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Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik� such
that Zj = Xij .
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Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik� such
that Zj = Xij .
Solution: Greedy Algorithm of Complexity Θ(m)
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Longest Common Subsequence (LCS)

Problem [CLRS Ch. 15] Given sequences (arrays)
X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, determine the
longest length sequence Z = �z1, . . . , zk� which is a subsequence of
both X and Y .
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Longest Common Subsequence (LCS)

Problem [CLRS Ch. 15] Given sequences (arrays)
X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, determine the
longest length sequence Z = �z1, . . . , zk� which is a subsequence of
both X and Y .

Brute Force Solution

Systematically generate all subsequences Z of Y . For each check if
Z is a subseqeunce of X . Also remember the maximum of the
length of ”yes” subsequences examined so far.

Complexity?
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Optimal Substructure
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .
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Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .

If xm �= yn and zk �= yn then Z is LCS of Xm−1,Y .
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?

Complexity?
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Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?

Complexity? Θ(m · n)
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Bottom UP Procedure
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Output of the Procedure
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Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.
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Linear Regression and Error

Given set of points P (as before) and a line L defined by
y = a · x + b, we have squared error:
ERR(L,P) = Σn

i=1 (yi − a · xi − b)2.

P.K. Pandya Design and Analysis of Algorithms CS218M



Linear Regression and Error

Given set of points P (as before) and a line L defined by
y = a · x + b, we have squared error:
ERR(L,P) = Σn

i=1 (yi − a · xi − b)2.

Line a · x + b giving least squared error is given by
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Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the least squared error from these points after fitting the best
line through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .
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Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the least squared error from these points after fitting the best
line through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

Optimal Substructure (Recurrence 6.7)

For the subproblem p1, . . . , pj
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Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the least squared error from these points after fitting the best
line through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

Optimal Substructure (Recurrence 6.7)

For the subproblem p1, . . . , pj
opt(j) = min1≤i≤j (ei ,j + C + opt(i − 1))
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Bottom UP Procedure
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Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.
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Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.

A path p = �v0, v1, . . . vk� has weight
w(p) = Σk−1

i=0 w(vi , vi+1).
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Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.

A path p = �v0, v1, . . . vk� has weight
w(p) = Σk−1

i=0 w(vi , vi+1).

Let δ(u, v) = min {w(p) | u
p�−→ v}. Here min(∅) = ∞ and

δ(u, u) = 0.
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Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.

A path p = �v0, v1, . . . vk� has weight
w(p) = Σk−1

i=0 w(vi , vi+1).

Let δ(u, v) = min {w(p) | u
p�−→ v}. Here min(∅) = ∞ and

δ(u, u) = 0.

Graph may have negative edge weights.
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Properties of Shortest Paths

If the graph has a reachable negative weight cycle, then there
is no shortest path possible.
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Properties of Shortest Paths

If the graph has a reachable negative weight cycle, then there
is no shortest path possible.

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).
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Properties of Shortest Paths

If the graph has a reachable negative weight cycle, then there
is no shortest path possible.

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).

Triangle inequality: For any edge (u, v) we have
δ(s, v) ≤ δ(s, u) + w(u, v).
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Constraint Propagation Strategy

We will over-approximate δ(s, v) maintaining invariant
δ(s, v) ≤ v .d .
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Constraint Propagation Strategy

We will over-approximate δ(s, v) maintaining invariant
δ(s, v) ≤ v .d .
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Constraint Propagation Strategy

We will over-approximate δ(s, v) maintaining invariant
δ(s, v) ≤ v .d .

Relaxation
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Exploring Relaxation Schedules
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Exploring Relaxation Schedules
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Exploring Relaxation Schedules

.
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Properties of Relaxation Schedules
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Bellman-Ford Algorithm
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Bellman-Ford Algorithm

Correctness?
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Bellman-Ford Algorithm

Correctness?

Complexity?
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Bellman-Ford Algorithm

Correctness?

Complexity? O(V · E )
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SSP: Directed Acyclic Graphs
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SSP: Directed Acyclic Graphs

Correctness?
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SSP: Directed Acyclic Graphs

Correctness?

Complexity?
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SSP: Directed Acyclic Graphs

Correctness?

Complexity? O(V + E )
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All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).
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All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).

Input graph is given as adjecency matrix W where wi ,j gives
weight of edge (i , j).
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All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).

Input graph is given as adjecency matrix W where wi ,j gives
weight of edge (i , j).

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).
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All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).

Input graph is given as adjecency matrix W where wi ,j gives
weight of edge (i , j).

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).

For path p = �v1, v2, . . . , vn� vertices {v2, . . . , vn−1} are
intermediate vertices.
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Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .
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Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .

PATHS (k)[i , j ] = PATHS (k−1)[i , j ]
∪ PATHS (k−1)[i , k] · PATHS (k−1)[i , k]
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Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .

PATHS (k)[i , j ] = PATHS (k−1)[i , j ]
∪ PATHS (k−1)[i , k] · PATHS (k−1)[i , k]

Let d (k)i,j denote the weigth of shortest path in

PATHS (k)[i , j ]. Then, d
(n)
i ,j = δ(i , j).
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Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .

PATHS (k)[i , j ] = PATHS (k−1)[i , j ]
∪ PATHS (k−1)[i , k] · PATHS (k−1)[i , k]

Let d (k)i,j denote the weigth of shortest path in

PATHS (k)[i , j ]. Then, d
(n)
i ,j = δ(i , j).

Optimal Substructure
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Floyd-Warshall All-Pairs SP Algorithm
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Floyd-Warshall All-Pairs SP Algorithm

Complexity?
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Floyd-Warshall All-Pairs SP Algorithm

Complexity? O(n3)
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