Design and Analysis of Algorithms CS218M Dynamic Programming

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

4 3 5 4

Problem Given sequences (arrays) $X = \langle x_1, x_2, \ldots, x_m \rangle$ and sequence $Z = \langle z_1, \ldots, z_k \rangle$, determine whether Z is a subsequence of X, that is there exists a sequence of indices $\langle i_1, \ldots, i_k \rangle$ such that $Z_j = X_{i_j}$.

.

Problem Given sequences (arrays) $X = \langle x_1, x_2, \ldots, x_m \rangle$ and sequence $Z = \langle z_1, \ldots, z_k \rangle$, determine whether Z is a subsequence of X, that is there exists a sequence of indices $\langle i_1, \ldots, i_k \rangle$ such that $Z_j = X_{i_j}$. Solution: Greedy Algorithm of Complexity $\Theta(m)$

• • • • • • • •

Problem [CLRS Ch. 15] Given sequences (arrays) $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, determine the longest length sequence $Z = \langle z_1, ..., z_k \rangle$ which is a subsequence of both X and Y.

Longest Common Subsequence (LCS)

Problem [CLRS Ch. 15] Given sequences (arrays) $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, determine the longest length sequence $Z = \langle z_1, ..., z_k \rangle$ which is a subsequence of both X and Y.

Brute Force Solution

Systematically generate all subsequences Z of Y. For each check if Z is a subsequence of X. Also remember the maximum of the length of "yes" subsequences examined so far.

Complexity?

Optimal Substructure

P.K. Pandya Design and Analysis of Algorithms CS218M

御 と く き と く き と

æ

Optimal Substructure

Notation: Given $X = \langle x_1, x_2, \dots, x_m \rangle$, the *i*th prefix of X is $X_i = \langle x_1, x_2, \dots, x_i \rangle$.

• • • • • • • •

Theorem

Given sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$, if $Z = \langle z_1, \dots, z_k \rangle$ is their LCS, then

• • = • • = •

Theorem

Given sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$, if $Z = \langle z_1, \dots, z_k \rangle$ is their LCS, then

• If
$$x_m = y_n$$
 then

• • • • • • • •

Theorem

Given sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$, if $Z = \langle z_1, \dots, z_k \rangle$ is their LCS, then

• If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is LCS lof X_{m-1}, Y_{n-1} .

Theorem

Given sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$, if $Z = \langle z_1, \dots, z_k \rangle$ is their LCS, then

- If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1}, Y_{n-1} .
- If $x_m \neq y_n$ and $z_k \neq x_m$ then

Theorem

Given sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$, if $Z = \langle z_1, \dots, z_k \rangle$ is their LCS, then

- If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1}, Y_{n-1} .
- If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is LCS of X_{m-1} , Y.

Theorem

Given sequences $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$, if $Z = \langle z_1, \dots, z_k \rangle$ is their LCS, then

- If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is LCS of X_{m-1}, Y_{n-1} .
- If $x_m \neq y_n$ and $z_k \neq x_m$ then Z is LCS of X_{m-1} , Y.
- If $x_m \neq y_n$ and $z_k \neq y_n$ then Z is LCS of $X_{p=1}$, $Y_{\gamma \sim 1}$

伺 ト イヨ ト イヨ ト

```
Let c[i,j] denote the length of LCS of X_i and Y_j. Then,

c[i,j] =

• 0 if i = 0 or j = 0
```

.

•
$$c[i-1, j-1] + 1$$
 if $i > 0 \land j > 0$ and $x_i = y_j$

.

- c[i-1, j-1] + 1 if $i > 0 \land j > 0$ and $x_i = y_j$
- max(c[i-1,j],c[i,j-1]) if $i > 0 \land j > 0$ and $x_i \neq y_j$

伺 ト イヨ ト イヨ ト

- 0 if *i* = 0 or *j* = 0
- c[i-1, j-1] + 1 if $i > 0 \land j > 0$ and $x_i = y_j$
- $max(c[i-1,j], c[i,j-1] \text{ if } i > 0 \land j > 0 \text{ and } x_i \neq y_j$

Designing the DP algorithm

• Memoization table c[0..m, 0..n].

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 0 if *i* = 0 or *j* = 0
- c[i-1, j-1] + 1 if $i > 0 \land j > 0$ and $x_i = y_j$
- $max(c[i-1,j], c[i,j-1] \text{ if } i > 0 \land j > 0 \text{ and } x_i \neq y_j$

Designing the DP algorithm

- Memoization table c[0..m, 0..n].
- Base case?, Order of computing c[i, j]?

