Design and Analysis of Algorithms CS218M

NP Complete Problems

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

A problem $L\subseteq \Sigma^*$ is called \mathbb{NP} -complete (denoted \mathbb{NPC}) if

- $L \in \mathbb{NP}$.
- For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$. (This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

A problem $L \subseteq \Sigma^*$ is called \mathbb{NP} -complete (denoted \mathbb{NPC}) if

- $L \in \mathbb{NP}$.
- For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$. (This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

Theorem

CIRCUIT_SAT is \mathbb{NP} -*Complete*.

A problem $L\subseteq \Sigma^*$ is called \mathbb{NP} -complete (denoted \mathbb{NPC}) if

- $L \in \mathbb{NP}$.
- For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$. (This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

$\mathsf{Theorem}$

CIRCUIT_SAT is \mathbb{NP} -Complete.

Proving $L \in \mathbb{NPC}$ by Reduction

- To show that L is \mathbb{NP} -hard, we reduce in polytime a known \mathbb{NPC} problem L' to L.
- We also show that $L \in \mathbb{NP}$.

A problem $L \subseteq \Sigma^*$ is called NP-complete (denoted NPC) if

- $L \in \mathbb{NP}$.
- For every $L' \in \mathbb{NP}$, we have $L' \leq_P L$. (This shows that L is at least as hard as L'.)

If only second condition is satisfied we say that L is \mathbb{NP} -hard.

$\mathsf{Theorem}$

CIRCUIT_SAT is \mathbb{NP} -Complete.

Proving $L \in \mathbb{NPC}$ by Reduction

- To show that L is \mathbb{NP} -hard, we reduce in polytime a known \mathbb{NPC} problem L' to L.
- We also show that $L \in \mathbb{NP}$.

Theorem

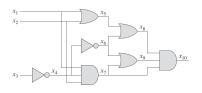
If $L' \leq_P L$ and L' is \mathbb{NPC} then L is \mathbb{NP} -hard. Additionally if $L \in \mathbb{NP}$ then L is \mathbb{NPC} .

• Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$

- Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$
- A boolean formula ϕ in the form $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ where each clause C_i has the form $(I_1^i \vee I_2^i \vee I_3^i)$ where literal I is x or $\neg x$ for a propositional letter x is called 3CNF formula.

- Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$
- A boolean formula ϕ in the form $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ where each clause C_i has the form $(I_1^i \vee I_2^i \vee I_3^i)$ where literal I is x or $\neg x$ for a propositional letter x is called 3CNF formula.
- $3CNF_SAT$ is the collection of satisfiable 3CNF formulas. It is easy to see that $3CNF_SAT \in \mathbb{NP}$ (why?)

- Example $(\neg x_v \lor x_u \lor x_z) \land (\neg x_v \lor x_w \lor \neg x_z) \land (x_v \lor \neg x_u \lor \neg x_w)$
- A boolean formula ϕ in the form $C_1 \wedge C_2 \wedge \ldots \wedge C_m$ where each clause C_i has the form $(I_1^i \vee I_2^i \vee I_3^i)$ where literal I is x or $\neg x$ for a propositional letter x is called 3CNF formula.
- $3CNF_SAT$ is the collection of satisfiable 3CNF formulas. It is easy to see that $3CNF_SAT \in \mathbb{NP}$ (why?)
- We show that CIRCUIT_SAT < P 3CNF_SAT.



$$\phi = x_{10} \wedge (x_4 \leftrightarrow \neg x_3)$$

$$\wedge (x_5 \leftrightarrow (x_1 \lor x_2))$$

$$\wedge (x_6 \leftrightarrow \neg x_4)$$

$$\wedge (x_7 \leftrightarrow (x_1 \land x_2 \land x_4))$$

$$\wedge (x_8 \leftrightarrow (x_5 \lor x_6))$$

$$\wedge (x_9 \leftrightarrow (x_6 \lor x_7))$$

$$\wedge (x_{10} \leftrightarrow (x_7 \land x_8 \land x_9)).$$

- Transform circuit C to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)

- Transform circuit C to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u)$.

