Design and Analysis of Algorithms CS218M

Network Flow Algorithms

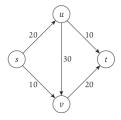
Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

Optimal Network Flow Problem

A flow network is a directed graph G = (V, E) where each edge (u, v) has a non-negative integer capacity $c(u, v) \ge 0$. The graph has source vertex s and sink vertext t.



- s has no incoming edges. t has no outgoing edges.
- For all internal nodes v there is a path $s \rightsquigarrow v \rightsquigarrow t$.

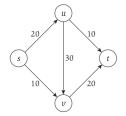
Given a flow network (G, c), a flow is $f : E \rightarrow Z_0$ such that

- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have

$$\Sigma_{e \text{ in to } v} f(e) = \Sigma_{e \text{ out of } v} f(e)$$

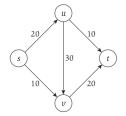
Given a flow network (G, c), a flow is $f : E \rightarrow Z_0$ such that

- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$



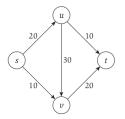
Given a flow network (G, c), a flow is $f : E \rightarrow Z_0$ such that

- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$



Given a flow network (G, c), a flow is $f : E \to Z_0$ such that

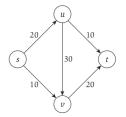
- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$



• Let $f^{out}(v) = \sum_{e \text{ out of } v} f(e)$ and $f^{in}(v) = \sum_{e \text{ in to } v} f(e)$.

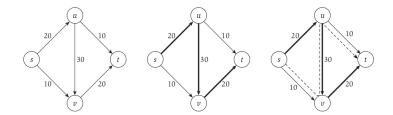
Given a flow network (G, c), a flow is $f : E \to Z_0$ such that

- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

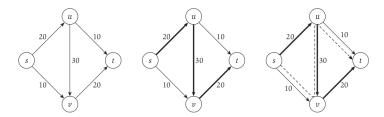


- Let $f^{out}(v) = \sum_{e \text{ out of } v} f(e)$ and $f^{in}(v) = \sum_{e \text{ in to } v} f(e)$.
- Define value of flow f as $f^{out}(s)$.

Finding Maximum Flow

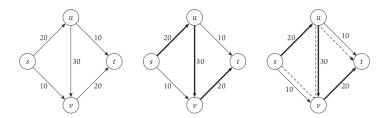


Finding Maximum Flow



• Find a path $P = s \leadsto t$. Let Bottleneck(P) be the smallest capacity on the path. Initial flow f has value Bottleneck(P).

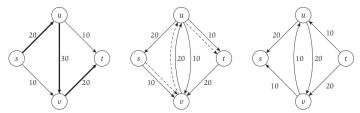
Finding Maximum Flow



- Find a path $P = s \leadsto t$. Let Bottleneck(P) be the smallest capacity on the path. Initial flow f has value Bottleneck(P).
- Given current flow f, find augmenting path $P = s \leadsto t$. Check that it is feasible and push Bottleneck(P) additional flow to get revised flow f'.

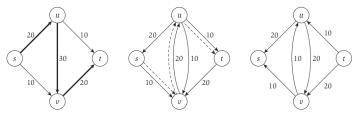
Residual Graph

Given flow f for flow network G, c, define Residual graph G_f .



Residual Graph

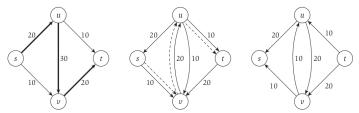
Given flow f for flow network G, c, define Residual graph G_f .



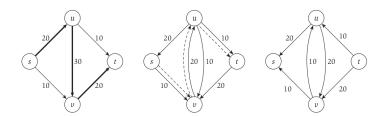
• Forward edges: Edges e with residual capacity c(e) - f(e) > 0.

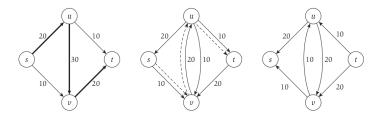
Residual Graph

Given flow f for flow network G, c, define Residual graph G_f .

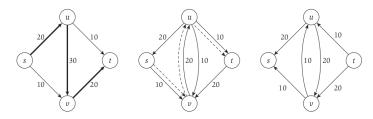


- Forward edges: Edges e with residual capacity c(e) f(e) > 0.
- Backward edges: Reverse \overline{e} of edges e with f(e) > 0 allowing reverse flow upto f(e).