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 0 if *i* = 0 or *j* = 0
- c[i-1, j-1] + 1 if $i > 0 \land j > 0$ and $x_i = y_j$
- $max(c[i-1,j], c[i,j-1] \text{ if } i > 0 \land j > 0 \text{ and } x_i \neq y_j$

Designing the DP algorithm

- Memoization table c[0..m, 0..n].
- Base case?, Order of computing c[i, j]?
- Complexity?

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 0 if *i* = 0 or *j* = 0
- c[i-1, j-1] + 1 if $i > 0 \land j > 0$ and $x_i = y_j$
- $max(c[i-1,j], c[i,j-1] \text{ if } i > 0 \land j > 0 \text{ and } x_i \neq y_j$

Designing the DP algorithm

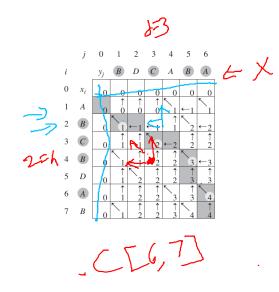
- Memoization table c[0..m, 0..n].
- Base case?, Order of computing c[i, j]?
- Complexity? $\Theta(m \cdot n)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

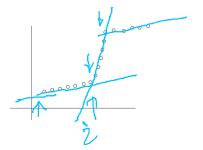
LCS-LENGTH(X, Y)m = X.length2 n = Y.length3 let $b[1 \dots m, 1 \dots n]$ and $c[0 \dots m, 0 \dots n]$ be new tables for i = 1 to m 4 P CW) 5 c[i, 0] = 06 for j = 0 to n7 c[0, i] = 08 for i = 1 to m 9 for i = 1 to n10 if $x_i == y_i$ 11 c[i, j] = c[i - 1, j - 1] + 1 $b[i, i] = " \ "$ 12 **elseif** $c[i - 1, j] \ge c[i, j - 1]$ 13 14 c[i, j] = c[i - 1, j] $b[i, j] = "\uparrow"$ 15 **else** c[i, j] = c[i, j-1]16 $b[i, i] = " \leftarrow "$ 17 18 return c and b

Output of the Procedure



æ

Problem [KT6.3] Given a set of *n* points $(x_1, y_1), \ldots, (x_n, y_n)$ in *x*, *y*-plane in order $x_1 < x_2 < \ldots < x_n$, find a small set of line segments such that the soln. gives the least error squared.



• Given set of points *P* (as before) and a line *L* defined by $y = a \cdot x + b$, we have squared error: $ERR(L, P) = \sum_{i=1}^{n} (y_i - a \cdot x_i - b)^2.$

• • = • • = •

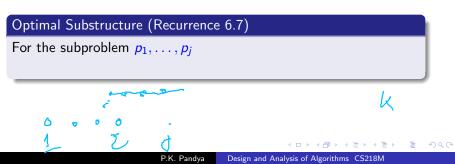
- Given set of points *P* (as before) and a line *L* defined by $y = a \cdot x + b$, we have squared error: $ERR(L, P) = \sum_{i=1}^{n} (y_i - a \cdot x_i - b)^2.$
- Line $a \cdot x + b$ giving least squared error is given by

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}} \text{ and } b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

- if $p_i, p_{i+1}, \ldots, p_j$ belongs to a line segment then $e_{i,j}$ denotes the least squared error from these points after fitting the best line through them.
- Trade off between reducing error and reducing number of line segments.
- Each line segment incurs a cost of C.

- if $p_i, p_{i+1}, \ldots, p_j$ belongs to a line segment then $e_{i,j}$ denotes the least squared error from these points after fitting the best line through them.
- Trade off between reducing error and reducing number of line segments.
- Each line segment incurs a cost of C.

- if $p_i, p_{i+1}, \ldots, p_j$ belongs to a line segment then $e_{i,j}$ denotes the least squared error from these points after fitting the best line through them.
- Trade off between reducing error and reducing number of line segments.
- Each line segment incurs a cost of C.



- if $p_i, p_{i+1}, \ldots, p_j$ belongs to a line segment then $e_{i,j}$ denotes the least squared error from these points after fitting the best line through them.
- Trade off between reducing error and reducing number of line segments.
- Each line segment incurs a cost of C.

