S,k) is O(k) and amortized cost per operation is O(1).

• Idea: For each low complexity operation, retain some credit to be averaged with high complexity operation.

- Idea: For each low complexity operation, retain some credit to be averaged with high complexity operation.
- given a sequence of n operations, let c_i be the actual cost of op_i and let ĉ_i be the amortized cost of op_i.

- Idea: For each low complexity operation, retain some credit to be averaged with high complexity operation.
- given a sequence of n operations, let c_i be the actual cost of op_i and let ĉ_i be the amortized cost of op_i.
- Let, $CREDIT = \sum_{i=1}^{n} \hat{c}_i \sum_{i=1}^{n} c_i$. We require that $CREDIT \ge 0$.

- Idea: For each low complexity operation, retain some credit to be averaged with high complexity operation.
- given a sequence of n operations, let c_i be the actual cost of op_i and let ĉ_i be the amortized cost of op_i.
- Let, $CREDIT = \sum_{i=1}^{n} \hat{c}_i \sum_{i=1}^{n} c_i$. We require that $CREDIT \ge 0$.
- Potential of a datatype configuration D is denoted $\Phi(D)$. It gives CREDIT retained by reaching D. It can define Credit

- Let op_i take datatype from config D_{i-1} to D_i . Hence $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$. Hence, $\sum_{i=1}^n \hat{c}_i = (\sum_{i=1}^n c_i) + \Phi(D_n) - \Phi(D_0)$
- If invariantlyΦ(D_i) − Φ(D_{i-1}) ≥ 0 then aggregate Σⁿ_{i=1} ĉ_i is upperbound on Sigmaⁿ_{i=1} c_i.
- Potential function determines amortized cost ĉ_i of each operation.
- We typically define $\Phi(D_0) = 0$ and require that $\Phi(D_i) \ge 0$.

Let $\Phi(S) = |S|$ the number of elements in the stack.

ヘロト 人間 とくほ とくほ とう

æ

Stack

Let $\Phi(S) = |S|$ the number of elements in the stack.

• Hence $D_0 = 0$ and $D_i \ge 0$ for all D_i .

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Stack

Let $\Phi(S) = |S|$ the number of elements in the stack.

- Hence $D_0 = 0$ and $D_i \ge 0$ for all D_i .
- Let $Op_i = Push(S, x)$: We have $\Delta \Phi = 1$. Hence, $\hat{c}_i = c_i + \Delta \Phi(D) = 1 + 1$.
- Let $Op_i = Pop(S)$: We have $\Delta \Phi = -1$. Hence, $\hat{c}_i = c_i + \Delta \Phi(D) = 1 + (-1)$.
- Let $Op_i = Multipop(s, k)$: We have $\Delta \Phi = -min(s, k)$. Hence, $\hat{c}_i = c_i + \Delta \Phi = min(s, k) + (-min(s, k)) = 0$.

伺 ト イ ヨ ト イ ヨ ト

Stack

Let $\Phi(S) = |S|$ the number of elements in the stack.

- Hence $D_0 = 0$ and $D_i \ge 0$ for all D_i .
- Let $Op_i = Push(S, x)$: We have $\Delta \Phi = 1$. Hence, $\hat{c}_i = c_i + \Delta \Phi(D) = 1 + 1$.
- Let $Op_i = Pop(S)$: We have $\Delta \Phi = -1$. Hence, $\hat{c}_i = c_i + \Delta \Phi(D) = 1 + (-1)$.
- Let $Op_i = Multipop(s, k)$: We have $\Delta \Phi = -min(s, k)$. Hence, $\hat{c}_i = c_i + \Delta \Phi = min(s, k) + (-min(s, k)) = 0$.
- Hence amortized cost of each stack operation is O(1).

伺 ト イ ヨ ト イ ヨ ト

Binary Counter

Counter value	ATAGATARATATATATA	Total cost
0	0 0 0 0 0 0 0 0	0
1	0 0 0 0 0 0 0 1	1
2	0 0 0 0 0 0 1 0	3
3	0 0 0 0 0 0 1 1	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	0 0 0 0 1 1 1 1	26
16	0 0 0 1 0 0 0 0	31

▲御▶ ▲臣▶ ▲臣▶

æ

```
represented as bit-array A[0..k-1].
```

```
INCREMENT(A)

1 i = 0

2 while i < A. length and A[i] == 1

3 A[i] = 0

4 i = i + 1

5 if i < A. length

6 A[i] = 1
```

```
represented as bit-array A[0..k-1].
```

```
INCREMENT(A)

1 i = 0

2 while i < A. length and A[i] == 1

3 A[i] = 0

4 i = i + 1

5 if i < A. length

6 A[i] = 1
```

• Worst case complexity of *INC* is $\theta(k)$.

```
represented as bit-array A[0..k-1].
```

```
INCREMENT(A)

1 i = 0

2 while i < A.length and A[i] == 1

3 A[i] = 0

4 i = i + 1

5 if i < A.length

6 A[i] = 1
```

- Worst case complexity of *INC* is $\theta(k)$.
- Amortized worst case complexity of INC is ???.

Let $\Phi(D)$ be number of trailing 1 in config D. Let $t_i = \Phi(D_{i-1})$.

