
Design and Analysis of Algorithms
CS218M

Dynamic Programming

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximum-Weight Non Overlapping Set of Intervals

Problem Given a set of intervals I1, . . . , In where each interval Ii
has a start time s(Ii), end time f (Ii) and a weight w(Ii) aim is to
find a subset S of the intervals such that no two intervals in S
overlap and the sum of weights of interval ΣIi∈S w(i) is maximum.

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximum-Weight Non Overlapping Set of Intervals

Problem Given a set of intervals I1, . . . , In where each interval Ii
has a start time s(Ii), end time f (Ii) and a weight w(Ii) aim is to
find a subset S of the intervals such that no two intervals in S
overlap and the sum of weights of interval ΣIi∈S w(i) is maximum.

Let MWNOSI (S) denote the weight of maximum weight
subset of non-overlapping intrvals from S .

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximum-Weight Non Overlapping Set of Intervals

Problem Given a set of intervals I1, . . . , In where each interval Ii
has a start time s(Ii), end time f (Ii) and a weight w(Ii) aim is to
find a subset S of the intervals such that no two intervals in S
overlap and the sum of weights of interval ΣIi∈S w(i) is maximum.

Let MWNOSI (S) denote the weight of maximum weight
subset of non-overlapping intrvals from S .

Optimal Recursive Substructure

Let I ∈ S . Then

MWNOSI (S) = Max(MWNOSI (S − {I}), MWNOSI (S �) + w(I))
where S � is the set of intervals from S which do not overlap with I .

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 1: Detecting Overlaps

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).

MWNOSI (j) = Max(MWNOSI (j + 1), MWNOSI (k) + w(Ij))

where k > j with s(Ik) ≥ f (Ij) and S(Ik−1) < f (Ij).

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).

MWNOSI (j) = Max(MWNOSI (j + 1), MWNOSI (k) + w(Ij))

where k > j with s(Ik) ≥ f (Ij) and S(Ik−1) < f (Ij).

Base case?

What is the structure of memoization table T .

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).

MWNOSI (j) = Max(MWNOSI (j + 1), MWNOSI (k) + w(Ij))

where k > j with s(Ik) ≥ f (Ij) and S(Ik−1) < f (Ij).

Base case?

What is the structure of memoization table T .

Complexity with memoization?

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r].

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I) < l or f (I) > r then EMWNOSI (S − {I}; l ; r)

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I) < l or f (I) > r then EMWNOSI (S − {I}; l ; r)
Otherwise Max of

EMWNOSI (S − {I}; l ; r) and

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I) < l or f (I) > r then EMWNOSI (S − {I}; l ; r)
Otherwise Max of

EMWNOSI (S − {I}; l ; r) and
EMWNOSI (S − {I}; l ; s(I))

+ EMWNOSI (S − {I}; f (I); r) + w(I)

P.K. Pandya Design and Analysis of Algorithms CS218M

Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I) < l or f (I) > r then EMWNOSI (S − {I}; l ; r)
Otherwise Max of

EMWNOSI (S − {I}; l ; r) and
EMWNOSI (S − {I}; l ; s(I))

+ EMWNOSI (S − {I}; f (I); r) + w(I)

Base case:
Memoization Table m? dimensions?
Order of filling m?
Complexity with Memoization?

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first).

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).

Select items in decreasing order of value (most expensive
first).

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).

Select items in decreasing order of value (most expensive
first). Value (3, 2, 2) with weight (W /2 + 1, W /2, W /2).

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).

Select items in decreasing order of value (most expensive
first). Value (3, 2, 2) with weight (W /2 + 1, W /2, W /2).

No known Greedy rule gives optimal solution.

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) =

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) =

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.

Dimensions of memoization table m?

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.

Dimensions of memoization table m?

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.

Dimensions of memoization table m?

Complexity? O(n ·W)
Pseudo-polynomial – proportional to value of constant
occuring in input.

P.K. Pandya Design and Analysis of Algorithms CS218M

Knapsack Bottom Up Schedule

P.K. Pandya Design and Analysis of Algorithms CS218M

Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik such that
Zj = Xij .

P.K. Pandya Design and Analysis of Algorithms CS218M

Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik such that
Zj = Xij .
Solution: Greedy Algorithm of Complexity Θ(m)

P.K. Pandya Design and Analysis of Algorithms CS218M

Longest Common Subsequence (LCS)

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
Y = �y1, y2, . . . , yn, determine the longest length sequence
Z = �z1, . . . , zk� which is a subsequence of both X and Y .

P.K. Pandya Design and Analysis of Algorithms CS218M

Longest Common Subsequence (LCS)

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
Y = �y1, y2, . . . , yn, determine the longest length sequence
Z = �z1, . . . , zk� which is a subsequence of both X and Y .

Brute Force Solution

Systematically generate all subsequences Z of Y . For each check if
Z is a subseqeunce of X . Also remember the maximum of the
length of ”yes” subsequences examined so far.

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .

If xm �= yn and zk �= yn then Z is LCS of Xm−1,Y .

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

0 if i = 0 or j = 0

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j]?

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j]?

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M

Recursive Solution

Let c[i , j] denote the length of LCS of Xi and Yj . Then,
c[i , j] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j]?

Complexity? Θ(m · n)

P.K. Pandya Design and Analysis of Algorithms CS218M

Bottom UP Procedure

P.K. Pandya Design and Analysis of Algorithms CS218M

Constructing the Solution

P.K. Pandya Design and Analysis of Algorithms CS218M

Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.

P.K. Pandya Design and Analysis of Algorithms CS218M

Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.

P.K. Pandya Design and Analysis of Algorithms CS218M

Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.

.

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the squared error from these points after fitting the best line
through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the squared error from these points after fitting the best line
through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

P.K. Pandya Design and Analysis of Algorithms CS218M

Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the squared error from these points after fitting the best line
through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

Optimal Substructure

For the subproblem p1, . . . , pj
opt(j) = min1≤i≤j ei ,j + C + opt(i − 1)

P.K. Pandya Design and Analysis of Algorithms CS218M

