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Complexity Class P: Polynomial time Solvable Problems

We saw several problems for which we gave algorithms with
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Complexity Class P: Polynomial time Solvable Problems

We saw several problems for which we gave algorithms with
time complexity O(f (n)) where f (n) is a polynomial in n.

Examples: integer multiplication, shortest path.

These algorithms belong to complexity class P.
It is believed that such algorithms are tractable.

A problem Q is polynomial time solvable if there an algorithm
A ∈ P solving Q.

We abuse the notation to say that Q ∈ P.

Theorem

P = Co − P

P.K. Pandya Design and Analysis of Algorithms CS218M



Some Technicalities

Optimization problem: Gives output with optimal value while
meeting desired constraints. E.g. Find the length of the
shortest path in directed graph G .
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Some Technicalities

Optimization problem: Gives output with optimal value while
meeting desired constraints. E.g. Find the length of the
shortest path in directed graph G .

Decision problem: Has ”yes/no” output. E.g. For given k find
if the graph has a path of length at most k .

Two types of problems are inter-reducible with polynomial
blowup.

We will deal with decision problems only.

For problem Q we encode its instance X as a string �X � over
some Σ. Then, Q is the set of ”yes” instance strings. The
corresponding decision problem answers whether a given
string in Σ∗ is in Q.

Example:
PRIMES = {x ∈ {0, 1}∗ | x represents a prime in binary}.
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Examples

SAT set of all strings representing satisfiable boolean
formulas.

Facts
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Examples

SAT set of all strings representing satisfiable boolean
formulas.

HAMILTON is collection of all graphs which have a
Hamiltonian cycle.

EULER is collectionof all graphs which have a Euler cycle.

PATH all graphs having a path from specified s to t of length
at most k .

Facts

EULER ∈ P (why?)

PATH ∈ P (why?)
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Beyond P

Question: Are there problems which are not polynomial time
solvable?
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Question: Are there problems which are not polynomial time
solvable?
Answer: Yes

Satisfiability of Presburger Arithmetic formula (without
multiplication symbol)

∀x∃y .((x + x + y > 7) ∧ (x − y < 3)).
Equality of regular expressions with squaring.
Emptiness of Extended regular expressions (with intersection
and complement).
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Beyond P

Question: Are there problems which are not polynomial time
solvable?
Answer: Yes

Satisfiability of Presburger Arithmetic formula (without
multiplication symbol)

∀x∃y .((x + x + y > 7) ∧ (x − y < 3)).
Equality of regular expressions with squaring.
Emptiness of Extended regular expressions (with intersection
and complement).

However there are many natural problems whose status is
unresolved.
Examples:

IND Determining whether a graph G has a subset of k vertices
where no two vertices are connected by an edge.
HAMILTON Existence of Hamiltonian cycle in a Graph.
SAT Satisfiability of boolean formula.

Above examples belong to an important class of problems
called NP problems.
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Class NP: Polynomial time Verifiable Problems

Nondeterministic Polynomial Time Solvable Problems.
Characteristics:

Finding solution may be difficult and may involve exhaustive
search.

It is easy to verify that the solution to a problem instance X is
correct using a succinct certificate Y .

The certificate Y must be of size polynomial in the size of X .

The verification must be done by a poly-time algorithm
A(X ,Y ) ∈ P.
Example: For boolean formula
((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2
certificate x1 = 0, x2 = 0, x3 = 1, x4 = 1
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Definition of Class NP

Definition

L ∈ NP if and only if there exists a two input algorithm
A(x , y) ∈ P and a constant c such that

L = {x ∈ Σ∗ | ∃y .|y | = O(|x |c) ∧ A(x , y) = 1}
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Definition of Class NP

Definition

L ∈ NP if and only if there exists a two input algorithm
A(x , y) ∈ P and a constant c such that

L = {x ∈ Σ∗ | ∃y .|y | = O(|x |c) ∧ A(x , y) = 1}

Algorithms to Solve L: Given such A and c , for any input x

Nondeterministically guess y . Output A(x , y).

Systematically enumerate every y and compute A(x , y). If
any instance A(X ,Y ) has answer ”yes” then we answer ”yes”
and return. Otherwise try next y . Finally. answer ”no”. The
time of this Deterministic algorithm is O(2Poly(|X |)).
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P versus NP

SAT ∈ NP (How?)
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P versus NP

SAT ∈ NP (How?)

HAMILTON ∈ NP (How?)

EULER ∈ NP (How?)

We will see many more examples of problems in NP.

Theorem

P ⊆ NP

Natural Question: Is SAT ∈ P

A Major Open Problem in CS [Cook71-Levin73]

Is P = NP ?
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Clay Millenium Problems
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Clay Millenium Problems (List)
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Potential Scenarios

There is strong belief (but no proof!) that P ⊂ NP. .
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Polynomial Time Reduction

Let L1 ⊆ Σ∗ and L2 ⊆ Δ∗ be two decision problems. A function
f : Σ∗ → Δ∗ is called a polynomial time reduction from L1 to L2
(denoted f : L1 ≤P L2) iff

f is total.

There exists a c such that f (x) is computable in time O(|x |c)
for all x .

x ∈ L1 iff f (x) ∈ L2.

