Design and Analysis of Algorithms CS218M NP Complete Problems

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

★ Ξ →

- A problem $L \subseteq \Sigma^*$ is called NP-complete (denoted NPC) if
 - $L \in \mathbb{NP}$.
 - For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$.
 - (This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

- A problem $L \subseteq \Sigma^*$ is called \mathbb{NP} -complete (denoted \mathbb{NPC}) if
 - $L \in \mathbb{NP}$.
 - For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$.

(This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

Theorem

CIRCUIT_SAT is \mathbb{NP} -*Complete*.

• • = • • = •

- A problem $L \subseteq \Sigma^*$ is called \mathbb{NP} -complete (denoted \mathbb{NPC}) if
 - $L \in \mathbb{NP}$.
 - For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$.

(This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

Theorem

CIRCUIT_SAT is \mathbb{NP} -*Complete*.

Proving $L \in \mathbb{NPC}$ by Reduction

- To show that L is Nℙ-hard, we reduce in polytime a known NℙC problem L' to L.
- We also show that $L \in \mathbb{NP}$.

- A problem $L \subseteq \Sigma^*$ is called \mathbb{NP} -complete (denoted \mathbb{NPC}) if
 - $L \in \mathbb{NP}$.
 - For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$.

(This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

Theorem

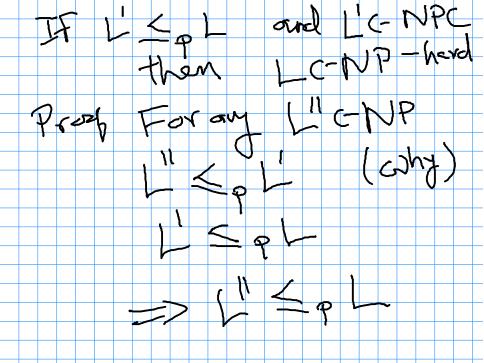
CIRCUIT_SAT is \mathbb{NP} -*Complete*.

Proving $L \in \mathbb{NPC}$ by Reduction

- To show that L is Nℙ-hard, we reduce in polytime a known NℙC problem L' to L.
- We also show that $L \in \mathbb{NP}$.

Theorem

If $L' \leq_P L$ and L' is \mathbb{NPC} then L is \mathbb{NP} -hard. Additionally if $L \in \mathbb{NP}$ then L is \mathbb{NPC} .



$3CNF_SAT$ is \mathbb{NP} -Complete

P.K. Pandya Design and Analysis of Algorithms CS218M

<回>< E> < E> < E> <

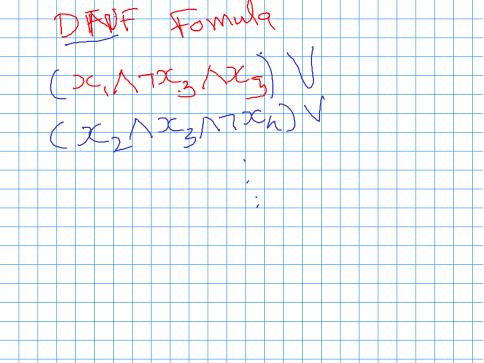
æ

Formula in Conjunctive Normal Form (CNF)

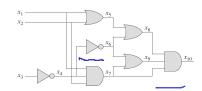
• Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$

- Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$
- A boolean formula ϕ in the form $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ where each clause C_i has the form $(l_1^i \vee l_2^i \vee l_3^i)$ where literal I is x or $\neg x$ for a propositional letter x is called 3CNF formula.

- Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$
- A boolean formula ϕ in the form $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ where each clause C_i has the form $(l_1^i \vee l_2^i \vee l_3^i)$ where literal I is x or $\neg x$ for a propositional letter x is called 3CNF formula.
- 3CNF_SAT is the collection of satisfiable 3CNF formulas. It is easy to see that 3CNF_SAT ∈ NP (why?)

