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NIP-Complete Problems

A problem L C ¥* is called NP-complete (denoted NIPC) if
e L € NP.
@ For every I’ € NP, we have L' <p L.
(This shows that L is at least as hard as L'.)
If only second condition is satisfied we say that L is NPP-hard.
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NIP-Complete Problems

A problem L C ¥* is called NP-complete (denoted NIPC) if
e L € NP.
@ For every I’ € NP, we have L' <p L.
(This shows that L is at least as hard as L'.)
If only second condition is satisfied we say that L is NPP-hard.

CIRCUIT _SAT is NPP-Complete.
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NIP-Complete Problems

A problem L C ¥* is called NIP-complete (denoted NPC) if
e L € NP.
@ For every I’ € NP, we have L' <p L.
(This shows that L is at least as hard as L'.)
If only second condition is satisfied we say that L is NIP-hard.

CIRCUIT _SAT is NPP-Complete.

Proving L € NIPC by Reduction

@ To show that L is NPP-hard, we reduce in polytime a known
NPC problem L to L.

@ We also show that L € NIP.
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NIP-Complete Problems

A problem L C ¥* is called NIP-complete (denoted NPC) if
e L € NP.
@ For every I’ € NP, we have L' <p L.
(This shows that L is at least as hard as L'.)
If only second condition is satisfied we say that L is NIP-hard.

CIRCUIT _SAT is NPP-Complete.

Proving L € NIPC by Reduction

@ To show that L is NPP-hard, we reduce in polytime a known
NPC problem L to L.

@ We also show that L € NIP.

If " <p L and L' is NIPC then L is NPP-hard. Additionally if
L € NP then L is NIPC. )
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3CNF _SAT is NPP-Complete
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3CNF _SAT is NPP-Complete
Ne_ CNW\R
Lf—oW“““p\"\ " Cdv\dwﬂéwm CeNF)

@ Example (—x, Vxy V xz) A (—x, VX V 2x2) A (Xy VX V =Xy )
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3CNF _SAT is NPP-Complete

@ Example (—x, Vxy V xz) A (—x, VX V 2x2) A (Xy VX V =Xy )

@ A boolean formula ¢ in the form C; A G A ... A C, where
each clause C; has the form (/{ VV I, V I5) where literal / is x or
—x for a propositional letter x is called 3CNF formula.
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3CNF _SAT is NPP-Complete

@ Example (—x, Vxy V xz) A (—x, VX V 2x2) A (Xy VX V =Xy )

@ A boolean formula ¢ in the form C; A G A ... A C, where
each clause C; has the form (/{ VV I, V I5) where literal / is x or
—x for a propositional letter x is called 3CNF formula.

@ 3CNF _SAT is the collection of satisfiable 3CNF formulas. It
is easy to see that 3CNF_SAT € NP (why?)
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3CNF _SAT is NPP-Complete

@ Example (—x, Vxy V xz) A (—x, VX V 2x2) A (Xy VX V =Xy )

@ A boolean formula ¢ in the form C; A G A ... A C, where
each clause C; has the form (/{ VV I, V I5) where literal / is x or
—x for a propositional letter x is called 3CNF formula.

@ 3CNF _SAT is the collection of satisfiable 3CNF formulas. It
is easy to see that 3CNF_SAT € NP (why?)

@ We show that CIRCUIT _SAT <p 3CNF_SAT.
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Reduction: We trasform a circuit C to formula ¢(C)

(9@64\—7 1704

¢ = X0 A (X4 x3)
A (x5 < (x1V x2)
A (xg <> —Xxy)
A (X7 < (X1 A X3 A Xy))

A (xg < (x5 V X6))

A (xg <> (X6 V X7))

(4 L7V
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Reduction: We trasform a circuit C to formula ¢(C)

@ Transform circuit C to conjunction of clauses as in previous
slide.