- Transform circuit C to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u)$.
- Clause $x_v \leftrightarrow x_u \wedge x_w$ is equivalent to $(\neg x_v \lor x_u) \wedge (\neg x_v \lor x_w) \wedge (x_v \lor \neg x_u \lor \neg x_w)$

- Transform circuit C to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u)$.
- Clause $x_v \leftrightarrow x_u \wedge x_w$ is equivalent to $(\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)$
- Clause $x_v \leftrightarrow (x_u \lor x_w)$ is equivalent to $(x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)$

- Transform circuit C to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u)$.
- Clause $x_v \leftrightarrow x_u \wedge x_w$ is equivalent to $(\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)$
- Clause $x_v \leftrightarrow (x_u \lor x_w)$ is equivalent to $(x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)$
- Each two literal clause is converted to a set of 3-literal clauses. E.g. $(x \lor y)$ is equivalent to $(x \lor y \lor p) \land (x \lor y \lor \neg p)$.

- Transform circuit C to conjunction of clauses as in previous slide.
- A multi-input AND is replaced by a cascade of 2-input AND with extra variables (Also OR.)
- Each clause gives rise to a set of 3*CNF* clauses. Clause $x_v \leftrightarrow \neg x_u$ gives rise to equivalent set of clauses $(x_v \lor x_u) \land (\neg x_v \lor \neg x_u)$.
- Clause $x_v \leftrightarrow x_u \wedge x_w$ is equivalent to $(\neg x_v \lor x_u) \land (\neg x_v \lor x_w) \land (x_v \lor \neg x_u \lor \neg x_w)$
- Clause $x_v \leftrightarrow (x_u \lor x_w)$ is equivalent to $(x_v \lor \neg x_u) \land (x_v \lor \neg x_w) \land (\neg x_v \lor x_u \lor x_w)$
- Each two literal clause is converted to a set of 3-literal clauses. E.g. $(x \lor y)$ is equivalent to $(x \lor y \lor p) \land (x \lor y \lor \neg p)$.

Theorem

C is satisfiable iff $\phi(C)$ is satisfiable. Also $|\phi(C)|$ is linear in |C|. Hence, CIRCUIT_SAT $\leq_P 3CNF_SAT$.

Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$

4 D > 4 D > 4 E > 4 E > 9 Q P

Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$.

 $CLIQUE = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$

Theorem

 $\textit{CLIQUE} \in \mathbb{NPC}$

Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$.

 $CLIQUE = \{\langle G, k \rangle \mid G \text{ has a clique of size } k\}$

$\mathsf{Theorem}$

 $CLIQUE \in \mathbb{NPC}$

• $CLIQUE \in \mathbb{NP}$ (How?)

Given a graph G a subset $V_0 \subseteq V$ is a clique if for every distinct $u, v \in V_0$ we have $(u, v) \in E$.

 $CLIQUE = \{\langle G, k \rangle \mid G \text{ has a clique of size } k \}$

Theorem

$\mathit{CLIQUE} \in \mathbb{NPC}$

- $CLIQUE \in \mathbb{NP}$ (How?)
- $3CNF_SAT \leq_P CLIQUE$.

Reduction $3CNF_SAT \leq_P CLIQUE$

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$

Reduction $3CNF_SAT \leq_P CLIQUE$

$$\phi = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_3)$$



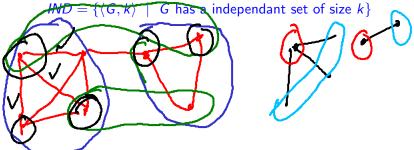
Figure 34.14 The graph G derived from the 3-CNF formula $\phi = C_1 \wedge C_2 \wedge C_3$, where $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3)$, $C_2 = (\neg x_1 \vee x_2 \vee x_3)$, and $C_3 = (x_1 \vee x_2 \vee x_3)$, in reducing 3-CNF-SAT to CLIQUE. A satisfying assignment of the formula has $x_2 = 0$, $x_3 = 1$, and x_1 either 0 or 1. This assignment satisfies C_1 with $\neg x_2$, and it satisfies C_2 and C_3 with x_3 , corresponding to the clique with lightly shaded vertices.