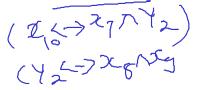


- Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$
- A boolean formula ϕ in the form $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ where each clause C_i has the form $(l_1^i \vee l_2^i \vee l_3^i)$ where literal I is x or $\neg x$ for a propositional letter x is called 3CNF formula.
- 3CNF_SAT is the collection of satisfiable 3CNF formulas. It is easy to see that 3CNF_SAT ∈ NP (why?)
- We show that $CIRCUIT_SAT \leq_P 3CNF_SAT$.



 $(\mathcal{X}_{\mathcal{X}} \leftarrow \mathcal{Y}_{\mathcal{X}})$

 $\phi = x_{10} \land (x_4 \leftrightarrow \neg x_3) \land (x_5 \leftrightarrow (x_1 \lor x_2)) \land (x_6 \leftrightarrow \neg x_4) \land (x_7 \leftrightarrow (x_1 \land x_2 \land x_4)) \land (x_8 \leftrightarrow (x_5 \lor x_6)) \land (x_9 \leftrightarrow (x_6 \lor x_7)) \land (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

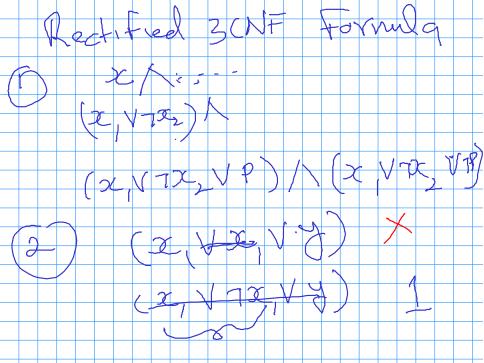
- Transform circuit *C* to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)

- Transform circuit *C* to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u).$

- Transform circuit *C* to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u)$.
- Clause $x_{v} \leftrightarrow x_{u} \wedge x_{w}$ is equivalent to $(\neg x_{v} \lor x_{u}) \land (\neg x_{v} \lor x_{w}) \land (x_{v} \lor \neg x_{u} \lor \neg x_{w})$

- Transform circuit *C* to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u)$.
- Clause $x_v \leftrightarrow x_u \wedge x_w$ is equivalent to $(\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)$
- Clause $x_v \leftrightarrow (x_u \lor x_w)$ is equivalent to $(x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)$

- Transform circuit *C* to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3CNF clauses. Clause x_v ↔ ¬x_u gives rise to equivalent set of clauses (x_v ∨ x_u) ∧ (¬x_v ∨ ¬x_u).
- Clause $x_v \leftrightarrow x_u \wedge x_w$ is equivalent to $(\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)$
- Clause $x_v \leftrightarrow (x_u \lor x_w)$ is equivalent to $(x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)$
- Each two literal clause is converted to a set of 3-literal clauses.
 E.g. (x ∨ y) is equivalent to (x ∨ y ∨ p) ∧ (x ∨ y ∨ ¬p).



- Transform circuit *C* to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3CNF clauses. Clause x_v ↔ ¬x_u gives rise to equivalent set of clauses (x_v ∨ x_u) ∧ (¬x_v ∨ ¬x_u).
- Clause $x_v \leftrightarrow x_u \wedge x_w$ is equivalent to $(\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)$
- Clause $x_v \leftrightarrow (x_u \lor x_w)$ is equivalent to $(x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)$
- Each two literal clause is converted to a set of 3-literal clauses.
 E.g. (x ∨ y) is equivalent to (x ∨ y ∨ p) ∧ (x ∨ y ∨ ¬p).

Theorem

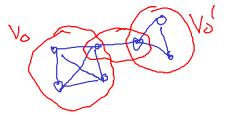
C is satisfiable iff $\phi(C)$ is satisfiable. Also $|\phi(C)|$ is linear in |C|. Hence, CIRCUIT_SAT $\leq_P 3CNF_SAT$.

