
Design and Analysis of Algorithms
CS218M

Network Flow Algorithms

Paritosh Pandya

Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

Optimal Network Flow Problem

A flow network is a directed graph G = (V ,E) where each edge
(u, v) has a non-negative integer capacity c(u, v) ≥ 0. The graph
has source vertex s and sink vertext t.

s has no incoming edges. t has no outgoing edges.

For all internal nodes v there is a path s � v � t.

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

Let f out(v) = Σe out of v f (e) and f in(v) = Σe in to v f (e).

P.K. Pandya Design and Analysis of Algorithms CS218M

Flow

Given a flow network (G , c), a flow is f : E → Z0 such that

(capacity) 0 ≤ f (u, v) ≤ c(u, v).

(conservation) For all internal nodes v we have
Σe in to v f (e) = Σe out of v f (e)

Let f out(v) = Σe out of v f (e) and f in(v) = Σe in to v f (e).

Define value of flow f as f out(s).

P.K. Pandya Design and Analysis of Algorithms CS218M

Finding Maximum Flow

P.K. Pandya Design and Analysis of Algorithms CS218M

Finding Maximum Flow

Find a path P = s � t. Let Bottleneck(P) be the smallest
capacity on the path. Initial flow f has value Bottleneck(P).

P.K. Pandya Design and Analysis of Algorithms CS218M

Finding Maximum Flow

Find a path P = s � t. Let Bottleneck(P) be the smallest
capacity on the path. Initial flow f has value Bottleneck(P).

Given current flow f , find augmenting path P = s � t. Check
that it is feasible and push Bottleneck(P) additional flow to
get revised flow f �.

P.K. Pandya Design and Analysis of Algorithms CS218M

Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

P.K. Pandya Design and Analysis of Algorithms CS218M

Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

Forward edges: Edges e with residual capacity
c(e)− f (e) > 0.

P.K. Pandya Design and Analysis of Algorithms CS218M

Residual Graph

Given flow f for flow network G , c , define Residual graph Gf .

Forward edges: Edges e with residual capacity
c(e)− f (e) > 0.

Backward edges: Reverse e of edges e with f (e) > 0 allowing
reverse flow upto f (e).

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

Claim: f � is a valid flow in G , c .

P.K. Pandya Design and Analysis of Algorithms CS218M

Augmenting the Flow

Augmenting Path P = s � t in residual Gf with
b = Bottleneck(P , f) being the smallest capacity on P .

Augmented Flow f � is f modified as follows:

for each forward edge e on P , increase f �(e) = f (e) + b
for each backward edge e on P, decrease f �(e) = f (e)− b.

Claim: f � is a valid flow in G , c .

Augmentation f � from f can be computed in time O(E).

P.K. Pandya Design and Analysis of Algorithms CS218M

Ford-Fulkerson Algorithm (1956) for Max-Flow

P.K. Pandya Design and Analysis of Algorithms CS218M

Example: Ford Fulkerson

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

Theorem

If f ∗ is the flow such that there is no s � t path in Gf (i.e. f ∗ is
returned by Ford-Fulkerson algorithm), then we can construct an
s, t cut A∗,B∗ such that f ∗ = c(A∗,B∗). Hence f ∗ is max flow
and A∗,B∗ is min cut.

P.K. Pandya Design and Analysis of Algorithms CS218M

Max-flow Min-Cut Theorem

Given flow network G , c and a valid flow f ,

partition A,B of V is an s, t-cut if s ∈ A and t ∈ B .

Let capacity c(A,B) = Σe out of A c(e).
Clearly, flow value f out(s) = f outA− f in(A) ≤ c(A,B).

Theorem

If f ∗ is the flow such that there is no s � t path in Gf (i.e. f ∗ is
returned by Ford-Fulkerson algorithm), then we can construct an
s, t cut A∗,B∗ such that f ∗ = c(A∗,B∗). Hence f ∗ is max flow
and A∗,B∗ is min cut.

Construction: Let A∗ be all nodes v s.t. s � v in Gf . Let
B∗ = V − A∗.

P.K. Pandya Design and Analysis of Algorithms CS218M

Proof Idea

P.K. Pandya Design and Analysis of Algorithms CS218M

Integrality of Maximal Flow

If flow network G , c is such that c(e) is non-negative integer for
each e, then maximum flow f ∗ produced by Fork Fulkerson
algorithm assigns integer flow value to each edge.

P.K. Pandya Design and Analysis of Algorithms CS218M

Integrality of Maximal Flow

If flow network G , c is such that c(e) is non-negative integer for
each e, then maximum flow f ∗ produced by Fork Fulkerson
algorithm assigns integer flow value to each edge.

Proof Idea

At each iteration, the Ford-Fulkerson algorithm augments the flow
with only integral value. Hence, flow value in each edge at each
iteration is invariantly integral.

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximal Matching in Bipartate Graph

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximal Matching in Bipartate Graph

Bipartate graph (X ;Y ,E). Figure (a).

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximal Matching in Bipartate Graph

Bipartate graph (X ;Y ,E). Figure (a).

Matching M ⊆ E s.t. every v ∈ X ∪Y occurs at most once in
M.

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximal Matching in Bipartate Graph

Bipartate graph (X ;Y ,E). Figure (a).

Matching M ⊆ E s.t. every v ∈ X ∪Y occurs at most once in
M.

Maximal Matching.