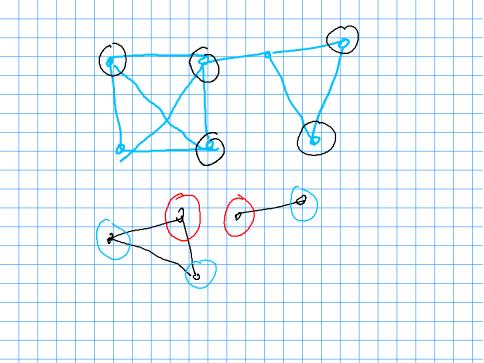
Given a graph G a subset $V_0 \subseteq V$ is

• clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$

Given a graph G a subset $V_0 \subseteq V$ is

- clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$
- Independent Set iff for every $u, v \in V_0$ we have $(u, v) \notin E$.





Given a graph G a subset $V_0 \subseteq V$ is

- clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$
- Independant Set iff for every $u, v \in V_0$ we have $(u, v) \notin E$. $IND = \{ \langle G, k \rangle \mid G \text{ has a independant set of size } k \}$
- vertex cover iff for every edge $(u, v) \in E$ we have $(u \in V_0 \lor v \in V_0)$. • $VERTEX_COVER = \{\langle G, k \rangle \mid G \text{ has a vertex cover of size } k\}$

Given a graph G a subset $V_0 \subseteq V$ is

- clique iff for every distinct $u, v \in V_0$ we have $(u, v) \in E$. $CLIQUE = \{ \langle G, k \rangle \mid G \text{ has a clique of size } k \}$
- Independant Set iff for every $u, v \in V_0$ we have $(u, v) \notin E$. $IND = \{ \langle G, k \rangle \mid G \text{ has a independant set of size } k \}$
- vertex cover iff for every edge $(u, v) \in E$ we have $(u \in V_0 \lor v \in V_0)$. • $VERTEX_COVER = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \}$

We explore reductions between these decision problems.

Theorem

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independant set in G'.

Theorem

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

 G has clique of size at least k iff G' has independent set of size at least k.

Theorem

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

- G has clique of size at least k iff G' has independent set of size at least k.
- Hence, CLIQUE < P IND and IND < P CLIQUE.

Theorem

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

- G has clique of size at least k iff G' has independent set of size at least k.
- Hence, $CLIQUE \leq_P IND$ and $IND \leq_P CLIQUE$.
- $IND \in \mathbb{NPC}$.

Theorem

Let G = (V, E) be a given graph and let the complement graph $G' = (V, \overline{E})$ where $\overline{E} = V^2 - E$. Then, For any $V_0 \subseteq V$, we have V_0 is a clique in G iff V_0 is an independent set in G'.

- G has clique of size at least k iff G' has independent set of size at least k.
- Hence, CLIQUE < P IND and IND < P CLIQUE.
- $IND \in \mathbb{NPC}$.
- SELF STUDY: There is a nice generalization of independant set in graph to a problem called set packing. (See KT 8.1)

Vertex Cover

Theorem 1

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independant set.

Vertex Cover

Theorem

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independant set.

• G has independent set of size k iff G has a vertex cover of set of size |V| - k.

Vertex Cover

Theorem

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independant set.

- G has independent set of size k iff G has a vertex cover of set of size |V| k.
- Hence, $IND \leq_P VERTEX_COVER$ and $VERTEX_COVER \leq_P IND$.

Vertex Cover

Theorem

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independant set.

- G has independent set of size k iff G has a vertex cover of set of size |V| k.
- Hence, $IND \leq_P VERTEX_COVER$ and $VERTEX_COVER \leq_P IND$.
- $VERTEX_COVER \in \mathbb{NPC}$.

