
Design and Analysis of Algorithms
CS218M

Amortized Complexity

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

Stack

Push(S,x) and Pop(S). Each operation is O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

Stack

Push(S,x) and Pop(S). Each operation is O(1).

Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

Stack

Push(S,x) and Pop(S). Each operation is O(1).

Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).

Multipop(S,k) pops k elements and leaves stack empty if
k > |S |.

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

Stack

Push(S,x) and Pop(S). Each operation is O(1).

Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).

Multipop(S,k) pops k elements and leaves stack empty if
k > |S |.

Worst case complexity of Multipop(S,k) is O(min(s, k).
Hence, Aggregate cost of n operations is O(n2). Pessimistic.

P.K. Pandya Design and Analysis of Algorithms CS218M

Worst Case Complexity versus Amortized Complexity

Stack

Push(S,x) and Pop(S). Each operation is O(1).

Aggregate cost of n operations O(n). Hence Amortized cost
per operation is O(n)/n = O(1).

Multipop(S,k) pops k elements and leaves stack empty if
k > |S |.

Worst case complexity of Multipop(S,k) is O(min(s, k).
Hence, Aggregate cost of n operations is O(n2). Pessimistic.

Before you delete k elements you must do k push, each of
O(1). Hence Aggregate cost of k push and one Muplipop(S,k)
is O(k) and amortized cost per operation is O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and
Potential

Idea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and
Potential

Idea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

given a sequence of n operations, let ci be the actual cost of
opi and let ĉi be the amortized cost of opi .

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and
Potential

Idea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

given a sequence of n operations, let ci be the actual cost of
opi and let ĉi be the amortized cost of opi .

Let, CREDIT = Σn
i=1 ĉi − Σn

i=1 ci . We require that
CREDIT ≥ 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Accouting for Low Complexity Operations: Credit and
Potential

Idea: For each low complexity operation, retain some credit to
be averaged with high complexity operation.

given a sequence of n operations, let ci be the actual cost of
opi and let ĉi be the amortized cost of opi .

Let, CREDIT = Σn
i=1 ĉi − Σn

i=1 ci . We require that
CREDIT ≥ 0.

Potential of a datatype configuration D is denoted Φ(D). It
gives CREDIT retained by reaching D. It can define Credit

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential

Let opi take datatype from config Di−1 to Di .
Hence ĉi = ci + Φ(Di)− Φ(Di−1)..
Hence, Σn

i=1 ĉi = (Σn
i=1 ci) + Φ(Dn)− Φ(D0)

If invariantlyΦ(Di)− Φ(Di−1) ≥ 0 then aggregate Σn
i=1 ĉi is

upperbound on Sigmani=1 ci .

Potential function determines amortized cost ĉi of each
operation.

We typically define Φ(D0) = 0 and require that Φ(Di) ≥ 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Stack

Let Φ(S) = |S | the number of elements in the stack.

P.K. Pandya Design and Analysis of Algorithms CS218M

Stack

Let Φ(S) = |S | the number of elements in the stack.

Hence D0 = 0 and Di ≥ 0 for all Di .

P.K. Pandya Design and Analysis of Algorithms CS218M

Stack

Let Φ(S) = |S | the number of elements in the stack.

Hence D0 = 0 and Di ≥ 0 for all Di .

Let Opi = Push(S , x): We have ΔΦ = 1.
Hence, ĉi = ci +ΔΦ(D) = 1 + 1.

Let Opi = Pop(S : We have ΔΦ = − 1.
Hence, ĉi = ci +ΔΦ(D) = 1 + (−1).

Let Opi = Multipop(s, k): We have ΔΦ = −min(s, k).
Hence, ĉi = ci +ΔΦ = min(s, k) + (−min(s, k)) = 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Stack

Let Φ(S) = |S | the number of elements in the stack.

Hence D0 = 0 and Di ≥ 0 for all Di .

Let Opi = Push(S , x): We have ΔΦ = 1.
Hence, ĉi = ci +ΔΦ(D) = 1 + 1.

Let Opi = Pop(S : We have ΔΦ = − 1.
Hence, ĉi = ci +ΔΦ(D) = 1 + (−1).