P.K. Pandya Design and Analysis of Algorithms CS218M

Maximal Matching in Bipartate Graph

Bipartate graph (X ;Y ,E). Figure (a).

Matching M ⊆ E s.t. every v ∈ X ∪Y occurs at most once in
M.

Maximal Matching.

Perfect Matching: Every v ∈ X ∪ Y occurs exactly once in M

P.K. Pandya Design and Analysis of Algorithms CS218M

Illustration

P.K. Pandya Design and Analysis of Algorithms CS218M

Reduction to Flow Network

Given bipartate graph (X ;Y ,E), we can construct a flow graph
(G �, c) with every edge e having capacity c(e) = 1. See figure.

P.K. Pandya Design and Analysis of Algorithms CS218M

Reduction to Flow Network

Given bipartate graph (X ;Y ,E), we can construct a flow graph
(G �, c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X ;Y ,E) be a bipartate graph and G �, c be the related flow
network.

P.K. Pandya Design and Analysis of Algorithms CS218M

Reduction to Flow Network

Given bipartate graph (X ;Y ,E), we can construct a flow graph
(G �, c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X ;Y ,E) be a bipartate graph and G �, c be the related flow
network.

If M is a matching, then correspoding flow fM obtained by
assigning fM(e) = 1 if e ∈ M and fM(e) = 0 otherwise is a
valid integral flow of G �, c.

P.K. Pandya Design and Analysis of Algorithms CS218M

Reduction to Flow Network

Given bipartate graph (X ;Y ,E), we can construct a flow graph
(G �, c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X ;Y ,E) be a bipartate graph and G �, c be the related flow
network.

If M is a matching, then correspoding flow fM obtained by
assigning fM(e) = 1 if e ∈ M and fM(e) = 0 otherwise is a
valid integral flow of G �, c.

If f is a valid integral flow then corresponding subset of edges
Mf between X ,Y having flow value 1 forms a matching with
|Mf | = v(f).

P.K. Pandya Design and Analysis of Algorithms CS218M

Reduction to Flow Network

Given bipartate graph (X ;Y ,E), we can construct a flow graph
(G �, c) with every edge e having capacity c(e) = 1. See figure.

Theorem

Let (X ;Y ,E) be a bipartate graph and G �, c be the related flow
network.

If M is a matching, then correspoding flow fM obtained by
assigning fM(e) = 1 if e ∈ M and fM(e) = 0 otherwise is a
valid integral flow of G �, c.

If f is a valid integral flow then corresponding subset of edges
Mf between X ,Y having flow value 1 forms a matching with
|Mf | = v(f).

Corollary

If f ∗ is a maximal integral flow then Mf ∗ is a maximal matching.

P.K. Pandya Design and Analysis of Algorithms CS218M

Hall’s Theorem

A bipartate graph G = (X ;Y ,E) with |X | = |Y | = n

has a perfect matching
if and only iff

for all A ⊆ X we have |A| ≤ |E (A)|.

P.K. Pandya Design and Analysis of Algorithms CS218M

Hall’s Theorem

A bipartate graph G = (X ;Y ,E) with |X | = |Y | = n

has a perfect matching
if and only iff

for all A ⊆ X we have |A| ≤ |E (A)|.

Proof

G has perfect matching iff corresponding flow graph G �, c
hnas a maximal flow f ∗ of value n.

P.K. Pandya Design and Analysis of Algorithms CS218M

Hall’s Theorem

A bipartate graph G = (X ;Y ,E) with |X | = |Y | = n

has a perfect matching
if and only iff

for all A ⊆ X we have |A| ≤ |E (A)|.

Proof

G has perfect matching iff corresponding flow graph G �, c
hnas a maximal flow f ∗ of value n.

If G has a perfect matching M then every node x in X is
uniquely paired to a node y in Y via an M edge. Hence, for
any A, we have |A| = |M(A)| ≤ |E (A)|. (Because,
M(A) ⊆ E (A)). Thus, RHS.

P.K. Pandya Design and Analysis of Algorithms CS218M

Hall’s Theorem

A bipartate graph G = (X ;Y ,E) with |X | = |Y | = n

has a perfect matching
if and only iff

for all A ⊆ X we have |A| ≤ |E (A)|.

Proof

G has perfect matching iff corresponding flow graph G �, c
hnas a maximal flow f ∗ of value n.

If G has a perfect matching M then every node x in X is
uniquely paired to a node y in Y via an M edge. Hence, for
any A, we have |A| = |M(A)| ≤ |E (A)|. (Because,
M(A) ⊆ E (A)). Thus, RHS.

Conversely, if G does not have perfect matching then,
v(f ∗) < n. We show that for some A ⊆ X we have
|A| > |E (A)|.

P.K. Pandya Design and Analysis of Algorithms CS218M

There exists a min-cut (A,B) of capacity less than n with
edges in s− > X , in X− > Y and in Y− > t.

There exists a min-cut (A,B) of capacity less than n with
edges in s− > X , in X− > Y and in Y− > t.

We can transform this to cut (A�,B �) of same capacity with
edges only in s− > X and Y− > t. There are less than n
edges.

There exists a min-cut (A,B) of capacity less than n with
edges in s− > X , in X− > Y and in Y− > t.

We can transform this to cut (A�,B �) of same capacity with
edges only in s− > X and Y− > t. There are less than n
edges.

If k1 = |X ∩ A�| and k2 = |YcapB �|, then (n − k1 + k2) < n
giving k2 < k1.