@ A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)
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Reduction: We trasform a circuit C to formula ¢(C)

@ Transform circuit C to conjunction of clauses as in previous
slide.

@ A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)

@ Each clause gives rise to a set of 3CNF clauses.
Clause x, <+ —x, gives rise to equivalent set of clauses

(xv V xu) A (mxy V —xy). x,\r /\'TDC_‘,\\/ ‘SDCV.PX’W
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Reduction: We trasform a circuit C to formula ¢(C)

@ Transform circuit C to conjunction of clauses as in previous
slide.

@ A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)

@ Each clause gives rise to a set of 3CNF clauses.
Clause x, <+ —x, gives rise to equivalent set of clauses
(xv V xu) A (5xy V —xy).

o Clause x, <> x, /\ x,, is equivalent to
(=xv V xu) A (mxy V xw) A (Xv V 2y Vo)
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Reduction: We trasform a circuit C to formula ¢(C)

@ Transform circuit C to conjunction of clauses as in previous
slide.

@ A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)

@ Each clause gives rise to a set of 3CNF clauses.
Clause x, <+ —x, gives rise to equivalent set of clauses
(xv V xu) A (—xy V —xy).

o Clause x, <> x, /\ x,, is equivalent to
(=xv V xu) A (mxy V xw) A (Xv V 2y Vo)

e Clause x, +» (x, V x,,) is equivalent to
(xv V2xu) A (%0 V 2xuw) A (5xy VX VX))
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Reduction: We trasform a circuit C to formula ¢(C)

Transform circuit C to conjunction of clauses as in previous
slide.

A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)

Each clause gives rise to a set of 3CNF clauses.

Clause x, <+ —x, gives rise to equivalent set of clauses

(xv V xu) A (5xy V —xy).

Clause x, <+ x, A x,, is equivalent to

(=xv V xu) A (mxy V xw) A (Xv V 2y Vo)

Clause x, <> (x, V xy/) is equivalent to

(xv V2xu) A (%0 V 2xuw) A (5xy VX VX))

Each two literal clause is converted to a set of 3-literal clauses.
E.g. (xVy)isequivalent to (x VyV p)A(xVyV-p).
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Reduction: We trasform a circuit C to formula ¢(C)

@ Transform circuit C to conjunction of clauses as in previous
slide.

@ A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)

@ Each clause gives rise to a set of 3CNF clauses.
Clause x, <+ —x, gives rise to equivalent set of clauses
(xv V xu) A (5xy V —xy).

o Clause x, <> x, /\ x,, is equivalent to
(=xv V xu) A (mxy V xw) A (Xv V 2y Vo)

e Clause x, +» (x, V x,,) is equivalent to
(xv V2xu) A (%0 V 2xuw) A (5xy VX VX))

@ Each two literal clause is converted to a set of 3-literal cIauses.—%
E.g. (xVy)isequivalent to (x VyV p)A(xVyV-p).

C is satisfiable iff ¢(C) is satisfiable. Also |¢(C)| is linear in |C]|.
Hence, CIRCUIT _SAT <p 3CNF_SAT.
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CLIQUE

o dureded

Given e/wgraph G a subset Vy C V is a clique if for every distinct
u,v € Vo we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}

(
\)o \/a

P.K. Pandya Design and Analysis of Algorithms CS218M



CLIQUE

Given a graph G a subset Vy C V is a clique if for every distinct
u,v € Vo we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}

CLIQUE € NPC
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CLIQUE

Given a graph G a subset Vy C V is a clique if for every distinct
u,v € Vo we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}

CLIQUE € NPC

o CLIQUE € NP (How?)
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CLIQUE

Given a graph G a subset Vy C V is a clique if for every distinct
u,v € Vo we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}

CLIQUE € NPC

o CLIQUE € NP (How?)
o 3CNF_SAT <p CLIQUE.
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Reduction 3CNF _SAT <p CLIQUE

