Design and Analysis of Algorithms CS218M

Network Flow Algorithms

Paritosh Pandya

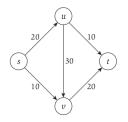
Indian Institute of Technology, Bombay

Autumn, 2022

P.K. Pandya Design and Analysis of Algorithms CS218M

• • = • • =

A flow network is a directed graph G = (V, E) where each edge (u, v) has a non-negative integer capacity $c(u, v) \ge 0$. The graph has source vertex s and sink vertext t.



- s has no incoming edges. t has no outgoing edges.
- For all internal nodes v there is a path $s \rightsquigarrow v \rightsquigarrow t$.

Given a flow network (G, c), a flow is $f : E \to Z_0$ such that

- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have

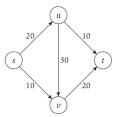
 $\Sigma_{e \text{ in to } v} f(e) = \Sigma_{e \text{ out of } v} f(e)$

伺 ト イ ヨ ト イ ヨ ト

Given a flow network (G, c), a flow is $f : E \to Z_0$ such that

- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have

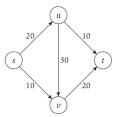
 $\Sigma_{e \text{ in to } v} f(e) = \Sigma_{e \text{ out of } v} f(e)$



Given a flow network (G, c), a flow is $f : E \to Z_0$ such that

- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have

 $\Sigma_{e \text{ in to } v} f(e) = \Sigma_{e \text{ out of } v} f(e)$

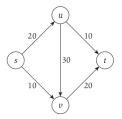


Given a flow network (G, c), a flow is $f : E \to Z_0$ such that

• (capacity)
$$0 \le f(u, v) \le c(u, v)$$
.

• (conservation) For all internal nodes v we have

 $\Sigma_{e \text{ in to } v} f(e) = \Sigma_{e \text{ out of } v} f(e)$

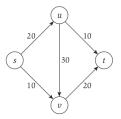


• Let $f^{out}(v) = \sum_{e \text{ out of } v} f(e)$ and $f^{in}(v) = \sum_{e \text{ in to } v} f(e)$.

Given a flow network (G, c), a flow is $f : E \to Z_0$ such that

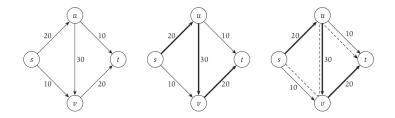
- (capacity) $0 \le f(u, v) \le c(u, v)$.
- (conservation) For all internal nodes v we have

 $\Sigma_{e \text{ in to } v} f(e) = \Sigma_{e \text{ out of } v} f(e)$



Let f^{out}(v) = Σ_e out of v f(e) and fⁱⁿ(v) = Σ_e in to v f(e).
Define value of flow f as f^{out}(s).

Finding Maximum Flow

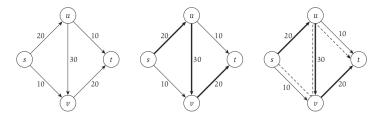


P.K. Pandya Design and Analysis of Algorithms CS218M

∃ ► < ∃ ►</p>

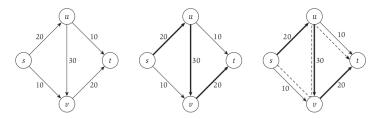
æ

Finding Maximum Flow



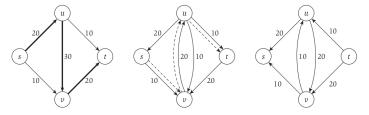
Find a path P = s → t. Let Bottleneck(P) be the smallest capacity on the path. Initial flow f has value Bottleneck(P).

Finding Maximum Flow

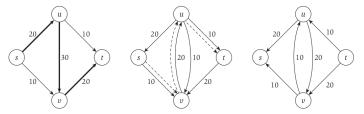


- Find a path P = s → t. Let Bottleneck(P) be the smallest capacity on the path. Initial flow f has value Bottleneck(P).
- Given current flow f, find augmenting path P = s → t. Check that it is feasible and push Bottleneck(P) additional flow to get revised flow f'.

Given flow f for flow network G, c, define Residual graph G_f .

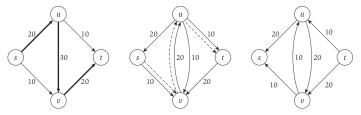


Given flow f for flow network G, c, define Residual graph G_f .