Optimal Substructure (Recurrence 6.7)

For the subproblem p_1, \ldots, p_j $opt(j) = min_{1 \le i \le j} (e_{i,j} + C + opt(i-1))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

```
Segmented-Least-Squares(n)

Array M[0...n]

Set M[0] = 0

For all pairs i \le j

Compute the least squares error e_{i,j} for the segment p_i, ..., p_j

Endfor

For j = 1, 2, ..., n

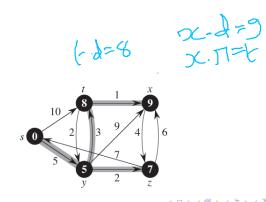
Use the recurrence (6.7) to compute M[j]

Endfor

Return M[n]
```

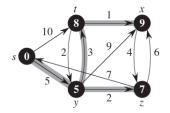
伺 ト イ ヨ ト イ ヨ ト

Problem [CLRS Ch 15] Given weighted directed graph G = (V, E), w with edge-weigths $w : E \to \Re$ and a start vertex s, the aim is to find for every vertex t a shortest path from s to t (as shortest path tree π) along with weight d.t of the shortest path.



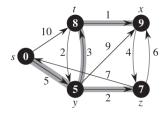
Problem [CLRS Ch 15] Given weighted directed graph G = (V, E), w with edge-weigths $w : E \to \Re$ and a start vertex *s*, the aim is to find for every vertex *t* a shortest path from *s* to *t* (as shortest path tree π) along with weight *d*.*t* of the shortest path.

• A path $p = \langle v_0, v_1, \dots, v_k \rangle$ has weight $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}).$



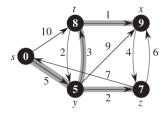
Problem [CLRS Ch 15] Given weighted directed graph G = (V, E), w with edge-weigths $w : E \to \Re$ and a start vertex *s*, the aim is to find for every vertex *t* a shortest path from *s* to *t* (as shortest path tree π) along with weight *d*.*t* of the shortest path.

- A path $p = \langle v_0, v_1, \dots, v_k \rangle$ has weight $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}).$
- Let $\delta(u, v) = \min \{w(p) \mid u \stackrel{p}{\longmapsto} v\}$. Here $\min(\emptyset) = \infty$ and $\delta(u, u) = 0$.



Problem [CLRS Ch 15] Given weighted directed graph G = (V, E), w with edge-weigths $w : E \to \Re$ and a start vertex *s*, the aim is to find for every vertex *t* a shortest path from *s* to *t* (as shortest path tree π) along with weight *d*.*t* of the shortest path.

- A path $p = \langle v_0, v_1, \dots, v_k \rangle$ has weight $w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}).$
- Let $\delta(u, v) = \min \{w(p) \mid u \stackrel{p}{\longmapsto} v\}$. Here $\min(\emptyset) = \infty$ and $\delta(u, u) = 0$.
- Graph may have negative edge weights.



• If the graph has a reachable negative weight cycle, then there is no shortest path possible.

- If the graph has a reachable negative weight cycle, then there is no shortest path possible.
- If ⟨v₀, v₁,..., v_k⟩ is a shortest path from v₀ to v_k, then ∀1 ≤ i ≤ j ≤ k the subpath ⟨v_i,..., v_j⟩ is the shortest path from v_i to v_j. Also, δ(v₀, v_k) = δ(v₀, v_i) + δ(v_i, v_k).

- If the graph has a reachable negative weight cycle, then there is no shortest path possible.
- If ⟨v₀, v₁,..., v_k⟩ is a shortest path from v₀ to v_k, then ∀1 ≤ i ≤ j ≤ k the subpath ⟨v_i,..., v_j⟩ is the shortest path from v_i to v_j. Also, δ(v₀, v_k) = δ(v₀, v_i) + δ(v_i, v_k).
- Triangle inequality: For any edge (u, v) we have $\delta(s, v) \leq \delta(s, u) + w(u, v).$

Constraint Propagation Strategy

We will over-approximate $\delta(s, v)$ maintaining invariant $\delta(s, v) \leq v.d$.

Constraint Propagation Strategy

We will over-approximate $\delta(s, v)$ maintaining invariant $\delta(s, v) \leq v.d$.