Vertex Cover

Theorem

Let G = (V, E) be a given graph. Then for any $V_0 \subseteq V$, we have V_0 is vertex cover iff $V - V_0$ is an independant set.

- G has independent set of size k iff G has a vertex cover of set of size |V| k.
- Hence, $IND \leq_P VERTEX_COVER$ and $VERTEX_COVER <_P IND$.
- $VERTEX_COVER \in \mathbb{NPC}$.
- SELF STUDY: There is a nice generalization of vertex cover in graph to a problem called set cover. (See KT 8.1)

```
Given undirected graph G = (V, E) has a k coloring f: V \to \{1, 2, ..., k\} if (u, v) \in E \Rightarrow f(u) \neq f(v). 

GRAPH\_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}
```

Given undirected graph
$$G = (V, E)$$
 has a k coloring $f: V \to \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$.
 $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

$\mathsf{Theorem}$

Whether a graphs is 2-colorable is in \mathbb{P} .

Given undirected graph
$$G = (V, E)$$
 has a k coloring $f: V \to \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$.
 $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

$\mathsf{Theorem}$

Whether a graphs is 2-colorable is in \mathbb{P} .

Let 3COLOR be the set of all graphs having 3 coloring.

Given undirected graph
$$G = (V, E)$$
 has a k coloring $f: V \to \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$.
 $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

$\mathsf{Theorem}$

Whether a graphs is 2-colorable is in \mathbb{P} .

Let 3COLOR be the set of all graphs having 3 coloring.

Theorem

 $3COLOR \in \mathbb{NPC}$.

Given undirected graph
$$G = (V, E)$$
 has a k coloring $f: V \to \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$.
 $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

$\mathsf{Theorem}$

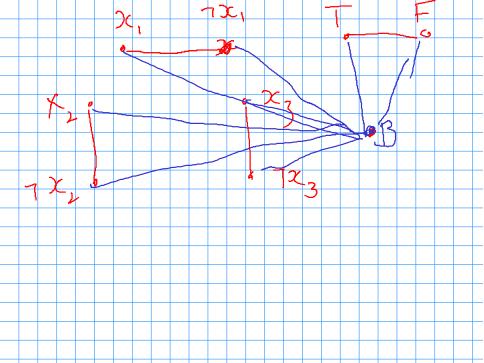
Whether a graphs is 2-colorable is in \mathbb{P} .

Let 3COLOR be the set of all graphs having 3 coloring.

Theorem

 $3COLOR \in \mathbb{NPC}$.

• Whether a graph is 3-colorable is in $3COLOAR \in \mathbb{NP}$.



Given undirected graph
$$G = (V, E)$$
 has a k coloring $f: V \to \{1, 2, ..., k\}$ if $(u, v) \in E \Rightarrow f(u) \neq f(v)$.
 $GRAPH_COLORING = \{\langle G, k \rangle \mid G \text{ has a } k \text{ coloring size}\}$

$\mathsf{Theorem}$

Whether a graphs is 2-colorable is in \mathbb{P} .

Let 3COLOR be the set of all graphs having 3 coloring.

Theorem

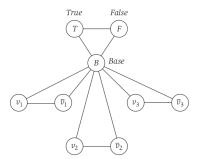
 $3COLOR \in \mathbb{NPC}$.

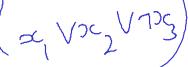
- Whether a graph is 3-colorable is in $3COLOAR \in \mathbb{NP}$.
- $3CNF_SAT \leq_P 3COLOR$

Proof Idea

• For each variable x_i we have nodes v_i and \overline{v}_i .

• Encoding valuation by 3-coloring.





Proof Idea (2)

Enforcing clause $(x_1 \lor \neg x_2 \lor x_3)$.

