Design and Analysis of Algorithms CS218M Dynamic Programming

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

4 3 5 4

Rod Cutting

Given a rod of length n and price table

	length i										
2]	price p_i	1	5	8	9	10	17	17	20	24	30

• *p*[*i*] is the cost of rod piece of length *i*.

• Objective: Cut rod of length *n* into *k* pieces of lengths i_1, i_2, \ldots, i_k such that

 $n=i_1+i_2+\ldots+i_k,$

total price $p[i_1] + p[i_2] + \ldots + p[i_k]$ is maximized. This maximal price is denoted r_n . \mathcal{N}_3 \mathcal{N}_4 \mathcal{N}

Rod Cutting

Given a rod of length n and price table

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

• *p*[*i*] is the cost of rod piece of length *i*.

• Objective: Cut rod of length *n* into *k* pieces of lengths i_1, i_2, \ldots, i_k such that

 $n=i_1+i_2+\ldots+i_k,$

total price $p[i_1] + p[i_2] + \ldots + p[i_k]$ is maximized. This maximal price is denoted r_n .

Example: $r_4 = 10$ due to two pieces of size 2, 2.

Rod Cutting

Given a rod of length n and price table

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

• *p*[*i*] is the cost of rod piece of length *i*.

• Objective: Cut rod of length *n* into *k* pieces of lengths i_1, i_2, \ldots, i_k such that

 $n=i_1+i_2+\ldots+i_k,$

total price $p[i_1] + p[i_2] + \ldots + p[i_k]$ is maximized.

This maximal price is denoted r_n .

Example: $r_4 = 10$ due to two pieces of size 2, 2.

Optimal Substructure

Let r_n denote weight of the optimal solution for rod of length n. Then, $r_0 = 0$, and

$$r_n = max_{1 \le i \le n} (p[i] + r_{n-i})$$

Topdown Recursive Solution

CUT-ROD(p, n)**if** n == 0**return** 0 $q = -\infty$ **for** i = 1 **to** n $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ **return** q

n

• • = • • = •

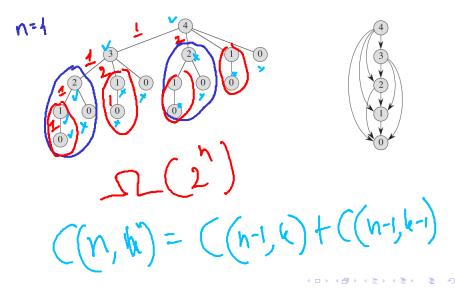
Topdown Recursive Solution

CUT-ROD(p, n)**if** n == 0**return** 0 $q = -\infty$ **for** i = 1 **to** n $q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))$ **return** q

• • = • • = •

Recursion Tree and Subproblem Graph

 $r_n = max_{1 \le i \le n} (p[i] + r_{n-i})$



Topdown Memoized Recursive Procedure

- Estimate number of distinct recursive calls possible.
- A table r[0..n] stores result for call with parameter n.
- On subsequent call with same parameter, the result is returned from the table.

```
MEMOIZED-CUT-ROD(p, n)
```

1 let
$$r[0 \dots n]$$
 be a new array

2 **for**
$$i = 0$$
 to n

3
$$r[i] = -\infty$$

4 **return** MEMOIZED-CUT-ROD-AUX(p, n, r)

MEMOIZED-CUT-ROD-AUX(p, n, r)

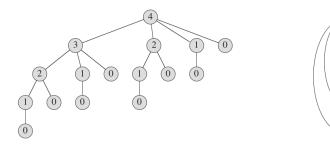
1 if
$$r[n] \ge 0$$

2 return $r[n]$
3 if $n == 0$
4 $q = 0$
5 else $q = -\infty$
6 for $i = 1$ to n
7 $q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))$
8 $r[n] = q$
9 return q

$$O(n^2)$$

Recursion Tree and Subproblem Graph

$r_n = max_{1 \leq i \leq n} (p[i] + r_{n-i})$



BOTTOM-UP-CUT-ROD(p, n)let r[0...n] be a new array 2 r[0] = 0O(n)3 for j = 1 to n4 $q = -\infty$ 5 for i = 1 to j6 7 r[i] = q8 **return** *r*[*n*] $()(n^2)$

• • = • • = •

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

let $r[0 \dots n]$ and $s[0 \dots n]$ be new arrays 1 2 r[0] = 03 **for** i = 1 **to** n4 $q = -\infty$ 5 for i = 1 to j6 **if** q < p[i] + r[j - i]7 q = p[i] + r[j - i]8 $s[j] = i \longleftarrow$ 9 r[j] = q**return** r and s 10

• • = • • = •

PRINT-CUT-ROD-SOLUTION(p, n)1 (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)2 while n > 03 print s[n]4 n = n - s[n]In our rod-cutting example, the call EXTENDED-BOTTOM-UP-CUT-ROD(p, 10)would return the following arrays:

i	0	1	-	3	$\frac{1}{4}$	5	6	7	8	9	10
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]	0	1	2	3	2	2	6	1	2	3	10
					-						
	ी		2	1)						

くロ と く 同 と く ヨ と 一

- Characterize the optimal substructure of the problem.
- Characterize the substructure recursively.
- Embody recursive formulation of optimal choice in memoized topdown or bottomup computation.
- Output optimal solution from computed information.

 multiplying A₁A₂ of dimensions p × q and q × r requires pqr scaler multiplications.