CLIQUE

undirected

Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$.

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$



Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$

Theorem

 $\textit{CLIQUE} \in \mathbb{NPC}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$

Theorem

 $\textit{CLIQUE} \in \mathbb{NPC}$

• $CLIQUE \in \mathbb{NP}$ (How?)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$

Theorem

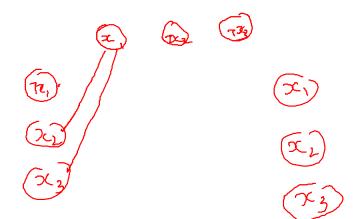
 $\textit{CLIQUE} \in \mathbb{NPC}$

- $CLIQUE \in \mathbb{NP}$ (How?)
- $3CNF_SAT \leq_P CLIQUE$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Reduction $3CNF_SAT \leq_P CLIQUE$

 $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$



3

・ 同 ト ・ ヨ ト ・ ヨ ト

Reduction $3CNF_SAT \leq_P CLIQUE$

 $\phi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

 $C_1 = x_1 \vee \neg x_2 \vee \neg x_3$

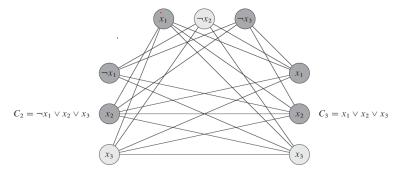


Figure 34.14 The graph *G* derived from the 3-CNF formula $\phi = C_1 \wedge C_2 \wedge C_3$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee x_2 \vee x_3)$, and $C_3 = (x_1 \vee x_2 \vee x_3)$, in reducing 3-CNF-SAT to CLIQUE. A satisfying assignment of the formula has $x_2 = 0$, $x_3 = 1$, and x_1 either 0 or 1. This assignment satisfies C_1 with $\neg x_2$, and it satisfies C_2 and C_3 with x_3 , corresponding to the clique with lightly shaded vertices.

イロト イボト イヨト イヨト

Clique, Independant Set, Vertex Cover

Given a graph G a subset $V_0 \subseteq V$ is

• clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$

伺 ト イ ヨ ト イ ヨ ト

Clique, Independant Set, Vertex Cover

Given a graph G a subset $V_0 \subseteq V$ is

- clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$
- Independant Set iff for every u, v ∈ V₀ we have (u, v) ∉ E.
 IND = {⟨G, k⟩ | G has a independant set of size k}

Clique, Independant Set, Vertex Cover

Given a graph G a subset $V_0 \subseteq V$ is

- clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$
- Independant Set iff for every u, v ∈ V₀ we have (u, v) ∉ E.
 IND = {⟨G, k⟩ | G has a independant set of size k}
- vertex cover iff for every edge (u, v) ∈ E we have (u ∈ V₀ ∨ v ∈ V₀). VERTEX_COVER = {⟨G, k⟩ | G has a vertex cover of size k}

Given a graph G a subset $V_0 \subseteq V$ is

- clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$
- Independant Set iff for every u, v ∈ V₀ we have (u, v) ∉ E.
 IND = {⟨G, k⟩ | G has a independant set of size k}
- vertex cover iff for every edge (u, v) ∈ E we have (u ∈ V₀ ∨ v ∈ V₀). VERTEX_COVER = {⟨G, k⟩ | G has a vertex cover of size k}

We explore reductions between these decision problems.

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

「ヨト・ヨト・ヨト

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

• G has clique of size at least k iff G' has independant set of size at least k.

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

- G has clique of size at least k iff G' has independant set of size at least k.
- Hence, $CLIQUE \leq_P IND$ and $IND \leq_P CLIQUE$.

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

- G has clique of size at least k iff G' has independant set of size at least k.
- Hence, $CLIQUE \leq_P IND$ and $IND \leq_P CLIQUE$.
- $IND \in \mathbb{NPC}$.

