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NP-Complete Problems

A problem L ⊆ Σ∗ is called NP-complete (denoted NPC) if
L ∈ NP.
For every L� ∈ NP, we have L� ≤P L.
(This shows that L is at least as hard as L�.)

If only second condition is satisfied we say that L is NP-hard.
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A problem L ⊆ Σ∗ is called NP-complete (denoted NPC) if
L ∈ NP.
For every L� ∈ NP, we have L� ≤P L.
(This shows that L is at least as hard as L�.)

If only second condition is satisfied we say that L is NP-hard.

Theorem

CIRCUIT SAT is NP-Complete.

Proving L ∈ NPC by Reduction

To show that L is NP-hard, we reduce in polytime a known
NPC problem L� to L.

We also show that L ∈ NP.
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NP-Complete Problems

A problem L ⊆ Σ∗ is called NP-complete (denoted NPC) if
L ∈ NP.
For every L� ∈ NP, we have L� ≤P L.
(This shows that L is at least as hard as L�.)

If only second condition is satisfied we say that L is NP-hard.

Theorem

CIRCUIT SAT is NP-Complete.

Proving L ∈ NPC by Reduction

To show that L is NP-hard, we reduce in polytime a known
NPC problem L� to L.

We also show that L ∈ NP.

Theorem

If L� ≤P L and L� is NPC then L is NP-hard. Additionally if
L ∈ NP then L is NPC.
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3CNF SAT is NP-Complete
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3CNF SAT is NP-Complete

Example (¬xv ∨ xu ∨ xz)∧ (¬xv ∨ xw ∨¬xz)∧ (xv ∨¬xu ∨¬xw )
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3CNF SAT is NP-Complete

Example (¬xv ∨ xu ∨ xz)∧ (¬xv ∨ xw ∨¬xz)∧ (xv ∨¬xu ∨¬xw )
A boolean formula φ in the form C1 ∧ C2 ∧ . . . ∧ Cm where
each clause Ci has the form (l i1 ∨ l i2 ∨ l i3) where literal l is x or
¬x for a propositional letter x is called 3CNF formula.
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A boolean formula φ in the form C1 ∧ C2 ∧ . . . ∧ Cm where
each clause Ci has the form (l i1 ∨ l i2 ∨ l i3) where literal l is x or
¬x for a propositional letter x is called 3CNF formula.

3CNF SAT is the collection of satisfiable 3CNF formulas. It
is easy to see that 3CNF SAT ∈ NP (why?)
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3CNF SAT is NP-Complete

Example (¬xv ∨ xu ∨ xz)∧ (¬xv ∨ xw ∨¬xz)∧ (xv ∨¬xu ∨¬xw )
A boolean formula φ in the form C1 ∧ C2 ∧ . . . ∧ Cm where
each clause Ci has the form (l i1 ∨ l i2 ∨ l i3) where literal l is x or
¬x for a propositional letter x is called 3CNF formula.

3CNF SAT is the collection of satisfiable 3CNF formulas. It
is easy to see that 3CNF SAT ∈ NP (why?)

We show that CIRCUIT SAT ≤P 3CNF SAT .
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Reduction: We trasform a circuit C to formula φ(C )
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Reduction: We trasform a circuit C to formula φ(C )

Transform circuit C to conjunction of clauses as in previous
slide.
A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)
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Reduction: We trasform a circuit C to formula φ(C )

Transform circuit C to conjunction of clauses as in previous
slide.
A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)
Each clause gives rise to a set of 3CNF clauses.
Clause xv ↔ ¬xu gives rise to equivalent set of clauses
(xv ∨ xu) ∧ (¬xv ∨ ¬xu).
Clause xv ↔ xu ∧ xw is equivalent to
(¬xv ∨ xu) ∧ (¬xv ∨ xw ) ∧ (xv ∨ ¬xu ∨ ¬xw )
Clause xv ↔ (xu ∨ xw ) is equivalent to
(xv ∨ ¬xu) ∧ (xv ∨ ¬xw ) ∧ (¬xv ∨ xu ∨ xw )
Each two literal clause is converted to a set of 3-literal clauses.
E.g. (x ∨ y) is equivalent to (x ∨ y ∨ p) ∧ (x ∨ y ∨ ¬p).
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Reduction: We trasform a circuit C to formula φ(C )

