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Maximum-Weight Non Overlapping Set of Intervals

Problem Given a set of intervals I1, . . . , In where each interval Ii
has a start time s(Ii ), end time f (Ii ) and a weight w(Ii ) aim is to
find a subset S of the intervals such that no two intervals in S
overlap and the sum of weights of interval ΣIi∈S w(i) is maximum.
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overlap and the sum of weights of interval ΣIi∈S w(i) is maximum.

Let MWNOSI (S) denote the weight of maximum weight
subset of non-overlapping intrvals from S .

P.K. Pandya Design and Analysis of Algorithms CS218M



Maximum-Weight Non Overlapping Set of Intervals

Problem Given a set of intervals I1, . . . , In where each interval Ii
has a start time s(Ii ), end time f (Ii ) and a weight w(Ii ) aim is to
find a subset S of the intervals such that no two intervals in S
overlap and the sum of weights of interval ΣIi∈S w(i) is maximum.

Let MWNOSI (S) denote the weight of maximum weight
subset of non-overlapping intrvals from S .

Optimal Recursive Substructure

Let I ∈ S . Then

MWNOSI (S) = Max( MWNOSI (S − {I}), MWNOSI (S �) + w(I ))
where S � is the set of intervals from S which do not overlap with I .
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Solution 1: Detecting Overlaps
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Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.
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Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).
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Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).

MWNOSI (j) = Max(MWNOSI (j + 1), MWNOSI (k) + w(Ij))

where k > j with s(Ik) ≥ f (Ij) and S(Ik−1) < f (Ij).
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Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).

MWNOSI (j) = Max(MWNOSI (j + 1), MWNOSI (k) + w(Ij))

where k > j with s(Ik) ≥ f (Ij) and S(Ik−1) < f (Ij).

Base case?

What is the structure of memoization table T .
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Solution 1: Detecting Overlaps

Arrange intervals of S in increasing order of s(i) to give
I1, . . . , In.

Let MWNOSI (j) denote value of solution for
MWNOSI (Ij , Ij+1, . . . , In).

MWNOSI (j) = Max(MWNOSI (j + 1), MWNOSI (k) + w(Ij))

where k > j with s(Ik) ≥ f (Ij) and S(Ik−1) < f (Ij).

Base case?

What is the structure of memoization table T .

Complexity with memoization?
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Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r ].
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Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r ].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =
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Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r ].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I ) < l or f (I ) > r then EMWNOSI (S − {I}; l ; r)
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Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r ].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I ) < l or f (I ) > r then EMWNOSI (S − {I}; l ; r)
Otherwise Max of

EMWNOSI (S − {I}; l ; r) and
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Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r ].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I ) < l or f (I ) > r then EMWNOSI (S − {I}; l ; r)
Otherwise Max of

EMWNOSI (S − {I}; l ; r) and
EMWNOSI (S − {I}; l ; s(I ))

+ EMWNOSI (S − {I}; f (I ); r) + w(I )
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Solution 2: Adding Extra Parameters

Let EMWNOSI (I1, . . . , In; l ; r) denote max weight subset of
non-overlapping intervals from the list after removing intervals
which are not within interval [l , r ].

Optimal Recursive Substructure

For I ∈ S we have EMWNOSI (S ; l ; r) =

If s(I ) < l or f (I ) > r then EMWNOSI (S − {I}; l ; r)
Otherwise Max of

EMWNOSI (S − {I}; l ; r) and
EMWNOSI (S − {I}; l ; s(I ))

+ EMWNOSI (S − {I}; f (I ); r) + w(I )

Base case:
Memoization Table m? dimensions?
Order of filling m?
Complexity with Memoization?
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Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.
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Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?
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Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first).
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Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).
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Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).

Select items in decreasing order of value (most expensive
first).
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Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).

Select items in decreasing order of value (most expensive
first). Value (3, 2, 2) with weight (W /2 + 1, W /2, W /2).
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Knapsack

Problem [KT6.4] Given a set of items 1..n items where item i has
non-negative weight w(i) and value v(i), and a knapsack with
capacity W , find a subset S of 1..n with total weight
(Σi∈S w(i)) ≤ W such that the total value (Σi∈S v(i)) is
maximized.
For simplicity assume that W as well as each w(i) is an integer.

Greedy rule which gives optimal solution?

Select items in order of weights (lightest item first). Weight
(W /2 + 1, W /2, W /2) with value (1, 1, 1).

Select items in decreasing order of value (most expensive
first). Value (3, 2, 2) with weight (W /2 + 1, W /2, W /2).

No known Greedy rule gives optimal solution.
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Optimal Substructure of Knapsack
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Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .
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Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) =
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Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)
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Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))
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Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.
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Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.

Dimensions of memoization table m?
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Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.

Dimensions of memoization table m?

Complexity?
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Optimal Substructure of Knapsack

Let opt(i ,w) denote value of maximum value subset S of 1..i
where w(S) ≤ w . Define this for 0 ≤ w ≤ W .

If w < w(i) then
opt(i ,w) = opt(i − 1,w)

Otherwise opt(i ,w) = max of
opt(i − 1,w), and
w(i) + opt(i − 1,w − w(i))

Base cases: opt(0,w) = 0.

Dimensions of memoization table m?

Complexity? O(n ·W )
Pseudo-polynomial – proportional to value of constant
occuring in input.
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Knapsack Bottom Up Schedule
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Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik such that
Zj = Xij .
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Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik such that
Zj = Xij .
Solution: Greedy Algorithm of Complexity Θ(m)
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Longest Common Subsequence (LCS)

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
Y = �y1, y2, . . . , yn, determine the longest length sequence
Z = �z1, . . . , zk� which is a subsequence of both X and Y .
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Longest Common Subsequence (LCS)

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
Y = �y1, y2, . . . , yn, determine the longest length sequence
Z = �z1, . . . , zk� which is a subsequence of both X and Y .

Brute Force Solution

Systematically generate all subsequences Z of Y . For each check if
Z is a subseqeunce of X . Also remember the maximum of the
length of ”yes” subsequences examined so far.

Complexity?
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Optimal Substructure
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−l is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .

If xm �= yn and zk �= yn then Z is LCS of Xm−1,Y .
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?

Complexity?
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?

Complexity? Θ(m · n)
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Bottom UP Procedure
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Constructing the Solution
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Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.
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Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.
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Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.

.
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Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the squared error from these points after fitting the best line
through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .
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Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the squared error from these points after fitting the best line
through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .
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Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the squared error from these points after fitting the best line
through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

Optimal Substructure

For the subproblem p1, . . . , pj
opt(j) = min1≤i≤j ei ,j + C + opt(i − 1)
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