Let Opi = Multipop(s, k): We have ΔΦ = −min(s, k).
Hence, ĉi = ci +ΔΦ = min(s, k) + (−min(s, k)) = 0.

Hence amortized cost of each stack operation is O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Binary Counter

P.K. Pandya Design and Analysis of Algorithms CS218M

Binary Counter of k bits

represented as bit-array A[0..k − 1].

P.K. Pandya Design and Analysis of Algorithms CS218M

Binary Counter of k bits

represented as bit-array A[0..k − 1].

Worst case complexity of INC is θ(k).

P.K. Pandya Design and Analysis of Algorithms CS218M

Binary Counter of k bits

represented as bit-array A[0..k − 1].

Worst case complexity of INC is θ(k).

Amortized worst case complexity of INC is ???.

P.K. Pandya Design and Analysis of Algorithms CS218M

Amortized Complexity: Counter

Let Φ(D) be number of trailing 1 in config D. Let ti = Φ(Di−1.

ci = ti + 1, Also ΔΦ = − ti .

Hence ĉi = ci +ΔΦ = 1. Hence O(1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table

TABLE-INSERT

TABLE-DELETE

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table

TABLE-INSERT

TABLE-DELETE

Table Expansion:
T .size the size of table.
T .num Number of occupying elements in table.

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table

TABLE-INSERT

TABLE-DELETE

Table Expansion:
T .size the size of table.
T .num Number of occupying elements in table.

If T .size = T .num then before insert, allocate double sized
table and copy.

P.K. Pandya Design and Analysis of Algorithms CS218M

Dynamic Table Insert

P.K. Pandya Design and Analysis of Algorithms CS218M

Costs

INSERT-TABLE

P.K. Pandya Design and Analysis of Algorithms CS218M

Costs

INSERT-TABLE

If T .num < T .size then ci = 1.

P.K. Pandya Design and Analysis of Algorithms CS218M

Costs

INSERT-TABLE

If T .num < T .size then ci = 1.

If T .num = T .size then ci = numi

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

Φ(T) = 2 · T .num − T .size.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

Φ(T) = 2 · T .num − T .size.

Initially, T .num = T .size = 0. Hence Φ0 = 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

Φ(T) = 2 · T .num − T .size.

Initially, T .num = T .size = 0. Hence Φ0 = 0.

Assume occupancy α is at least 0.5. Hence, Φi ≥ 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

Φ(T) = 2 · T .num − T .size.

Initially, T .num = T .size = 0. Hence Φ0 = 0.

Assume occupancy α is at least 0.5. Hence, Φi ≥ 0.

Case 1: T .num < T .size. Then,

P.K. Pandya Design and Analysis of Algorithms CS218M

Potential Function

Becomes 0 every-time the table is doubled.

Φ(T) = 2 · T .num − T .size.

Initially, T .num = T .size = 0. Hence Φ0 = 0.

Assume occupancy α is at least 0.5. Hence, Φi ≥ 0.

Case 1: T .num < T .size. Then,

Case 2: T .num = T .size. Then,

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let α = T .num/T .size be the load factor.

Double the table on INSERT when αi−1 = 1.

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let α = T .num/T .size be the load factor.

Double the table on INSERT when αi−1 = 1.

Halve the table on DELETE when αi−1 = 1/2

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let α = T .num/T .size be the load factor.

Double the table on INSERT when αi−1 = 1.

Halve the table on DELETE when αi−1 = 1/2

Aggregate complexity of n operations becomes O(n2).

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let α = T .num/T .size be the load factor.

Double the table on INSERT when αi−1 = 1.

Halve the table on DELETE when αi−1 = 1/2

Aggregate complexity of n operations becomes O(n2).

Halve the table on DELETE when αi−1 = 1/4

P.K. Pandya Design and Analysis of Algorithms CS218M

TABLE-DELETE

Let α = T .num/T .size be the load factor.

Double the table on INSERT when αi−1 = 1.

Halve the table on DELETE when αi−1 = 1/2

Aggregate complexity of n operations becomes O(n2).

Halve the table on DELETE when αi−1 = 1/4

P.K. Pandya Design and Analysis of Algorithms CS218M