INITIALIŻE-SINGLE-SOURCE(G, s)

- 1 for each vertex $v \in G.V$
- 2 $\nu.d = \infty$
- 3 $\nu.\pi = \text{NIL}$
- $4 \ s.d = 0$

Constraint Propagation Strategy

We will over-approximate $\delta(s, v)$ maintaining invariant $\delta(s, v) \leq v.d.$

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 for each vertex $\nu \in G.V$
- 2 $\nu.d = \infty$

3
$$\nu.\pi = \text{NIL}$$

$$4 \ s.d = 0$$

Relaxation

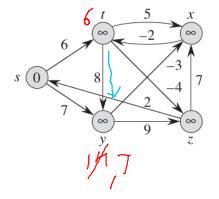
RELAX
$$(u, v, w)$$

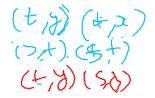
1 **if** $v.d > u.d + w(u, v)$
2 $v.d = u.d + w(u, v)$
3 $v.\pi = u$

イロト イポト イヨト イヨト

э

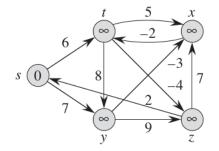
Exploring Relaxation Schedules





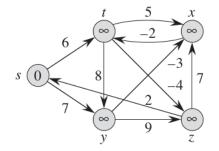
э

Exploring Relaxation Schedules



3 x 3

Exploring Relaxation Schedules



.

3 x 3

Convergence property (Lemma 24.14)

If $s \rightsquigarrow u \rightarrow v$ is a shortest path in *G* for some $u, v \in V$, and if $u.d = \delta(s, u)$ at any time prior to relaxing edge (u, v), then $v.d = \delta(s, v)$ at all times afterward.

Path-relaxation property (Lemma 24.15)

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k.d = \delta(s, v_k)$. This property holds regardless of any other relaxation steps that occur, even if they are intermixed with relaxations of the edges of p.

伺 ト イヨト イヨト

BELLMAN-FORD(G, w, s)

```
INITIALIZE-SINGLE-SOURCE(G, s)
1
2
   for i = 1 to |G, V| - 1
3
        for each edge (u, v) \in G.E
4
             \operatorname{RELAX}(u, v, w)
5
   for each edge (u, v) \in G.E
6
        if v.d > u.d + w(u, v)
7
             return FALSE
8
   return TRUE
```

A B > < B</p>

BELLMAN-FORD(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
```

```
2 for i = 1 to |G, V| - 1
```

```
3 for each edge (u, v) \in G.E
```

```
4 RELAX(u, v, w)
```

```
5 for each edge (u, v) \in G.E
```

```
6 if v.d > u.d + w(u, v)
```

```
return FALSE
```

```
8 return TRUE
```

• Correctness?

7

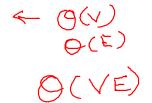
Image: A image: A

Bellman-Ford Algorithm

BELLMAN-FORD (G, w, s)

INITIALIZE-SINGLE-SOURCE(G, s) 1 2 for i = 1 to |G, V| - 1

- 3 for each edge $(u, v) \in G.E$
- 4 $\operatorname{RELAX}(u, v, w)$
- 5 for each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)7
 - return FALSE
- 8 return TRUE
- Correctness?
- Complexity?



伺 ト イヨト イヨト

(VE)

BELLMAN-FORD(G, w, s)