 $C[2,j] = C_{2i}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- multiplying A_1A_2 of dimensions $p \times q$ and $q \times r$ requires pqr scaler multiplications.
- Consider chain $A_1A_2A_3$ of matrices with dimensions 10×100 , 100×5 and 5×50 to be multiplied.

• • = • • = •

- multiplying A₁A₂ of dimensions p × q and q × r requires pqr scaler multiplications.
- Consider chain $A_1A_2A_3$ of matrices with dimensions 10×100 , 100×5 and 5×50 to be multiplied.
- Full parenthesis $((A_1A_2)A_3)$ requires $10 \times 100 \times 5 + 10 \times 5 \times 50$ scaler multiplication, i.e. 5000 + 2500.

- multiplying A₁A₂ of dimensions p × q and q × r requires pqr scaler multiplications.
- Consider chain $A_1A_2A_3$ of matrices with dimensions 10×100 , 100×5 and 5×50 to be multiplied.
- Full parenthesis $((A_1A_2)A_3)$ requires $10 \times 100 \times 5 + 10 \times 5 \times 50$ scaler multiplication, i.e. 5000 + 2500. = 7523
- (A₁(A₂A₃)) requires 100 × 5 × 50 + 10 × 100 × 50 scaler multiplication, i.e. 25000 + 50000. <u>− 75000</u>

- multiplying A₁A₂ of dimensions p × q and q × r requires pqr scaler multiplications.
- Consider chain $A_1A_2A_3$ of matrices with dimensions 10×100 , 100×5 and 5×50 to be multiplied.
- Full parenthesis $((A_1A_2)A_3)$ requires $10 \times 100 \times 5 + 10 \times 5 \times 50$ scaler multiplication, i.e. 5000 + 2500.
- $(A_1(A_2A_3))$ requires $100 \times 5 \times 50 + 10 \times 100 \times 50$ scaler multiplication, i.e. 25000 + 50000.
- Given chain A₁A₂...A_n of n matrices, the number of full parentheses is Ω(2ⁿ).

・ 同 ト ・ ヨ ト ・ ヨ ト …

- multiplying A₁A₂ of dimensions p × q and q × r requires pqr scaler multiplications.
- Consider chain $A_1A_2A_3$ of matrices with dimensions 10×100 , 100×5 and 5×50 to be multiplied.
- Full parenthesis $((A_1A_2)A_3)$ requires $10 \times 100 \times 5 + 10 \times 5 \times 50$ scaler multiplication, i.e. 5000 + 2500.
- $(A_1(A_2A_3))$ requires $100 \times 5 \times 50 + 10 \times 100 \times 50$ scaler multiplication, i.e. 25000 + 50000.
- Given chain A₁A₂...A_n of n matrices, the number of full parentheses is Ω(2ⁿ).

Matrix Chain Multiplication Problem

Given a chain $A_1A_2...A_n$ of *n* matrices to be multiplied, where A_i has dimension $p_{i-1} \times p_i$, find a full parenthesis of the chain which requires least number scaler multiplications.

Development

• Let
$$A_{i..j} = A_i \cdot A_{i+1} \dots A_j$$
.

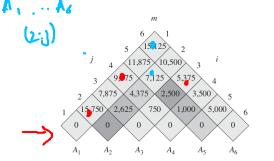
- Let m[i, j] denote the least number of scaler multiplications needed to compute A_{i..j}.
- Discovering sub-structure: If we parenthesize $A_{i..j}$ optimally $(A_i \dots A_k)(A_{k+1} \dots A_j)$ for $i \le k < j$ then $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1} \cdot p_k \cdot p_j.$

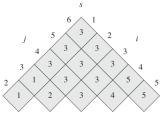
Recursive Substructure

$$m[i,j] = \begin{cases} 0 & \text{if } i = j ,\\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j . \end{cases}$$

何 と く ヨ と く ヨ と

Subproblem Graph





문 🛌 문

M ZZZZ

Bottom Up Procedure

1-1+1 m [2,]] MATRIX-CHAIN-ORDER (p)1 n = p.length - 12 let $m[1 \dots n, 1 \dots n]$ and $s[1 \dots n - 1, 2 \dots n]$ be new tables 3 for i = 1 to n4 m[i,i] = 05(1) 1/1) 5 // *l* is the chain length for l = 2 to n6 for i = 1 to n - l + 17 i = i + l - 1 $m[i, j] = \infty$ 8 9 for k = i to j - 110 $q = m[i,k] + m[k+1, j] + p_{i-1}p_kp_i$ if q < m[i, j]11 12 m[i, i] = q13 s[i, j] = k14 **return** *m* and *s*

うくで

```
PRINT-OPTIMAL-PARENS(s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

6 print ")"
```

Topdown Memoized Solution

```
LOOKUP-CHAIN(m, p, i, j)
   if m[i, j] < \infty
1
2
       return m[i, j]
3 if i == j
4
       m[i, j] = 0
5
   else for k = i to j - 1
6
            q = \text{LOOKUP-CHAIN}(m, p, i, k)
                 + LOOKUP-CHAIN(m, p, k + 1, j) + p_{i-1}p_kp_i
7
            if q < m[i, j]
8
                m[i, i] = a
9
   return m[i, j]
```