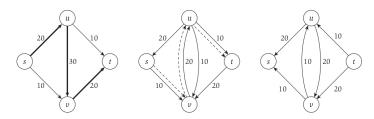




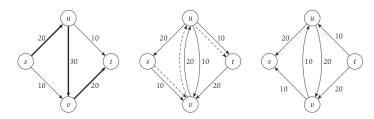
• Augmenting Path $P = s \rightsquigarrow t$ in residual G_f with b = Bottleneck(P, f) being the smallest capacity on P.



- Augmenting Path $P = s \rightsquigarrow t$ in residual G_f with b = Bottleneck(P, f) being the smallest capacity on P.
- Augmented Flow f' is f modified as follows:
 - for each forward edge e on P, increase f'(e) = f(e) + b
 - for each backward edge \overline{e} on P, decrease f'(e) = f(e) b.



- Augmenting Path $P = s \rightsquigarrow t$ in residual G_f with b = Bottleneck(P, f) being the smallest capacity on P.
- Augmented Flow f' is f modified as follows:
 - for each forward edge e on P, increase f'(e) = f(e) + b
 - for each backward edge \overline{e} on P, decrease f'(e) = f(e) b.
- Claim: f' is a valid flow in G, c.

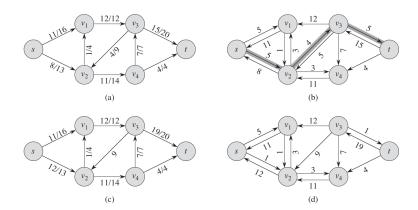


- Augmenting Path $P = s \rightsquigarrow t$ in residual G_f with b = Bottleneck(P, f) being the smallest capacity on P.
- Augmented Flow f' is f modified as follows:
 - for each forward edge e on P, increase f'(e) = f(e) + b
 - for each backward edge \overline{e} on P, decrease f'(e) = f(e) b.
- Claim: f' is a valid flow in G, c.
- Augmentation f' from f can be computed in time O(E).

Ford-Fulkerson Algorithm (1956) for Max-Flow

```
Max-Flow
  Initially f(e) = 0 for all e in G
  While there is an s-t path in the residual graph G_f
    Let P be a simple s-t path in G_f
    f' = \operatorname{augment}(f, P)
    Update f to be f'
    Update the residual graph G_f to be G_{f'}
  Endwhile
  Return f
```

Example: Ford Fulkerson



Given flow network G, c and a valid flow f,

• partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.

Given flow network G, c and a valid flow f,

- partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.
- Let capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$. Clearly, flow value $f^{out}(s) = f^{out}A - f^{in}(A) \le c(A, B)$.

Given flow network G, c and a valid flow f,

- partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.
- Let capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$. Clearly, flow value $f^{out}(s) = f^{out}A - f^{in}(A) \le c(A, B)$.

Theorem

If f* is the flow such that there is no $s \leadsto t$ path in G_f (i.e. f* is returned by Ford-Fulkerson algorithm), then we can construct an s,t cut A*, B* such that f*=c(A*,B*). Hence f* is max flow and A*, B* is min cut.

Given flow network G, c and a valid flow f,

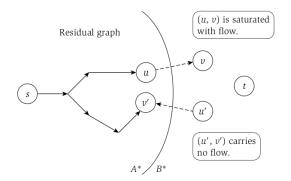
- partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.
- Let capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$. Clearly, flow value $f^{out}(s) = f^{out}A - f^{in}(A) \le c(A, B)$.

Theorem

If f* is the flow such that there is no $s \leadsto t$ path in G_f (i.e. f* is returned by Ford-Fulkerson algorithm), then we can construct an s,t cut A*,B* such that f*=c(A*,B*). Hence f* is max flow and A*,B* is min cut.

Construction: Let A* be all nodes v s.t. $s \rightsquigarrow v$ in G_f . Let B* = V - A*.

Proof Idea



Integrality of Maximal Flow

If flow network G, c is such that c(e) is non-negative integer for each e, then maximum flow f* produced by Fork Fulkerson algorithm assigns integer flow value to each edge.

Integrality of Maximal Flow

If flow network G, c is such that c(e) is non-negative integer for each e, then maximum flow f* produced by Fork Fulkerson algorithm assigns integer flow value to each edge.

Proof Idea

At each iteration, the Ford-Fulkerson algorithm augments the flow with only integral value. Hence, flow value in each edge at each iteration is invariantly integral.

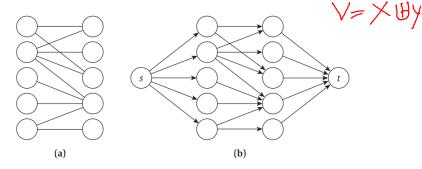


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

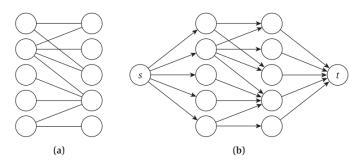


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

• Bipartate graph (X; Y, E). Figure (a).