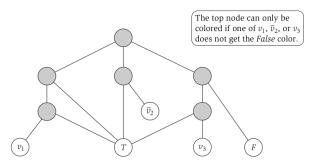


Figure 8.12 Attaching a subgraph to represent the clause $x_1 \vee \overline{x}_2 \vee x_3$.

Hamiltonian Cycle

Given an undirected graph G = (V, E) does there exist a Hamiltonian cycle in G? A Hamiltonian cycle is a simple cycle where each vertex occurs exactly once.



Hamiltonian Cycle

Given an undirected graph G = (V, E) does there exist a Hamiltonian cycle in G? A Hamiltonian cycle is a simple cycle where each vertex occurs exactly once.

Theorem

 $HAM_{-}CYCLE \in \mathbb{NPC}$

Hamiltonian Cycle

Given an undirected graph G = (V, E) does there exist a Hamiltonian cycle in G? A Hamiltonian cycle is a simple cycle where each vertex occurs exactly once.

Theorem

$HAM_{-}CYCLE \in \mathbb{NPC}$

Proof that $VERTEX_COVER \le_P HAM_CYCLE$ is in book (CLRS 34.5.3). Students may read it out of interest.

Problem *TSP* Given a complete directed graph $G = (V, V \times V)$ with non-negative integer weights $c: V \times V \to Z_0$ does there exist a Hamiltonian cycle (called tour) whose weight is at most k?

Problem *TSP* Given a complete directed graph $G = (V, V \times V)$ with non-negative integer weights $c: V \times V \to Z_0$ does there exist a Hamiltonian cycle (called tour) whose weight is at most k?

Theorem

 $TSP \in \mathbb{NPC}$

Problem *TSP* Given a complete directed graph $G = (V, V \times V)$ with non-negative integer weights $c: V \times V \to Z_0$ does there exist a Hamiltonian cycle (called tour) whose weight is at most k?

Theorem

 $TSP \in \mathbb{NPC}$

• $TSP \in \mathbb{NP}$

Problem *TSP* Given a complete directed graph $G = (V, V \times V)$ with non-negative integer weights $c: V \times V \to Z_0$ does there exist a Hamiltonian cycle (called tour) whose weight is at most k?

Theorem

$TSP \in \mathbb{NPC}$

- $TSP \in \mathbb{NP}$
- $HAM_{-}CYCLE \leq_{P} TSP$.

Show that $HAM_CYCLE <_P TSP$.

Give an instance G = (V, E) of Hamiltonian cycle problem construct an instance of TSP as $G' = (V, V \times V)$ with c(u, v) = 0 if $(u, v) \in E$ and c(u, v) = 1 otherwise. The aim is to find a tour of weight 0.

Show that $HAM_CYCLE <_P TSP$.

Give an instance G = (V, E) of Hamiltonian cycle problem construct an instance of TSP as $G' = (V, V \times V)$ with c(u, v) = 0 if $(u, v) \in E$ and c(u, v) = 1 otherwise. The aim is to find a tour of weight 0.

• Instrace (G', c, 0) can be constructed in poly-time.

Show that $HAM_CYCLE <_P TSP$.

Give an instance G=(V,E) of Hamiltonian cycle problem construct an instance of TSP as $G'=(V,V\times V)$ with c(u,v)=0 if $(u,v)\in E$ and c(u,v)=1 otherwise. The aim is to find a tour of weight 0.

- Instructed (G', c, 0) can be constructed in poly-time.
- G has a Hamiltonian cycle iff (G', c, 0) has a tour of weight 0.

Problem Given a finite set of positive integers S and an integer t > 0 is there a subset $S' \subseteq S$ s.t. $(\sum_{i \in S'} i) = t$.

Problem Given a finite set of positive integers S and an integer t > 0 is there a subset $S' \subseteq S$ s.t. $(\sum_{i \in S'} i) = t$.

Theorem

 $SUBSET_SUM \in \mathbb{NPC}$

Problem Given a finite set of positive integers S and an integer t > 0 is there a subset $S' \subseteq S$ s.t. $(\sum_{i \in S'} i) = t$.