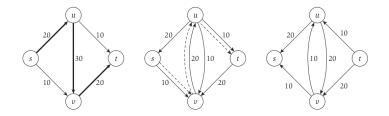


• Forward edges: Edges e with residual capacity c(e) - f(e) > 0.

Given flow f for flow network G, c, define Residual graph G_f .

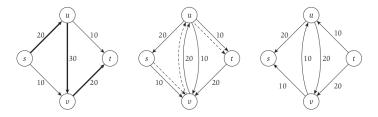


- Forward edges: Edges e with residual capacity c(e) f(e) > 0.
- Backward edges: Reverse e of edges e with f(e) > 0 allowing reverse flow upto f(e).

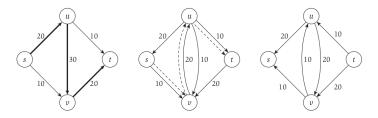


< ∃⇒

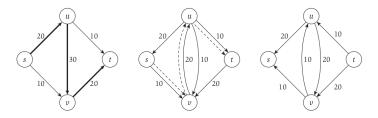
æ



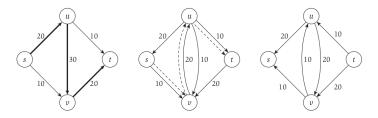
Augmenting Path P = s → t in residual G_f with
 b = Bottleneck(P, f) being the smallest capacity on P.



- Augmenting Path P = s → t in residual G_f with
 b = Bottleneck(P, f) being the smallest capacity on P.
- Augmented Flow f' is f modified as follows:
 - for each forward edge e on P, increase f'(e) = f(e) + b
 - for each backward edge \overline{e} on *P*, decrease f'(e) = f(e) b.



- Augmenting Path P = s → t in residual G_f with
 b = Bottleneck(P, f) being the smallest capacity on P.
- Augmented Flow f' is f modified as follows:
 - for each forward edge e on P, increase f'(e) = f(e) + b
 - for each backward edge \overline{e} on *P*, decrease f'(e) = f(e) b.
- Claim: f' is a valid flow in G, c.



- Augmenting Path P = s → t in residual G_f with
 b = Bottleneck(P, f) being the smallest capacity on P.
- Augmented Flow f' is f modified as follows:
 - for each forward edge e on P, increase f'(e) = f(e) + b
 - for each backward edge \overline{e} on *P*, decrease f'(e) = f(e) b.
- Claim: f' is a valid flow in G, c.
- Augmentation f' from f can be computed in time O(E).

Ford-Fulkerson Algorithm (1956) for Max-Flow

```
Max-Flow

Initially f(e) = 0 for all e in G

While there is an s-t path in the residual graph G_f

Let P be a simple s-t path in G_f

f' = \text{augment}(f, P)

Update f to be f'

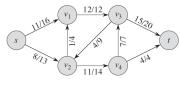
Update the residual graph G_f to be G_{f'}

Endwhile

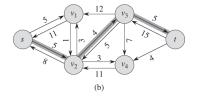
Return f
```

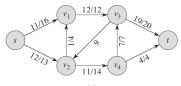
・ 同 ト ・ ヨ ト ・ ヨ ト …

Example: Ford Fulkerson

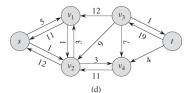


(a)





(c)



∃ ► < ∃ ►</p>

æ

• partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.

★ ∃ ► < ∃ ►</p>

- partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.
- Let capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$. Clearly, flow value $f^{out}(s) = f^{out}A - f^{in}(A) \le c(A, B)$.

- partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.
- Let capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$. Clearly, flow value $f^{out}(s) = f^{out}A - f^{in}(A) \le c(A, B)$.

Theorem

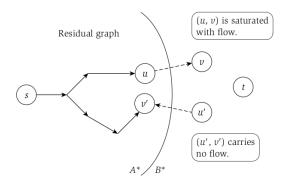
If f * is the flow such that there is no $s \rightsquigarrow t$ path in G_f (i.e. f * is returned by Ford-Fulkerson algorithm), then we can construct an s, t cut A*, B* such that f* = c(A*, B*). Hence f* is max flow and A*, B* is min cut.

- partition A, B of V is an s, t-cut if $s \in A$ and $t \in B$.
- Let capacity $c(A, B) = \sum_{e \text{ out of } A} c(e)$. Clearly, flow value $f^{out}(s) = f^{out}A - f^{in}(A) \le c(A, B)$.