¢ = (X1 V —Xxo \/—|X3) VAN (—|X1 V Xo \/X3) VAN (X1 V Xo \/X3)
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Reduction 3CNF _SAT <p CLIQUE

¢ = (X1 V —Xxo \/—|X3) VAN (—|X1 V Xo \/X3) VAN (X1 V Xo \/X3)

C; =XV X3 VX

Cr ==X VX3V X3

Figure 34.14 The graph G derived from the 3-CNF formula ¢ = C; A C3 A Cz, where C; =
(x1 vV =xz vV —x3), Ca = (—x) V x3 V x3),and C3 = (x1 V x3 V x3), in reducing 3-CNF-SAT to
CLIQUE. A satisfying assignment of the formula has xo = 0, x3 = 1, and x; either 0 or 1. This
assignment satisfies C'; with —x,, and it satisfies C; and C3 with x3, corresponding to the clique
with lightly shaded vertices.
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Clique, Independant Set, Vertex Cover

Given a graph G a subset Vy C V' is

e clique iff for every distinct u, v € Vg we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}
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Clique, Independant Set, Vertex Cover

Given a graph G a subset Vy C V' is

e clique iff for every distinct u, v € Vg we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}

o Independant Set iff for every u,v € V we have (u,v) ¢ E.
IND = {(G, k) | G has a independant set of size k}
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Clique, Independant Set, Vertex Cover

Given a graph G a subset Vy C V' is
e clique iff for every distinct u, v € Vg we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}

o Independant Set iff for every u,v € V we have (u,v) ¢ E.
IND = {(G, k) | G has a independant set of size k}
e vertex cover iff for every edge (u,v) € E we have
(UE WwVve Vo)
VERTEX_COVER =
{(G, k) | G has a vertex cover of size k}
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Clique, Independant Set, Vertex Cover

Given a graph G a subset Vy C V' is

e clique iff for every distinct u, v € Vg we have (u,v) € E.
CLIQUE = {(G, k) | G has a clique of size k}

o Independant Set iff for every u,v € V we have (u,v) ¢ E.
IND = {(G, k) | G has a independant set of size k}

e vertex cover iff for every edge (u,v) € E we have
(UE WwVve Vo)
VERTEX_COVER =
{(G, k) | G has a vertex cover of size k}

We explore reductions between these decision problems.
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Independant set

Let G = (V, E) be a given graph and let the complement graph
G' = (V,E) where E = V> — E. Then, For any Vp C V, we have
Vo is a clique in G iff Vy is an independant set in G'.
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Independant set

Let G = (V, E) be a given graph and let the complement graph
G' = (V,E) where E = V> — E. Then, For any Vp C V, we have
Vo is a clique in G iff Vy is an independant set in G'.

@ G has clique of size at least k iff G’ has independant set of
size at least k.
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Independant set

Let G = (V, E) be a given graph and let the complement graph
G' = (V,E) where E = V> — E. Then, For any Vp C V, we have
Vo is a clique in G iff Vy is an independant set in G'.

@ G has clique of size at least k iff G’ has independant set of
size at least k.

@ Hence, CLIQUE <p IND and IND <p CLIQUE.
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Independant set

Let G = (V, E) be a given graph and let the complement graph
G' = (V,E) where E = V> — E. Then, For any Vp C V, we have
Vo is a clique in G iff Vy is an independant set in G'.

@ G has clique of size at least k iff G’ has independant set of
size at least k.

@ Hence, CLIQUE <p IND and IND <p CLIQUE.
e IND € NPC.
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Independant set

Let G = (V, E) be a given graph and let the complement graph
G' = (V,E) where E = V> — E. Then, For any Vp C V, we have
Vo is a clique in G iff Vy is an independant set in G'.

@ G has clique of size at least k iff G’ has independant set of
size at least k.

@ Hence, CLIQUE <p IND and IND <p CLIQUE.

e IND e NPC.