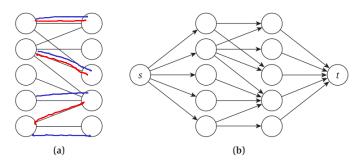


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

- Bipartate graph (X; Y, E). Figure (a).
- Matching $M \subseteq E$ s.t. every $v \in X \cup Y$ occurs at most once in M.

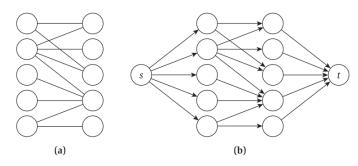


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

- Bipartate graph (X; Y, E). Figure (a).
- Matching $M \subseteq E$ s.t. every $v \in X \cup Y$ occurs at most once in M.
- Maximal Matching.

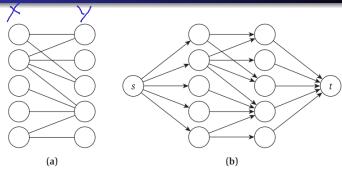


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

- Bipartate graph (X; Y, E). Figure (a).
- Matching $M \subseteq E$ s.t. every $v \in X \cup Y$ occurs at most once in M.
- Maximal Matching.
- Perfect Matching: Every $v \in X \cup Y$ occurs exactly once in M

Illustration

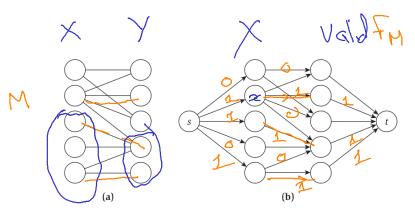


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge e having capacity c(e) = 1. See figure.

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

• If M is a matching, then corresponding flow f_M obtained by assigning $f_M(e) = 1$ if $e \in M$ and $f_M(e) = 0$ otherwise is a valid integral flow of G', c.

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

- If M is a matching, then corresponding flow f_M obtained by assigning $f_M(e) = 1$ if $e \in M$ and $f_M(e) = 0$ otherwise is a valid integral flow of G', c.
- If f is a valid integral flow then corresponding subset of edges M_f between X, Y having flow value 1 forms a matching with $|M_f| = v(f)$.

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

- If M is a matching, then correspoding flow f_M obtained by assigning $f_M(e) = 1$ if $e \in M$ and $f_M(e) = 0$ otherwise is a valid integral flow of G', c.
- If f is a valid integral flow then corresponding subset of edges M_f between X, Y having flow value 1 forms a matching with $|M_f| = v(f)$.

Corollary

If f* is a maximal integral flow then M_{f*} is a maximal matching.

A bipartate graph G = (X; Y, E) with |X| = |Y| = n

- has a perfect matching if and only iff
- for all $A \subseteq X$ we have $|A| \le |E(A)|$.

A bipartate graph G = (X; Y, E) with |X| = |Y| = n

- has a perfect matching if and only iff
- for all $A \subseteq X$ we have $|A| \le |E(A)|$.

Proof

G has perfect matching iff corresponding flow graph G', c
 hnas a maximal flow f* of value n.

A bipartate graph G = (X; Y, E) with |X| = |Y| = n

 has a perfect matching if and only iff

• for all $A \subseteq X$ we have $|A| \le |E(A)|$.

Proof

- G has perfect matching iff corresponding flow graph G', c
 hnas a maximal flow f* of value n.
- If v(f*) = n then M_{f*} is a perfect matching. Hence, RHS.

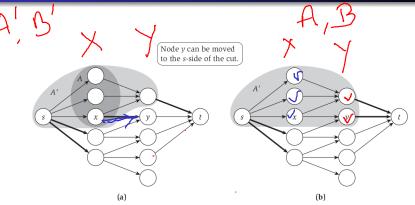
A bipartate graph G = (X; Y, E) with |X| = |Y| = n

- has a perfect matching if and only iff
- for all $A \subseteq X$ we have $|A| \le |E(A)|$.

Proof

- G has perfect matching iff corresponding flow graph G', c
 hnas a maximal flow f* of value n.
- If v(f*) = n then M_{f*} is a perfect matching. Hence, RHS.
- Conversely If v(f*) < n then we can show that for some $A \subseteq X$ we have |A| > |E(A)|.

Proof (cont)



- There exists a min-cut of capacity less than *n* of type shown above.
- We can see that A is larger than B. (See KT7.5)