Theorem

If f * is the flow such that there is no $s \rightsquigarrow t$ path in G_f (i.e. f * is returned by Ford-Fulkerson algorithm), then we can construct an s, t cut A*, B* such that f* = c(A*, B*). Hence f* is max flow and A*, B* is min cut.

Construction: Let A* be all nodes v s.t. $s \rightsquigarrow v$ in G_f . Let B* = V - A*.



æ

If flow network G, c is such that c(e) is non-negative integer for each e, then maximum flow f * produced by Fork Fulkerson algorithm assigns integer flow value to each edge.

If flow network G, c is such that c(e) is non-negative integer for each e, then maximum flow f * produced by Fork Fulkerson algorithm assigns integer flow value to each edge.

Proof Idea

At each iteration, the Ford-Fulkerson algorithm augments the flow with only integral value. Hence, flow value in each edge at each iteration is invariantly integral.

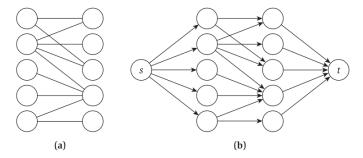


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

э

伺 ト イヨト イヨト

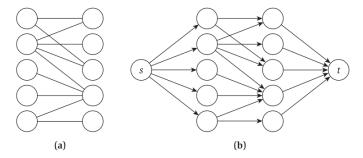


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

• Bipartate graph (X; Y, E). Figure (a).

• • = • • = •

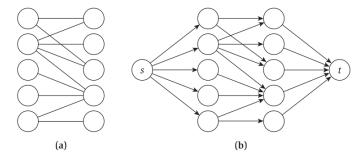


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

- Bipartate graph (X; Y, E). Figure (a).
- Matching M ⊆ E s.t. every v ∈ X ∪ Y occurs at most once in M.

伺 ト イヨト イヨト

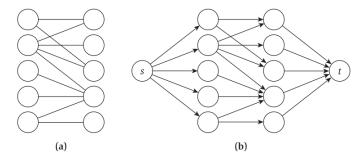


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

- Bipartate graph (X; Y, E). Figure (a).
- Matching M ⊆ E s.t. every v ∈ X ∪ Y occurs at most once in M.
- Maximal Matching.

伺 ト イヨ ト イヨト

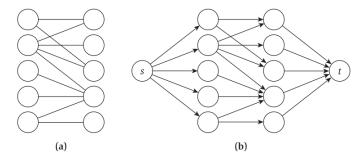


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

- Bipartate graph (X; Y, E). Figure (a).
- Matching M ⊆ E s.t. every v ∈ X ∪ Y occurs at most once in M.
- Maximal Matching.
- Perfect Matching: Every $v \in X \cup Y$ occurs exactly once in M

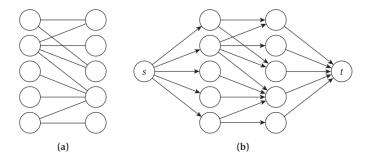


Figure 7.9 (a) A bipartite graph. (b) The corresponding flow network, with all capacities equal to 1.

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge e having capacity c(e) = 1. See figure.

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge *e* having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

• • = • • = •

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge *e* having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

• If M is a matching, then corresponding flow f_M obtained by assigning $f_M(e) = 1$ if $e \in M$ and $f_M(e) = 0$ otherwise is a valid integral flow of G', c.

伺 ト イヨト イヨト

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge *e* having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

- If *M* is a matching, then corresponding flow f_M obtained by assigning $f_M(e) = 1$ if $e \in M$ and $f_M(e) = 0$ otherwise is a valid integral flow of G', c.
- If f is a valid integral flow then corresponding subset of edges M_f between X, Y having flow value 1 forms a matching with $|M_f| = v(f)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Given bipartate graph (X; Y, E), we can construct a flow graph (G', c) with every edge *e* having capacity c(e) = 1. See figure.

Theorem

Let (X; Y, E) be a bipartate graph and G', c be the related flow network.

- If M is a matching, then corresponding flow f_M obtained by assigning $f_M(e) = 1$ if $e \in M$ and $f_M(e) = 0$ otherwise is a valid integral flow of G', c.
- If f is a valid integral flow then corresponding subset of edges M_f between X, Y having flow value 1 forms a matching with $|M_f| = v(f)$.

Corollary

If f * is a maximal integral flow then M_{f*} is a maximal matching.

- A bipartate graph G = (X; Y, E) with |X| = |Y| = n
 - has a perfect matching if and only iff
 - for all $A \subseteq X$ we have $|A| \leq |E(A)|$.