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

- G has clique of size at least k iff G' has independant set of size at least k.
- Hence, $CLIQUE \leq_P IND$ and $IND \leq_P CLIQUE$.
- $IND \in \mathbb{NPC}$.
- SELF STUDY: There is a nice generalization of independant set in graph to a problem called set packing. (See KT 8.1)

伺下 イヨト イヨト

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independent set.

< 同 > < 三 > < 三 > -

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independent set.

• G has independant set of size k iff G has a vertex cover of set of size |V| - k.

.

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independent set.

- G has independant set of size k iff G has a vertex cover of set of size |V| k.
- Hence, $IND \leq_P VERTEX_COVER$ and $VERTEX_COVER \leq_P IND$.

• • = • • = •

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independent set.

- G has independant set of size k iff G has a vertex cover of set of size |V| k.
- Hence, $IND \leq_P VERTEX_COVER$ and $VERTEX_COVER \leq_P IND$.
- $VERTEX_COVER \in \mathbb{NPC}$.

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independent set.

- G has independant set of size k iff G has a vertex cover of set of size |V| k.
- Hence, $IND \leq_P VERTEX_COVER$ and $VERTEX_COVER \leq_P IND$.
- $VERTEX_COVER \in \mathbb{NPC}$.
- SELF STUDY: There is a nice generalization of vertex cover in graph to a problem called set cover. (See KT 8.1)

伺 ト イヨ ト イヨト

Given undirected graph G = (V, E) has a k coloring $f : V \rightarrow \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$. $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

.

Given undirected graph G = (V, E) has a k coloring $f : V \rightarrow \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$. $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

Theorem

Whether a graphs is 2-colorable is in \mathbb{P} .

伺 ト イヨ ト イヨト

Given undirected graph G = (V, E) has a k coloring $f : V \rightarrow \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$. $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

Theorem

Whether a graphs is 2-colorable is in \mathbb{P} .

Let **3***COLOR* be the set of all graphs having 3 coloring.

Given undirected graph G = (V, E) has a k coloring $f : V \rightarrow \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$. $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

Theorem

Whether a graphs is 2-colorable is in \mathbb{P} .

Let **3***COLOR* be the set of all graphs having 3 coloring.

Theorem

 $3COLOR \in \mathbb{NPC}$.

伺 ト イヨ ト イヨト

Given undirected graph G = (V, E) has a k coloring $f : V \rightarrow \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$. $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

Theorem

Whether a graphs is 2-colorable is in \mathbb{P} .

Let **3***COLOR* be the set of all graphs having 3 coloring.

Theorem

 $3COLOR \in \mathbb{NPC}$.

• Whether a graph is 3-colorable is in $3COLOAR \in \mathbb{NP}$.

伺 ト イヨト イヨト

Given undirected graph G = (V, E) has a k coloring $f : V \rightarrow \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$. $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

Theorem

Whether a graphs is 2-colorable is in \mathbb{P} .

Let **3***COLOR* be the set of all graphs having 3 coloring.

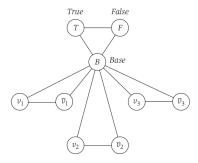
Theorem

 $3COLOR \in \mathbb{NPC}.$

- Whether a graph is 3-colorable is in $3COLOAR \in \mathbb{NP}$.
- $3CNF_SAT \leq_P 3COLOR$

< 同 > < 三 > < 三 >

- For each variable x_i we have nodes v_i and \overline{v}_i .
- Encoding valuation by 3-coloring.



< E

Enforcing clause $(x_1 \lor \neg x_2 \lor x_3)$.

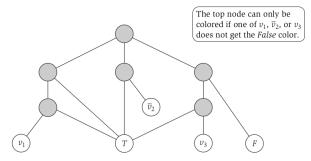


Figure 8.12 Attaching a subgraph to represent the clause $x_1 \lor \overline{x}_2 \lor x_3$.