```
INITIALIZE-SINGLE-SOURCE(G, s)
1
```

```
2
   for i = 1 to |G, V| - 1
```

```
3
        for each edge (u, v) \in G.E
```

```
4
                      \operatorname{RELAX}(u, v, w)
```

```
5
   for each edge (u, v) \in G.E
```

```
6
        if v.d > u.d + w(u, v)
7
```

```
return FALSE
```

```
8
   return TRUE
```

- Correctness?
- Complexity? $O(V \cdot E)$

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 **for** each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

Correctness?

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex u, taken in topologically sorted order

4 **for** each vertex
$$v \in G.Adj[u]$$

- 5 RELAX(u, v, w)
- Correctness?
- Complexity?

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 for each vertex u, taken in topologically sorted order

4 **for** each vertex
$$v \in G.Adj[u]$$

- 5 RELAX(u, v, w)
- Correctness?
- Complexity? O(V + E)

Given directed acyclic graph G (with some negative edge weights but no negative weight cycles) where nodes are numbered $1 \dots n$, for all $i, j \in (1 \dots n)^2$, compute matrix D giving $d_{i,j} = \delta(i, j)$. Given directed acyclic graph G (with some negative edge weights but no negative weight cycles) where nodes are numbered $1 \dots n$, for all $i, j \in (1 \dots n)^2$, compute matrix D giving $d_{i,j} = \delta(i,j)$.

 Input graph is given as adjecency matrix W where w_{i,j} gives weight of edge (i, j). Given directed acyclic graph G (with some negative edge weights but no negative weight cycles) where nodes are numbered $1 \dots n$, for all $i, j \in (1 \dots n)^2$, compute matrix D giving $d_{i,j} = \delta(i, j)$.

- Input graph is given as adjecency matrix W where w_{i,j} gives weight of edge (i, j).
- If ⟨v₀, v₁,..., v_k⟩ is a shortest path from v₀ to v_k, then ∀1 ≤ i ≤ j ≤ k the subpath ⟨v_i,..., v_j⟩ is the shortest path from v_i to v_j. Also, δ(v₀, v_k) = δ(v₀, v_i) + δ(v_i, v_k).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given directed acyclic graph G (with some negative edge weights but no negative weight cycles) where nodes are numbered $1 \dots n$, for all $i, j \in (1 \dots n)^2$, compute matrix D giving $d_{i,j} = \delta(i, j)$.

- Input graph is given as adjecency matrix W where $w_{i,j}$ gives weight of edge (i, j).
- If ⟨v₀, v₁,..., v_k⟩ is a shortest path from v₀ to v_k, then ∀1 ≤ i ≤ j ≤ k the subpath ⟨v_i,..., v_j⟩ is the shortest path from v_i to v_j. Also, δ(v₀, v_k) = δ(v₀, v_i) + δ(v_i, v_k).
- For path p = ⟨v₁, v₂,..., v_n⟩ vertices {v₂,..., v_{n-1}} are intermediate vertices.

・ 同 ト ・ ヨ ト ・ ヨ ト …

We focus on paths where intermediate vertices are in set {1,...,k}. Let PATHS^(k)[i, j] denote simple paths from vertex i to j with intermediate vertices in 1...k.

- We focus on paths where intermediate vertices are in set {1,..., k}. Let PATHS^(k)[i, j] denote simple paths from vertex i to j with intermediate vertices in 1...k.
- $PATHS^{(k)}[i,j] = PATHS^{(k-1)}[i,j]$ $\cup PATHS^{(k-1)}[i,k] \cdot PATHS^{(k-1)}[i,k]$

- We focus on paths where intermediate vertices are in set {1,...,k}. Let PATHS^(k)[i,j] denote simple paths from vertex i to j with intermediate vertices in 1...k.
- $PATHS^{(k)}[i,j] = PATHS^{(k-1)}[i,j]$ $\cup PATHS^{(k-1)}[i,k] \cdot PATHS^{(k-1)}[i,k]$
- Let $d^{(k)_{i,j}}$ denote the weigth of shortest path in $PATHS^{(k)}[i,j]$. Then, $d_{i,j}^{(n)} = \delta(i,j)$.

- We focus on paths where intermediate vertices are in set {1,...,k}. Let PATHS^(k)[i, j] denote simple paths from vertex i to j with intermediate vertices in 1...k.
- $PATHS^{(k)}[i,j] = PATHS^{(k-1)}[i,j]$ $\cup PATHS^{(k-1)}[i,k] \cdot PATHS^{(k-1)}[i,k]$
- Let $d^{(k)_{i,j}}$ denote the weight of shortest path in $PATHS^{(k)}[i,j]$. Then, $d_{i,j}^{(n)} = \delta(i,j)$.
- Optimal Substructure

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

FLOYD-WARSHALL(W) n = W.rows1 2 $D^{(0)} = W$ 3 for k = 1 to nlet $D^{(k)} = (d_{ii}^{(k)})$ be a new $n \times n$ matrix 4 5 for i = 1 to n 6 for i = 1 to n $d_{ii}^{(k)} = \min\left(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\right)$ 7 return $D^{(n)}$ 8

FLOYD-WARSHALL(W) n = W.rows1 2 $D^{(0)} = W$ 3 for k = 1 to nlet $D^{(k)} = (d_{ii}^{(k)})$ be a new $n \times n$ matrix 4 5 for i = 1 to n 6 for i = 1 to n $d_{ii}^{(k)} = \min\left(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\right)$ 7 return $D^{(n)}$ 8

• Complexity?

FLOYD-WARSHALL(W) n = W.rows1 2 $D^{(0)} = W$ 3 for k = 1 to nlet $D^{(k)} = (d_{ii}^{(k)})$ be a new $n \times n$ matrix 4 5 for i = 1 to n 6 for i = 1 to n $d_{ii}^{(k)} = \min\left(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)}\right)$ 7 return $D^{(n)}$ 8

• Complexity? $O(n^3)$