
Design and Analysis of Algorithms
CS218M

Dynamic Programming

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M



Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik� such
that Zj = Xij .

P.K. Pandya Design and Analysis of Algorithms CS218M



Detecting Subsequence

Problem Given sequences (arrays) X = �x1, x2, . . . , xm� and
sequence Z = �z1, . . . , zk�, determine whether Z is a subsequence
of X , that is there exists a sequence of indices �i1, . . . , ik� such
that Zj = Xij .
Solution: Greedy Algorithm of Complexity Θ(m)

P.K. Pandya Design and Analysis of Algorithms CS218M



Longest Common Subsequence (LCS)

Problem [CLRS Ch. 15] Given sequences (arrays)
X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, determine the
longest length sequence Z = �z1, . . . , zk� which is a subsequence of
both X and Y .

P.K. Pandya Design and Analysis of Algorithms CS218M



Longest Common Subsequence (LCS)

Problem [CLRS Ch. 15] Given sequences (arrays)
X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, determine the
longest length sequence Z = �z1, . . . , zk� which is a subsequence of
both X and Y .

Brute Force Solution

Systematically generate all subsequences Z of Y . For each check if
Z is a subseqeunce of X . Also remember the maximum of the
length of ”yes” subsequences examined so far.

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .

P.K. Pandya Design and Analysis of Algorithms CS218M



Optimal Substructure

Notation: Given X = �x1, x2, . . . , xm�, the ith prefix of X is
Xi = �x1, x2, . . . , xi �.

Theorem

Given sequences X = �x1, x2, . . . , xm� and Y = �y1, y2, . . . , yn�, if
Z = �z1, . . . , zk� is their LCS, then

If xm = yn then zk = xm = yn and Zk−1 is LCS of Xm−1,Yn−1.

If xm �= yn and zk �= xm then Z is LCS of Xm−1,Y .

If xm �= yn and zk �= yn then Z is LCS of Xm−1,Y .

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Solution

Let c[i , j ] denote the length of LCS of Xi and Yj . Then,
c[i , j ] =

0 if i = 0 or j = 0

c[i − 1, j − 1] + 1 if i > 0 ∧ j > 0 and xi = yj

max(c[i − 1, j ], c[i , j − 1] if i > 0 ∧ j > 0 and xi �= yj

Designing the DP algorithm

Memoization table c[0..m, 0..n].

Base case?, Order of computing c[i , j ]?

Complexity? Θ(m · n)

P.K. Pandya Design and Analysis of Algorithms CS218M



Bottom UP Procedure

P.K. Pandya Design and Analysis of Algorithms CS218M



Output of the Procedure

P.K. Pandya Design and Analysis of Algorithms CS218M



Segmented Least Square

Problem [KT6.3] Given a set of n points (x1, y1), . . . , (xn, yn) in
x , y -plane in order x1 < x2 < . . . < xn, find a small set of line
segments such that the soln. gives the least error squared.

P.K. Pandya Design and Analysis of Algorithms CS218M



Linear Regression and Error

Given set of points P (as before) and a line L defined by
y = a · x + b, we have squared error:
ERR(L,P) = Σn

i=1 (yi − a · xi − b)2.

P.K. Pandya Design and Analysis of Algorithms CS218M



Linear Regression and Error

Given set of points P (as before) and a line L defined by
y = a · x + b, we have squared error:
ERR(L,P) = Σn

i=1 (yi − a · xi − b)2.

Line a · x + b giving least squared error is given by

P.K. Pandya Design and Analysis of Algorithms CS218M



Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the least squared error from these points after fitting the best
line through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

P.K. Pandya Design and Analysis of Algorithms CS218M



Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the least squared error from these points after fitting the best
line through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

P.K. Pandya Design and Analysis of Algorithms CS218M



Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the least squared error from these points after fitting the best
line through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

Optimal Substructure (Recurrence 6.7)

For the subproblem p1, . . . , pj

P.K. Pandya Design and Analysis of Algorithms CS218M



Formulating the Problem

if pi , pi+1, . . . , pj belongs to a line segment then ei ,j denotes
the least squared error from these points after fitting the best
line through them.

Trade off between reducing error and reducing number of line
segments.

Each line segment incurs a cost of C .

Optimal Substructure (Recurrence 6.7)

For the subproblem p1, . . . , pj
opt(j) = min1≤i≤j (ei ,j + C + opt(i − 1))

P.K. Pandya Design and Analysis of Algorithms CS218M



Bottom UP Procedure

P.K. Pandya Design and Analysis of Algorithms CS218M



Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.

P.K. Pandya Design and Analysis of Algorithms CS218M



Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.

A path p = �v0, v1, . . . vk� has weight
w(p) = Σk−1

i=0 w(vi , vi+1).

P.K. Pandya Design and Analysis of Algorithms CS218M



Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.

A path p = �v0, v1, . . . vk� has weight
w(p) = Σk−1

i=0 w(vi , vi+1).

Let δ(u, v) = min {w(p) | u
p�−→ v}. Here min(∅) = ∞ and

δ(u, u) = 0.

P.K. Pandya Design and Analysis of Algorithms CS218M



Single Source Shortest Paths

Problem [CLRS Ch 15] Given weighted directed graph
G = (V ,E ),w) with edge-weigths w : E → � and a start vertex s,
the aim is to find for every vertex t a shortest path from s to t (as
shortest path tree π) along with weight d .t of the shortest path.