• • • • • • • •

- A bipartate graph G = (X; Y, E) with |X| = |Y| = n
 - has a perfect matching

if and only iff

• for all $A \subseteq X$ we have $|A| \le |E(A)|$.

Proof

 G has perfect matching iff corresponding flow graph G', c hnas a maximal flow f* of value n.

・ 戸 ト ・ ヨ ト ・ ヨ ト

A bipartate graph G = (X; Y, E) with |X| = |Y| = n

 has a perfect matching if and only iff

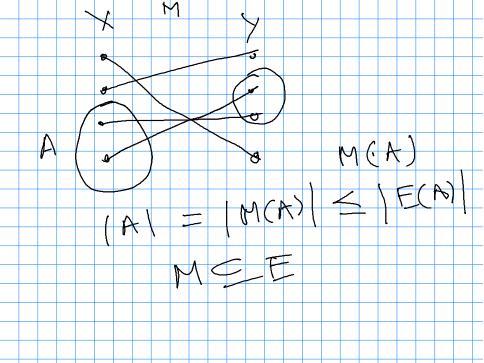
• for all $A \subseteq X$ we have $|A| \leq |E(A)|$. $\bigcirc 2$.

Proof

- G has perfect matching iff corresponding flow graph G', c hnas a maximal flow f* of value n.
- If G has a perfect matching M then every node x in X is uniquely paired to a node y in Y via an M edge. Hence, for any A, we have |A| = |M(A)| ≤ |E(A)|. (Because, M(A) ⊆ E(A)). Thus, RHS.

・ 同 ト ・ ヨ ト ・ ヨ ト

CI,



- A bipartate graph G = (X; Y, E) with |X| = |Y| = n
 - has a perfect matching

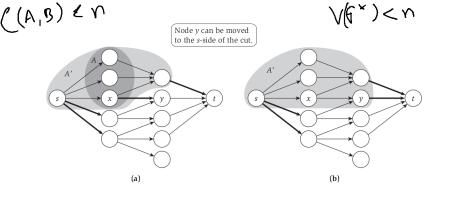
if and only iff

• for all $A \subseteq X$ we have $|A| \le |E(A)|$.

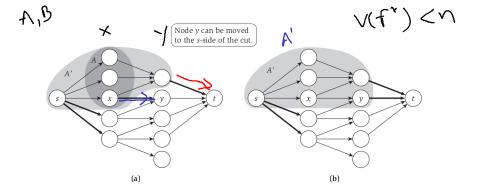
Proof

- G has perfect matching iff corresponding flow graph G', c hnas a maximal flow f* of value n.
- If G has a perfect matching M then every node x in X is uniquely paired to a node y in Y via an M edge. Hence, for any A, we have |A| = |M(A)| ≤ |E(A)|. (Because, M(A) ⊆ E(A)). Thus, RHS.
- Conversely, if G does not have perfect matching then, $v(f^*) < n$. We show that for some $A \subseteq X$ we have |A| > |E(A)|.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

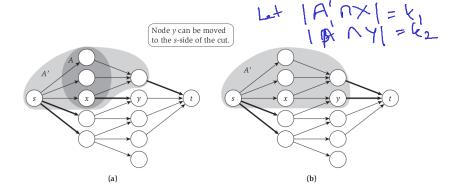


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

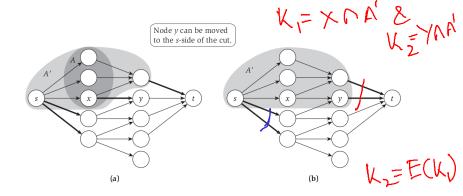


• There exists a min-cut (A, B) of capacity less than *n* with edges in s - > X, in X - > Y and in Y - > t.

(日) (四) (문) (문) (문)



- There exists a min-cut (A, B) of capacity less than *n* with edges in s > X, in X > Y and in Y > t.
- We can transform this to cut (A', B') of same capacity with edges only in s > X and Y > t. There are less than n edges.



- There exists a min-cut (A, B) of capacity less than n with edges in s > X, in X > Y and in Y > t.
- We can transform this to cut (A', B') of same capacity with edges only in s > X and Y > t. There are less than n edges.
- If $k_1 = |X \cap A'|$ and $k_2 = |Y_{cap}\beta'|$, then $(n k_1 + k_2) < n$ giving $k_2 < k_1$.