Transform circuit C to conjunction of clauses as in previous
slide.
A multi-input AND is replaced by a cascade of 2-input AND
with extra variables (Also OR.)
Each clause gives rise to a set of 3CNF clauses.
Clause xv ↔ ¬xu gives rise to equivalent set of clauses
(xv ∨ xu) ∧ (¬xv ∨ ¬xu).
Clause xv ↔ xu ∧ xw is equivalent to
(¬xv ∨ xu) ∧ (¬xv ∨ xw ) ∧ (xv ∨ ¬xu ∨ ¬xw )
Clause xv ↔ (xu ∨ xw ) is equivalent to
(xv ∨ ¬xu) ∧ (xv ∨ ¬xw ) ∧ (¬xv ∨ xu ∨ xw )
Each two literal clause is converted to a set of 3-literal clauses.
E.g. (x ∨ y) is equivalent to (x ∨ y ∨ p) ∧ (x ∨ y ∨ ¬p).

Theorem

C is satisfiable iff φ(C ) is satisfiable. Also |φ(C )| is linear in |C |.
Hence, CIRCUIT SAT ≤P 3CNF SAT.
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CLIQUE

Given a graph G a subset V0 ⊆ V is a clique if for every distinct
u, v ∈ V0 we have (u, v) ∈ E .

CLIQUE = {�G , k� | G has a clique of size k}
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Given a graph G a subset V0 ⊆ V is a clique if for every distinct
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Theorem
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CLIQUE

Given a graph G a subset V0 ⊆ V is a clique if for every distinct
u, v ∈ V0 we have (u, v) ∈ E .

CLIQUE = {�G , k� | G has a clique of size k}

Theorem

CLIQUE ∈ NPC

CLIQUE ∈ NP (How?)

3CNF SAT ≤P CLIQUE .
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Reduction 3CNF SAT ≤P CLIQUE

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
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Reduction 3CNF SAT ≤P CLIQUE

φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
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Clique, Independant Set, Vertex Cover

Given a graph G a subset V0 ⊆ V is

clique iff for every distinct u, v ∈ V0 we have (u, v) ∈ E .
CLIQUE = {�G , k� | G has a clique of size k}
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Clique, Independant Set, Vertex Cover

Given a graph G a subset V0 ⊆ V is

clique iff for every distinct u, v ∈ V0 we have (u, v) ∈ E .
CLIQUE = {�G , k� | G has a clique of size k}

Independant Set iff for every u, v ∈ V0 we have (u, v) /∈ E .
IND = {�G , k� | G has a independant set of size k}
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Clique, Independant Set, Vertex Cover

Given a graph G a subset V0 ⊆ V is

clique iff for every distinct u, v ∈ V0 we have (u, v) ∈ E .
CLIQUE = {�G , k� | G has a clique of size k}

Independant Set iff for every u, v ∈ V0 we have (u, v) /∈ E .
IND = {�G , k� | G has a independant set of size k}

vertex cover iff for every edge (u, v) ∈ E we have
(u ∈ V0 ∨ v ∈ V0).

VERTEX COVER =
{�G , k� | G has a vertex cover of size k}
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Clique, Independant Set, Vertex Cover

Given a graph G a subset V0 ⊆ V is

clique iff for every distinct u, v ∈ V0 we have (u, v) ∈ E .
CLIQUE = {�G , k� | G has a clique of size k}

Independant Set iff for every u, v ∈ V0 we have (u, v) /∈ E .
IND = {�G , k� | G has a independant set of size k}

vertex cover iff for every edge (u, v) ∈ E we have
(u ∈ V0 ∨ v ∈ V0).

VERTEX COVER =
{�G , k� | G has a vertex cover of size k}

We explore reductions between these decision problems.
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Independant set

Theorem

Let G = (V ,E ) be a given graph and let the complement graph
G � = (V ,E ) where E = V 2 − E. Then, For any V0 ⊆ V , we have
V0 is a clique in G iff V0 is an independant set in G �.
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V0 is a clique in G iff V0 is an independant set in G �.
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size at least k .
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Independant set

Theorem

Let G = (V ,E ) be a given graph and let the complement graph
G � = (V ,E ) where E = V 2 − E. Then, For any V0 ⊆ V , we have
V0 is a clique in G iff V0 is an independant set in G �.