Theorem

 $SUBSET_SUM \in \mathbb{NPC}$

• SUBSET SUM $\in \mathbb{NP}$

Problem Given a finite set of positive integers S and an integer t > 0 is there a subset $S' \subseteq S$ s.t. $(\sum_{i \in S'} i) = t$.

Theorem

$SUBSET_SUM \in \mathbb{NPC}$

- $SUBSET_SUM \in \mathbb{NP}$
- $3CNF_SAT \leq_P SUBSET_SUM$ Proof in CLRS 34.5.5 (Only for interested).

Comments on NP Problems

• Not every instance of an \mathbb{NPC} problem is necessarily hard. Heuristics can solve a large number of them.

- Not every instance of an \mathbb{NPC} problem is necessarily hard. Heuristics can solve a large number of them.
- Approximation Algorithms.

- Not every instance of an \mathbb{NPC} problem is necessarily hard. Heuristics can solve a large number of them.
- Approximation Algorithms.
- Randomized Algorithms.

PSPACE is the class of problems which can be solved by an alogirthm using space polynomial in the size of input.

• $\mathbb{P} \subseteq \mathbb{PSPACE}$.

- \bullet $\mathbb{P} \subseteq \mathbb{PSPACE}$.
- $3CNF_SAT \in \mathbb{PSPACE}$.

- \bullet $\mathbb{P} \subseteq \mathbb{PSPACE}$.
- $3CNF_SAT \in \mathbb{PSPACE}$.
- \bullet NP \subset PSPACE.

- $\mathbb{P} \subset \mathbb{PSPACE}$.
- $3CNF_SAT \in \mathbb{PSPACE}$.
- $\mathbb{NP} \subseteq \mathbb{PSPACE}$.
- $CoNP \subset PSPACE$.

- \bullet $\mathbb{P} \subseteq \mathbb{PSPACE}$.
- $3CNF_SAT \in \mathbb{PSPACE}$.
- \bullet NP \subset PSPACE.
- $CoNP \subset PSPACE$.
- It is not known whether $classP = \mathbb{PSPACE}$?

- $\mathbb{P} \subset \mathbb{PSPACE}$.
- $3CNF_SAT \in \mathbb{PSPACE}$.
- \bullet NP \subset PSPACE.
- $CoNP \subset PSPACE$.
- It is not known whether $classP = \mathbb{PSPACE}$?
- PSPACE-complete problems. Definition?

•
$$\exists x. \phi(x, Y) = \phi(0, Y) \lor \phi(1, Y)$$

 $\forall x. \phi(x, Y) = \phi(0, Y) \land \phi(1, Y)$

- $\exists x. \phi(x, Y) = \phi(0, Y) \lor \phi(1, Y)$ $\forall x. \phi(x, Y) = \phi(0, Y) \land \phi(1, Y)$
- Example:

$$\phi(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$$

- $\exists x. \phi(x, Y) = \phi(0, Y) \lor \phi(1, Y)$ $\forall x. \phi(x, Y) = \phi(0, Y) \land \phi(1, Y)$
- Example: $\phi(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$
- Satisfiability is asking: $\exists x_1 \exists x_2 \exists x_3$. $\phi(x_1, x_2, x_3)$. Compactly written as $\exists x_1, x_2, x_3$. $\phi(x_1, x_2, x_3)$.

- $\exists x. \phi(x, Y) = \phi(0, Y) \lor \phi(1, Y)$ $\forall x. \phi(x, Y) = \phi(0, Y) \land \phi(1, Y)$
- Example: $\phi(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3)$
- Satisfiability is asking: $\exists x_1 \exists x_2 \exists x_3$. $\phi(x_1, x_2, x_3)$. Compactly written as $\exists x_1, x_2, x_3$. $\phi(x_1, x_2, x_3)$.
- Consider the QBF formula $\exists x_1 \forall x_2 \exists x_3. \ \phi(x_1, x_2, x_3).$