@ SELF STUDY: There is a nice generalization of independant
set in graph to a problem called set packing. (See KT 8.1)
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Let G = (V, E) be a given graph. Then for any Vo C V, we have
Vo is vertex cover iff V. — Vg is an independant set.

P.K. Pandya Design and Analysis of Algorithms CS218M



Let G = (V, E) be a given graph. Then for any Vo C V, we have
Vo is vertex cover iff V. — Vg is an independant set.

@ G has independant set of size k iff G has a vertex cover of set
of size |V/| — k.
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Let G = (V, E) be a given graph. Then for any Vo C V, we have
Vo is vertex cover iff V. — Vg is an independant set.

@ G has independant set of size k iff G has a vertex cover of set
of size |V/| — k.

@ Hence, IND <p VERTEX_COVER and
VERTEX _COVER <p IND.
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Let G = (V, E) be a given graph. Then for any Vo C V, we have
Vo is vertex cover iff V. — Vg is an independant set.

@ G has independant set of size k iff G has a vertex cover of set
of size |V/| — k.

@ Hence, IND <p VERTEX_COVER and
VERTEX_COVER <p IND.

e VERTEX_COVER € NPC.
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Let G = (V, E) be a given graph. Then for any Vo C V, we have
Vo is vertex cover iff V. — Vg is an independant set.

@ G has independant set of size k iff G has a vertex cover of set
of size |V/| — k.

@ Hence, IND <p VERTEX_COVER and
VERTEX_COVER <p IND.

o VERTEX_COVER € NPC.

@ SELF STUDY: There is a nice generalization of vertex cover
in graph to a problem called set cover. (See KT 8.1)
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Graph Coloring

Given undirected graph G = (V/, E) has a k coloring
f:V—={12... k}if (uv)eE=f(u)#f(v).
GRAPH_COLORING = {(G, k) | G has a k coloring size}
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Graph Coloring

Given undirected graph G = (V/, E) has a k coloring
f:V—={12... k}if (uv)eE=f(u)#f(v).
GRAPH_COLORING = {(G, k) | G has a k coloring size}

Whether a graphs is 2-colorable is in P.
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Graph Coloring

Given undirected graph G = (V/, E) has a k coloring
f:V—={12... k}if (uv)eE=f(u)#f(v).
GRAPH_COLORING = {(G, k) | G has a k coloring size}

Whether a graphs is 2-colorable is in P.

Let 3COLOR be the set of all graphs having 3 coloring.
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Graph Coloring

Given undirected graph G = (V/, E) has a k coloring
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Let 3COLOR be the set of all graphs having 3 coloring.
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Graph Coloring

Given undirected graph G = (V/, E) has a k coloring
f:V—={12... k}if (uv)eE=f(u)#f(v).
GRAPH_COLORING = {(G, k) | G has a k coloring size}

Whether a graphs is 2-colorable is in P.

Let 3COLOR be the set of all graphs having 3 coloring.

3COLOR € NPC.

@ Whether a graph is 3-colorable is in 3COLOAR € NP.
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Graph Coloring

Given undirected graph G = (V/, E) has a k coloring
f:V—={12... k}if (uv)eE=f(u)#f(v).
GRAPH_COLORING = {(G, k) | G has a k coloring size}

Whether a graphs is 2-colorable is in P.

Let 3COLOR be the set of all graphs having 3 coloring.

3COLOR € NPC.

@ Whether a graph is 3-colorable is in 3COLOAR € NP.
@ 3CNF_SAT <p 3COLOR
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Proof ldea

@ For each variable x; we have nodes v; and v;.

@ Encoding valuation by 3-coloring.

True Faise
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Proof Idea (

Enforcing clause (x1 V —x2 V x3).

The top node can only be
colored if one of vy, U5, or v3
does not get the False color.

Figure 8.12 Attaching a subgraph to represent the clause x; v x; v x3.
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