•
$$c_i = t_i + 1$$
, Also $\Delta \Phi = -t_i$.

• Hence
$$\hat{c}_i = c_i + \Delta \Phi = 1$$
. Hence $O(1)$.

伺 と く ヨ と く ヨ と

3

- TABLE-INSERT
- TABLE-DELETE

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

- TABLE-INSERT
- TABLE-DELETE
- Table Expansion:
 T.size the size of table.
 T.num Number of occupying elements in table.

- TABLE-INSERT
- TABLE-DELETE
- Table Expansion: *T.size* the size of table. *T.num* Number of occupying elements in table.
- If *T*.*size* = *T*.*num* then before insert, allocate double sized table and copy.

TABLE-INSERT (T, x)

```
1
    if T. size == 0
 2
         allocate T. table with 1 slot
 3
         T.size = 1
 4
    if T. num == T. size
 5
         allocate new-table with 2 \cdot T. size slots
 6
         insert all items in T.table into new-table
 7
         free T.table
 8
         T.table = new-table
 9
         T.size = 2 \cdot T.size
10
     insert x into T.table
    T.num = T.num + 1
11
```

INSERT-TABLE

P.K. Pandya Design and Analysis of Algorithms CS218M

ヘロア ヘロア ヘビア ・ ビア

Ξ.

INSERT-TABLE

• If T.num < T.size then $c_i = 1$.

ヘロト 人間 とくほ とくほ とう

æ

INSERT-TABLE

- If T.num < T.size then $c_i = 1$.
- If T.num = T.size then $c_i = num_i$

・ロン ・回 と ・ ヨ と ・

э

Becomes 0 every-time the table is doubled.

★ 문 ► ★ 문 ►

æ

Becomes 0 every-time the table is doubled.

•
$$\Phi(T) = 2 \cdot T.num - T.size.$$

★ 문 ► ★ 문 ►

æ

Becomes 0 every-time the table is doubled.

•
$$\Phi(T) = 2 \cdot T.num - T.size$$
.

• Initially, T.num = T.size = 0. Hence $\Phi_0 = 0$.

A B M A B M

э

Becomes 0 every-time the table is doubled.

•
$$\Phi(T) = 2 \cdot T.num - T.size.$$

- Initially, T.num = T.size = 0. Hence $\Phi_0 = 0$.
- Assume occupancy α is at least 0.5. Hence, $\Phi_i \geq 0$.

Becomes 0 every-time the table is doubled.

•
$$\Phi(T) = 2 \cdot T.num - T.size.$$

- Initially, T.num = T.size = 0. Hence $\Phi_0 = 0$.
- Assume occupancy α is at least 0.5. Hence, $\Phi_i \geq 0$.
- Case 1: T.num < T.size. Then,

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1}) = 1 + (2 \cdot num_i - size_i) - (2(num_i - 1) - size_i) = 3.$$

• • = • • = •

3

Becomes 0 every-time the table is doubled.

•
$$\Phi(T) = 2 \cdot T.num - T.size.$$

- Initially, T.num = T.size = 0. Hence $\Phi_0 = 0$.
- Assume occupancy α is at least 0.5. Hence, $\Phi_i \geq 0$.
- Case 1: T.num < T.size. Then,

$$\widehat{c}_i = c_i + \Phi_i - \Phi_{i-1} = 1 + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1}) = 1 + (2 \cdot num_i - size_i) - (2(num_i - 1) - size_i) = 3.$$

• Case 2: T.num = T.size. Then,

____

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} = num_i + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1}) = num_i + (2 \cdot num_i - 2 \cdot (num_i - 1)) - (2(num_i - 1) - (num_i - 1)) = num_i + 2 - (num_i - 1) = 3.$$

- Let $\alpha = T.num/T.size$ be the load factor.
- Double the table on INSERT when $\alpha_{i-1} = 1$.

(四) (日) (日)

э

- Let $\alpha = T.num/T.size$ be the load factor.
- Double the table on INSERT when $\alpha_{i-1} = 1$.
- Halve the table on DELETE when $\alpha_{i-1} = 1/2$

э

- Let $\alpha = T.num/T.size$ be the load factor.
- Double the table on INSERT when $\alpha_{i-1} = 1$.
- Halve the table on DELETE when $\alpha_{i-1} = 1/2$
- Aggregate complexity of *n* operations becomes $O(n^2)$.

- Let $\alpha = T.num/T.size$ be the load factor.
- Double the table on INSERT when $\alpha_{i-1} = 1$.
- Halve the table on DELETE when $\alpha_{i-1} = 1/2$
- Aggregate complexity of *n* operations becomes $O(n^2)$.
- Halve the table on DELETE when $\alpha_{i-1} = 1/4$

- Let $\alpha = T.num/T.size$ be the load factor.
- Double the table on INSERT when $\alpha_{i-1} = 1$.
- Halve the table on DELETE when $\alpha_{i-1} = 1/2$
- Aggregate complexity of *n* operations becomes $O(n^2)$.
- Halve the table on DELETE when $\alpha_{i-1}=1/4$

$$\Phi(T) = \begin{cases} 2 \cdot T.num - T.size & \text{if } \alpha(T) \ge 1/2, \\ T.size/2 - T.num & \text{if } \alpha(T) < 1/2. \end{cases}$$















