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Worst Case Complexity versus Amortized Complexity

Stack

Push(S,x) and Pop(S). Each operation is O(1).

Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).

Multipop(S,k) pops k elements and leaves stack empty if
k > |S |.

Worst case complexity of Multipop(S,k) is O(min(s, k).
Hence, Aggregate cost of n operations is O(n2). Pessimistic.

Before you delete k elements you must do k push, each of
O(1). Hence Aggregate cost of k push and one Muplipop(S,k)
is O(k) and amortized cost per operation is O(1).
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opi and let ĉi be the amortized cost of opi .

Let, CREDIT = Σn
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Accouting for Low Complexity Operations: Credit and
Potential

Idea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

given a sequence of n operations, let ci be the actual cost of
opi and let ĉi be the amortized cost of opi .

Let, CREDIT = Σn
i=1 ĉi − Σn

i=1 ci . We require that
CREDIT ≥ 0.

Potential of a datatype configuration D is denoted Φ(D). It
gives CREDIT retained by reaching D. It can define Credit
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Potential

Let opi take datatype from config Di−1 to Di .
Hence ĉi = ci + Φ(Di )− Φ(Di−1)..
Hence, Σn

i=1 ĉi = (Σn
i=1 ci ) + Φ(Dn)− Φ(D0)

If invariantlyΦ(Di )− Φ(Di−1) ≥ 0 then aggregate Σn
i=1 ĉi is

upperbound on Sigmani=1 ci .

Potential function determines amortized cost ĉi of each
operation.

We typically define Φ(D0) = 0 and require that Φ(Di ) ≥ 0.
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Stack

Let Φ(S) = |S | the number of elements in the stack.

Hence D0 = 0 and Di ≥ 0 for all Di .

Let Opi = Push(S , x): We have ΔΦ = 1.
Hence, ĉi = ci +ΔΦ(D) = 1 + 1.

Let Opi = Pop(S : We have ΔΦ = − 1.
Hence, ĉi = ci +ΔΦ(D) = 1 + (−1).

Let Opi = Multipop(s, k): We have ΔΦ = −min(s, k).
Hence, ĉi = ci +ΔΦ = min(s, k) + (−min(s, k)) = 0.

Hence amortized cost of each stack operation is O(1).
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Binary Counter
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Binary Counter of k bits
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Binary Counter of k bits

represented as bit-array A[0..k − 1].

Worst case complexity of INC is θ(k).

Amortized worst case complexity of INC is ???.
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Amortized Complexity: Counter

Let Φ(D) be number of trailing 1 in config D. Let ti = Φ(Di−1.

ci = ti + 1, Also ΔΦ = − ti .

Hence ĉi = ci +ΔΦ = 1. Hence O(1).
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Dynamic Table

TABLE-INSERT

TABLE-DELETE
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Dynamic Table

TABLE-INSERT

TABLE-DELETE

Table Expansion:
T .size the size of table.
T .num Number of occupying elements in table.

If T .size = T .num then before insert, allocate double sized
table and copy.
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Dynamic Table Insert
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Costs

INSERT-TABLE
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Costs

INSERT-TABLE

If T .num < T .size then ci = 1.
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Costs

INSERT-TABLE

If T .num < T .size then ci = 1.

If T .num = T .size then ci = numi
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Potential Function

Becomes 0 every-time the table is doubled.

Φ(T ) = 2 · T .num − T .size.

Initially, T .num = T .size = 0. Hence Φ0 = 0.

Assume occupancy α is at least 0.5. Hence, Φi ≥ 0.

Case 1: T .num < T .size. Then,

Case 2: T .num = T .size. Then,
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TABLE-DELETE

Let α = T .num/T .size be the load factor.

Double the table on INSERT when αi−1 = 1.
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