Notation L1 ≤P L2 denotes ∃f such that f : L1 ≤P L2.
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Using Poly Time Reduction

Theorem

If f : L1 ≤P L2 and L2 ∈ P then L1 ∈ P.

Proof:

Time taken for computing A1 is polynomial in x (why?)
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NP-Complete Problems

A problem L ⊆ Σ∗ is called NP-complete (denoted NPC) if
L ∈ NP.
For every L� ∈ NP, we have L� ≤P L.
(This shows that L is at least as hard as L�.)

If only second condition is satisfied we say that L is NP-hard.
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NP-Complete Problems

A problem L ⊆ Σ∗ is called NP-complete (denoted NPC) if
L ∈ NP.
For every L� ∈ NP, we have L� ≤P L.
(This shows that L is at least as hard as L�.)

If only second condition is satisfied we say that L is NP-hard.

Theorem (Proving NPC by reduction)

If L� ≤P L and L� is NPC then L is NP-hard. Additionally if
L ∈ NP then L is NPC.
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NP-Complete Problems

A problem L ⊆ Σ∗ is called NP-complete (denoted NPC) if
L ∈ NP.
For every L� ∈ NP, we have L� ≤P L.
(This shows that L is at least as hard as L�.)

If only second condition is satisfied we say that L is NP-hard.

Theorem (Proving NPC by reduction)

If L� ≤P L and L� is NPC then L is NP-hard. Additionally if
L ∈ NP then L is NPC.

Proof: Let L, L� as above. Then for all L” ∈ NP, we have
L” ≤P L�. By transitivity, then L” ≤P L. Hence, L ∈ NPC.
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Outline

We can prove a wide class of problems to be NPC.
(Initial Problem) Circuit Satisfaction Problem: Given a
combinational circuit made out of AND,OR ,NOT gates,
decide whether any input makes the circuit output 1.

(More problems by Reduction) Independat Set, Vertex Cover,
k-Clique, set Packing, set Cover, sat, 3-sat, Hamiltonian
Cycle, Travelling Salesman, 3-dimnesional-matching,
graph-coloring, subsetsum
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Circuit Satisfiability Problem

Boolean Combinational Circuit made of AND, OR NOT
gates, connected by wires.

Input wires, single output wire, internal wire

gates with n inputs, one output, fan out.

Circuit satisfiability problem Give a circuit C is there an
assignment of values to input wires which makes the output
wire 1? (Similar to SAT).
CIRCUIT SAT = {�C � | C has a satisfying assignment }.
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CIRCUIT SAT ∈ NP

Let C given circuit with set of wires W .
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CIRCUIT SAT ∈ NP

Let C given circuit with set of wires W .

Let val be an assignmnt of booelan value 0 or 1 to each wire.
We shall use val as succinct certificate.

We can have a poly-time algorithm A(�C �, �val�) which
outputs ”yes” if and only if

truth assignment at input and output of each logic element is
consistent.
assignment to output wire is 1

Hence, C is satisfiable iff there exists val such that
A(�C �, �val�) outputs ”yes”.
A is computable in time polynomial in |C |.
Hence, CIRCUIT SAT ∈ NP .
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CIRCUIT SAT is NP-hard

(Proof Schema) Let L ∈ NP. Hence, there is A(x , y) ∈ P s.t.
x ∈ L iff ∃y .A(x , y) = 1.
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A is like a machine program. Execution of A on given input
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CIRCUIT SAT is NP-hard

(Proof Schema) Let L ∈ NP. Hence, there is A(x , y) ∈ P s.t.
x ∈ L iff ∃y .A(x , y) = 1.

A is like a machine program. Execution of A on given input
x , y goes through a sequence of machine configurations:

c1 → c2 → . . . → cT (n)

Each configuration consists of code of A, program counter,
machine registers, inputs x , y and working memory.

We have a circuit M which inputs previous configuration and
outputs next configuration.
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Circuit CA for A(x , y) taking time T (n)
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Reduction f : L ≤P CIRCUIT SAT
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Reduction f : L ≤P CIRCUIT SAT

For x ∈ L we construct circuit CL(y) with input wires y such
that x ∈ L iff ∃y .CL(y) = 1.
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Reduction f : L ≤P CIRCUIT SAT

For x ∈ L we construct circuit CL(y) with input wires y such
that x ∈ L iff ∃y .CL(y) = 1.

CL(y) uses 1 copy of CA.
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Reduction f : L ≤P CIRCUIT SAT

For x ∈ L we construct circuit CL(y) with input wires y such
that x ∈ L iff ∃y .CL(y) = 1.

CL(y) uses 1 copy of CA.

It takes y for c0 as input. It presets �A�,PC = 1, x and sets
internal state as well as storage to initial value.
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Reduction f : L ≤P CIRCUIT SAT

For x ∈ L we construct circuit CL(y) with input wires y such
that x ∈ L iff ∃y .CL(y) = 1.

CL(y) uses 1 copy of CA.

It takes y for c0 as input. It presets �A�,PC = 1, x and sets
internal state as well as storage to initial value.

It outputs the result bit in last configuration as output wire.
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