G has clique of size at least k iff G � has independant set of
size at least k .

Hence, CLIQUE ≤P IND and IND ≤P CLIQUE .

IND ∈ NPC.
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Independant set

Theorem

Let G = (V ,E ) be a given graph and let the complement graph
G � = (V ,E ) where E = V 2 − E. Then, For any V0 ⊆ V , we have
V0 is a clique in G iff V0 is an independant set in G �.

G has clique of size at least k iff G � has independant set of
size at least k .

Hence, CLIQUE ≤P IND and IND ≤P CLIQUE .

IND ∈ NPC.
SELF STUDY: There is a nice generalization of independant
set in graph to a problem called set packing. (See KT 8.1)

P.K. Pandya Design and Analysis of Algorithms CS218M



Vertex Cover

Theorem

Let G = (V ,E ) be a given graph. Then for any V0 ⊆ V , we have
V0 is vertex cover iff V − V0 is an independant set.
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Vertex Cover

Theorem

Let G = (V ,E ) be a given graph. Then for any V0 ⊆ V , we have
V0 is vertex cover iff V − V0 is an independant set.

G has independant set of size k iff G has a vertex cover of set
of size |V |− k .
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Vertex Cover

Theorem

Let G = (V ,E ) be a given graph. Then for any V0 ⊆ V , we have
V0 is vertex cover iff V − V0 is an independant set.

G has independant set of size k iff G has a vertex cover of set
of size |V |− k .
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VERTEX COVER ≤P IND.
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Vertex Cover

Theorem

Let G = (V ,E ) be a given graph. Then for any V0 ⊆ V , we have
V0 is vertex cover iff V − V0 is an independant set.

G has independant set of size k iff G has a vertex cover of set
of size |V |− k .
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Vertex Cover

Theorem

Let G = (V ,E ) be a given graph. Then for any V0 ⊆ V , we have
V0 is vertex cover iff V − V0 is an independant set.

G has independant set of size k iff G has a vertex cover of set
of size |V |− k .

Hence, IND ≤P VERTEX COVER and
VERTEX COVER ≤P IND.

VERTEX COVER ∈ NPC.
SELF STUDY: There is a nice generalization of vertex cover
in graph to a problem called set cover. (See KT 8.1)
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Graph Coloring

Given undirected graph G = (V ,E ) has a k coloring
f : V → {1, 2, . . . , k} if (u, v) ∈ E ⇒ f (u) �= f (v).

GRAPH COLORING = {�G , k� | G has a k coloring size}
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Theorem

Whether a graphs is 2-colorable is in P.
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Theorem

Whether a graphs is 2-colorable is in P.

Let 3COLOR be the set of all graphs having 3 coloring.

Theorem
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Graph Coloring

Given undirected graph G = (V ,E ) has a k coloring
f : V → {1, 2, . . . , k} if (u, v) ∈ E ⇒ f (u) �= f (v).

GRAPH COLORING = {�G , k� | G has a k coloring size}

Theorem

Whether a graphs is 2-colorable is in P.

Let 3COLOR be the set of all graphs having 3 coloring.

Theorem

3COLOR ∈ NPC.
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Graph Coloring

Given undirected graph G = (V ,E ) has a k coloring
f : V → {1, 2, . . . , k} if (u, v) ∈ E ⇒ f (u) �= f (v).

GRAPH COLORING = {�G , k� | G has a k coloring size}

Theorem

Whether a graphs is 2-colorable is in P.

Let 3COLOR be the set of all graphs having 3 coloring.

Theorem

3COLOR ∈ NPC.

Whether a graph is 3-colorable is in 3COLOAR ∈ NP.
3CNF SAT ≤P 3COLOR
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Proof Idea

For each variable xi we have nodes vi and v i .

Encoding valuation by 3-coloring.
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Proof Idea (2)

Enforcing clause (x1 ∨ ¬x2 ∨ x3).
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