A path p = �v0, v1, . . . vk� has weight
w(p) = Σk−1

i=0 w(vi , vi+1).

Let δ(u, v) = min {w(p) | u
p�−→ v}. Here min(∅) = ∞ and

δ(u, u) = 0.

Graph may have negative edge weights.

P.K. Pandya Design and Analysis of Algorithms CS218M



Properties of Shortest Paths

If the graph has a reachable negative weight cycle, then there
is no shortest path possible.

P.K. Pandya Design and Analysis of Algorithms CS218M



Properties of Shortest Paths

If the graph has a reachable negative weight cycle, then there
is no shortest path possible.

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).

P.K. Pandya Design and Analysis of Algorithms CS218M



Properties of Shortest Paths

If the graph has a reachable negative weight cycle, then there
is no shortest path possible.

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).

Triangle inequality: For any edge (u, v) we have
δ(s, v) ≤ δ(s, u) + w(u, v).

P.K. Pandya Design and Analysis of Algorithms CS218M



Constraint Propagation Strategy

We will over-approximate δ(s, v) maintaining invariant
δ(s, v) ≤ v .d .

P.K. Pandya Design and Analysis of Algorithms CS218M



Constraint Propagation Strategy

We will over-approximate δ(s, v) maintaining invariant
δ(s, v) ≤ v .d .

P.K. Pandya Design and Analysis of Algorithms CS218M



Constraint Propagation Strategy

We will over-approximate δ(s, v) maintaining invariant
δ(s, v) ≤ v .d .

Relaxation

P.K. Pandya Design and Analysis of Algorithms CS218M



Exploring Relaxation Schedules

P.K. Pandya Design and Analysis of Algorithms CS218M



Exploring Relaxation Schedules

P.K. Pandya Design and Analysis of Algorithms CS218M



Exploring Relaxation Schedules

.

P.K. Pandya Design and Analysis of Algorithms CS218M



Properties of Relaxation Schedules

P.K. Pandya Design and Analysis of Algorithms CS218M



Bellman-Ford Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Bellman-Ford Algorithm

Correctness?

P.K. Pandya Design and Analysis of Algorithms CS218M



Bellman-Ford Algorithm

Correctness?

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M



Bellman-Ford Algorithm

Correctness?

Complexity? O(V · E )

P.K. Pandya Design and Analysis of Algorithms CS218M



SSP: Directed Acyclic Graphs

P.K. Pandya Design and Analysis of Algorithms CS218M



SSP: Directed Acyclic Graphs

Correctness?

P.K. Pandya Design and Analysis of Algorithms CS218M



SSP: Directed Acyclic Graphs

Correctness?

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M



SSP: Directed Acyclic Graphs

Correctness?

Complexity? O(V + E )

P.K. Pandya Design and Analysis of Algorithms CS218M



All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).

P.K. Pandya Design and Analysis of Algorithms CS218M



All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).

Input graph is given as adjecency matrix W where wi ,j gives
weight of edge (i , j).

P.K. Pandya Design and Analysis of Algorithms CS218M



All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).

Input graph is given as adjecency matrix W where wi ,j gives
weight of edge (i , j).

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).

P.K. Pandya Design and Analysis of Algorithms CS218M



All Pairs Shortest Paths

Given directed acyclic graph G (with some negative edge weights
but no negative weight cycles) where nodes are numbered 1 . . . n,
for all i , j ∈ (1 . . . n)2, compute matrix D giving di ,j = δ(i , j).

Input graph is given as adjecency matrix W where wi ,j gives
weight of edge (i , j).

If �v0, v1, . . . vk� is a shortest path from v0 to vk , then
∀1 ≤ i ≤ j ≤ k the subpath �vi , . . . vj� is the shortest path
from vi to vj .
Also, δ(v0, vk) = δ(v0, vi ) + δ(vi , vk).

For path p = �v1, v2, . . . , vn� vertices {v2, . . . , vn−1} are
intermediate vertices.

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .

PATHS (k)[i , j ] = PATHS (k−1)[i , j ]
∪ PATHS (k−1)[i , k] · PATHS (k−1)[i , k]

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .

PATHS (k)[i , j ] = PATHS (k−1)[i , j ]
∪ PATHS (k−1)[i , k] · PATHS (k−1)[i , k]

Let d (k)i,j denote the weigth of shortest path in

PATHS (k)[i , j ]. Then, d
(n)
i ,j = δ(i , j).

P.K. Pandya Design and Analysis of Algorithms CS218M



Recursive Optimal Substructure

We focus on paths where intermediate vertices are in set
{1, . . . , k}. Let PATHS (k)[i , j ] denote simple paths from
vertex i to j with intermediate vertices in 1 . . . k .

PATHS (k)[i , j ] = PATHS (k−1)[i , j ]
∪ PATHS (k−1)[i , k] · PATHS (k−1)[i , k]

Let d (k)i,j denote the weigth of shortest path in

PATHS (k)[i , j ]. Then, d
(n)
i ,j = δ(i , j).

Optimal Substructure

P.K. Pandya Design and Analysis of Algorithms CS218M



Floyd-Warshall All-Pairs SP Algorithm

P.K. Pandya Design and Analysis of Algorithms CS218M



Floyd-Warshall All-Pairs SP Algorithm

Complexity?

P.K. Pandya Design and Analysis of Algorithms CS218M



Floyd-Warshall All-Pairs SP Algorithm

Complexity? O(n3)

P.K. Pandya Design and Analysis of Algorithms CS218M


